Journal of Electrochemistry Volume 26 Issue 2 Special Issue : High Temperature Electrochemistry 2020-04-28 # Electrochemical Performance Improvement of Li₂MnO₃ Cathode Materials by MgF₂ Coating Du-dan WANG Fei WANG Huan-huan ZHAI Yu-peng LI Na-chuan YANG #### Kang-hua CHEN 1. Light Alloy Research Institute, Central South University, Changsha 410083, Hunan, China;2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China;, kanghuachen@csu.edu.cn #### **Recommended Citation** Du-dan WANG, Fei WANG, Huan-huan ZHAI, Yu-peng LI, Na-chuan YANG, Kang-hua CHEN. Electrochemical Performance Improvement of Li₂MnO₃ Cathode Materials by MgF₂ Coating[J]. *Journal of Electrochemistry*, 2020, 26(2): 289-297. DOI: 10.13208/j.electrochem.190524 Available at: https://jelectrochem.xmu.edu.cn/journal/vol26/iss2/12 This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry. **DOI**: 10.13208/j.electrochem.190524 **Article ID**:1006-3471(2020)02-0289-09 Cite this: J. Electrochem. 2020, 26(2): 289-297 Http://electrochem.xmu.edu.cn ## Electrochemical Performance Improvement of Li₂MnO₃ Cathode Materials by MgF₂ Coating WANG Du-dan¹, WANG Fei², ZHAI Huan-huan¹, LI Yu-peng², YANG Na-chuan², CHEN Kang-hua^{1,2*} (1. Light Alloy Research Institute, Central South University, Changsha 410083, Hunan, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, China) **Abstract:** Cathode material Li_2MnO_3 has received more and more attention owing to its high theoretical capacity (459 mAh·g⁻¹). However, the low initial coulombic efficiency and the poor cycle stability hamper its practical application in lithium-ion batteries. Herein, we investigated the crystal structure and electrochemical performance of Li_2MnO_3 by introducing MgF_2 coating layer. The results indicated that the conversion of partial layer Li_2MnO_3 to spinel phase induced by MgF_2 coating could reduce the initial irreversible capacity and improve the first cycle efficiency. The initial coulombic efficiencies of the 0.5wt.%, 1.0wt.%, and 2.0wt.% MgF_2 -coated electrodes were 70.1%, 77.5% and 84.9%, respectively, compared with 57.7% of the pristine cathode. The charge-discharge curves showed that the 1.0wt.% MgF_2 -modified Li_2MnO_3 delivered the highest charge and discharge capacities, and exhibited the best cycle stability. The capacity retention rate of the 1.0wt.% MgF_2 -coated sample was 81% after the 40th cycles, which was much higher than that of the pristine sample (53.6%). The electrochemical impedance spectroscopic data revealed that the MgF_2 coating reduced the rapid deposition of the resistive component and improved the cycle stability of the electrodes. **Key words:** Li₂MnO₃ cathode; MgF₂ coating; cycle stability; coulombic efficiency **CLC Number:** 0646.21 **Document Code:** A Lithium-ion batteries have been regarded as the most promising electrochemical energy storage system, and used in electric vehicles and portable electronic devices^[1-3]. In order to meet the requirement of high energy density, the development of cathode materials with superior electrochemical performance and environmental friendly has become the focus of lithium-ion batteries^[4-7]. Manganese (Mg)-based lithium (Li)-rich layered compounds as cathode materials are safer, less toxic and cheaper than cobalt (Co) or nickel (Ni)-based layered compounds. Therefore, Mg-based Li-rich layered compounds have received more attention as cathode materials in lithium-ion batteries[8-11]. The Mg-based Li-rich layered compound is characterized by an irreversible high voltage platform above 4.5 V during the first charge. This platform is formed by the removal of "Li₂O" from Li₂MnO₃^[12-13]. Mg-based Li-rich layered compounds have high initial discharge capacity owing to the activation of Li₂MnO₃, but the cycle performance is poor. Therefore, it would be beneficial to understand the properties of this type layered compound by re-examination in the properties of the Li₂MnO₃ material. The main problem with Li₂MnO₃ is the poor electronic conductivity and the irreversible loss of oxygen, making the structure unstable. Oxygen release during the first charging process results in an irreversible structural change that reduced the coulombic efficiency of the first cycle and accelerated the capacity decay during cycling^[14]. The common methods of improving Li₂MnO₃ performance are surface coating and element doping. Yanhong Xiang^[15] synthesized the Li₂Mn_{0.9}Al_{0.1}O₃ compounds. The results showed that the doping of Al could slow the capacity decay and improve the rate performance. However, Loraine Torres-Castro^[16] used Al instead of the Li site to imoprove the properties of the Li₂MnO₃ material. The data showed that the spinel phase was gradually _ formed with the increase of Al content, and the binding energy of the sample was decreased, which improved the electrochemical properties of the material. Toshiyuki Matsunaga^[17] prepared Ni-doped Li₂MnO₃ materials. With the increasing of Ni metal, the number of active Li ions increased, which resulted in high charge and discharge capacities. Lilong Xiong et al. used Na-doped [18] or Mg-doped [19] Li-site to modify Li₂MnO₃ cathode. They deemed that Na or Mg doping could significantly improve the cycle stability and rate performance of the material. In addition, the Mg modification brought the energy density of the Li₂MnO₃ material to a new height (944 Wh·kg⁻¹) compared with 747.1 Wh ·kg⁻¹ of Li₂MnO₃ without Mg modification. Surface modification can hinder the reaction between electrolyte and electrode, alleviate the rapid growth of the unfavorable solid electrolyte interphase (SEI) film, and improve the electrochemical performance. Hui Liu^[20] investigated surface-modified Li_{1.2}Ni_{0.13}Co_{0.13}Mn_{0.54}O₂ materials with NH₄HF₂ coating, indicating that this coating caused chemical precipitation of Li in Li₂MnO₃ material. This method effectively enhanced the electrochemical properties of Li-rich Mn-based materials. Yang-Kook Sun^[21] prepared AlF₃-coated Li[Li_{0.19}Ni_{0.16}Co_{0.08}Mn_{0.57}]O₂. The results indicated that a part of Li₂MnO₃ in the material was converted into spinel structure, which effectively improved the electrode rate performance and lithium storage capacity. Usually, MgF₂ is stable in the electrolyte of lithium-ion batteries. Here, we report that the improved electrochemical performance of Li₂MnO₃ materials by surface modification. In this work, Li₂MnO₃ sam- ples with the surface-coated MgF₂ were prepared in an attempt to improve the cycle stability. The role of MgF₂ coating in the electrochemical performance of Li₂MnO₃ at room temperature has been investigated. #### 1 Experimental #### 1.1 Reagents and Instruments The reagents used in this work and their parameters are listed in Tab. 1. Tab. 1 Main chemical reagents | Reagent | Purity | Manufacturer | |---|--------|--------------| | LiCH ₃ COO · 2H ₂ O | AR | Aladdin | | $Mn(CH_3COO)_2 \cdot 4H_2O$ | AR | Aladdin | | $MgCl_2$ | AR | Aladdin | | NH_4F | AR | Aladdin | | $C_6H_8O_7 \cdot H_2O$ | AR | Aladdin | The names, models and sources of the equipments involved in this work are listed in Tab. 2. #### 1.2 Experimental Method The pristine Li₂MnO₃ sample was synthesis by solgel method. Stoichiometric amounts of LiCH₃COO· 2H₂O and Mn (CH₃COO)₂·4H₂O were dissolved in deionized water to form metal ions solution. The citric acid solution was added to the above metal ions solution with constant stirring, and then this mixed solution was evaporated at 80 °C to obtain a viscous gel. Next, the gel was dried completely at 120 °C for 10 h. Finally, the resultant precursor was heated to 500 °C for 4 h. To prepare the MgF₂-coated Li₂MnO₃, NH₄F and MgCl₂ were dissolved in deionized water, Tab. 2 Main instruments | Name | Model | Factory | |-----------------------------|-----------|--| | Electronic balance | ALC-210.4 | ACCULRB sartorius group | | Blast drying oven | 101 | Beijing Guangming Medical Co., Ltd. | | Tube furnace | TCW-32B | Yixing Opry Furnace Industry | | Magnetic heating stirrer | DF-101S | Zhengzhou Changcheng Branch Industry and Trade Co., Ltd. | | LAND test system | CT2001A | Wuhan Landian Electronics Co., Ltd. | | Electrochemical workstation | CHI660A | Shanghai Zhenhua Instrument Company | respectively. Afterwards the obtained Li₂MnO₃ powder was added in the MgCl₂ solution, and then the NH₄F solution was added with continuous stirring. The weight ratios of MgF₂ to Li₂MnO₃ powder were 0.5%, 1.0% and 2.0%, respectively. The solution was dried at 80 °C in an oven. The obtained MgF₂-coated Li₂MnO₃ powder was heated at 400 °C for 3 h in air. The phase structure was analyzed by X-ray diffraction (XRD) using Cu K_{α} radition. The scanning range was $10^{\circ} \le 2\theta \le 80^{\circ}$ and the scanning rate was 8° ⋅ min⁻¹. Scanning electron microscope (SEM) was used to analyze the morphology and particle size of the samples. Energy-dispersive spectroscope (EDS) was employed in combination with SEM to roughly determine the element content of powder. The active material was mixed with polyvinylidene fluoride and conductive carbon black in a mass ratio of 80:10:10 and stirred with N-methylpyrrolidone to form slurry. The slurry was coated into the Al foil current collector and dried thoroughly at 80 °C in an oven. The CR2032 type cells consisted of Li metal anode and cathode separated by a polypropylene film were assembled in an argon-filled glove box. The electrolyte solution was 1 mol·L⁻¹ LiPF₆-DMC/EC (1:1 by volume) that purchased from DouDou Chemical Company. The charge-discharge measurements were carried out in LAND CT2001A test system in the voltage range from 2.0 to 4.8 V. The data of electrochem ical impedance spectroscope (EIS) was collected on an electrochemical workstation in the frequency range from 100 kHz to 0.1 Hz. #### 2 Results and Discussion The XRD patterns of the MgF₂-coated and pristine Li₂MnO₃ materials are shown in Fig. 1. The characteristic peaks of all the samples were basically consistent with the standard lines of the monoclinic layered structure Li₂MnO₃ (PDF No. 84-1634, space group C2/m). As can be seen in Fig. 1, the 1.0wt.% and 2.0wt.% MgF₂-coated materials had the characteristic peak belonging to spinel structure around 37°, indicating that the MgF₂ coating induced the transformation of Li₂MnO₃ from layered structure to spinel structure. No diffraction peaks associated with MgF₂ were observed in the MgF₂-coated Li₂MnO₃ samples, indicating that this coating layer was not presented as a crystalline phase. This might probably be caused by the low heat treating temperature of 400 °C, which is not sufficient for MgF₂ to form a crystalline coating layer^[22-23]. The morphology and particle size of the MgF₂-coated and pristine Li₂MnO₃ particles are shown in Fig. 2. Evidently, the surface morphology of the Li₂MnO₃ partic les modified by MgF₂ was changed. With the increasing amount of MgF₂, most of the surfaces were covered by the coating film. The Fig. 1 X-ray diffraction patterns of the pristine and different MgF₂-coated Li₂MnO₃ samples Fig. 2 SEM images of (A) the pristine, (B) 0.5wt.%, (C) 1.0wt.%, and (D) 2.0wt.% MgF₂-coated Li₂MnO₃ samples Fig. 3 SEM image (A) and the corresponding EDS mapping images of 1.0wt.% MgF₂-coated Li₂MnO₃ for (B) Mg and (C) F elements MgF₂-coated particles tended to aggregate to form large particles, and the corners and edges became blurred. The MgF₂ coating could inhibit the contact between the electrolyte and the particles, and prevent the dissolution of Mn³⁺. Fig. 3(B-C) displays the EDS mapping images of 1.0wt.% MgF₂-coated sample from Fig. 3(A). It can be seen from Fig. 3(B-C) that Mg and F elements were uniformly distributed in the surface. As shown in Fig. 4, the 1.0wt.% MgF₂-coated Li₂MnO₃ surface (A) revealed a uniform film compared to the pristine sample surface (B), confirming that the surface of Li₂MnO₃ was successfully coated with MgF₂ film. Fig. 5(A) exhibits the initial charge-discharge curves of the pristine and MgF₂-coated Li₂MnO₃ cathodes at 0.1 C (20 mA·g⁻¹) rate. Similar to the previously reported Li₂MnO₃ electrode, all the samples showed a significant charging platform around 4.5 V, which corresponds to the "Li₂O" extraction from the Li₂MnO₃ lattice structure^[12-13]. However, the width of Fig. 4 TEM images of (A) the pristine Li_2MnO_3 and (B) 1.0wt.% MgF2-coated Li_2MnO_3 this platform was decreased as the amount of MgF_2 coating increased, and when the amount of MgF_2 coating increased to 2.0wt.%, the electrode had a very short voltage platform and capacity was only 129 mAh·g⁻¹. In addition, the modified sample showed a voltage platform at 2.8 V, which is feature of the spinel phase ($LiMn_2O_4$)^[24-25], and the platform became more and more obvious as the amount of MgF_2 coating increased. It indicates that the MgF_2 coating induced the transition of the layered structure to the spinel structure, agreed with the XRD data. The cycle performance curves of the MgF₂-coated and pristine Li₂MnO₃ cathodes are presented in Fig. 5(B). As we can see from the discharge curve, there was a sequential phase transformation: monoclinic C2/m \rightarrow tetragonal I41 \rightarrow cubic spinel^[26]. It was clear from Fig. 4(B) that the capacity retention rate of the MgF₂-modified electrode was higher than that of the pristine electrode. Capacity retention values were 65% for 0.5wt.%, 81% for 1.0wt.%, and 72.2% for 2.0wt.% MgF₂-modified cathodes, compared with 53.6% for the pristine cathode. In addition, owing to the formation of a large number of spinel phases, the discharge capacity tended to be increased and then decreasd as the amount of MgF2 increased. The reason why the cycle performance of the MgF₂-modified electrodes was enhanced is that the spinel structure might be stably circulated [27] and the MgF2 coating could avoid the contact between the electrolyte and the particles^[28]. Tab. 3 presents the initial capacity and coulom Fig. 5 (A) The initial charge-discharge curves and (B) the cycle performance curves of the pristine and MgF₂-coated Li₂MnO₃ samples bic efficiency for the MgF2-coated and pristine Li₂MnO₃ electrodes. Compared with the pristine electrode, the 0.5wt.% and 1.0wt.% MgF2-coated electrodes exhibited an increased discharge capacity, that may be owing to the combination of the stabilized electrolyte/cathode interface and partial spinel structure induced by MgF2 coating. As the amount of MgF₂ increased, the first cycle efficiency increased gradually. The first cycle efficiencies of different modified electrodes were higher than that of the pristine electrode. During the first charging period, the "Li₂O" which was removed from the Li₂MnO₃ above 4.5 V could not be re-inserted, resulting in irreversible capacity loss. The conversion of partial Li₂MnO₃ induced by MgF₂ coating to LiMn₂O₄ might reduce the initial irreversible capacity and improve the first cycle efficiency. As shown in Fig. 6, three consecutive cyclic voltammograms of the pristine Li_2MnO_3 and MgF₂-coated Li₂MnO₃ electrodes were obtained at a scanning rate of 0.1 mV·s⁻¹. During the initial charging of the pristine Li₂MnO₃ sample, no anodic peak was observed around 4.0 V. However, this characteristic peak of spinel phase (LiMn₂O₄) appeared in the subsequent cycle with the weak intensity. Contrastly, the characteristic peak of spinel phase was observed at the first cycle as the MgF₂ amount increased, indicating that this coating could induce a phase transition from layer to spinel^[18,29]. The oxidation peak around 4.5 V was connected to the removal of "Li₂O" from the Li₂MnO₃ material. Owing to the formation of layered LiMnO₂ (Li + MnO₂ \rightarrow LiMnO₂), a cathodic peak around 3.2 V was observed during the discharging for all the samples^[30]. A reduction peak at 2.8 V, which is feature of the spinel phase^[20-21], was observed, and its intensity gradually became stronger with the increasing MgF₂ amount, which is consistent with the evolution of the discharge platform. Tab. 3 Initial charge and discharge capacities, and the first cycle efficiency of the pristine and MgF₂-coated Li₂MnO₃ electrodes cycled between 2.0 and 4.8 V at a current density of 20 mA·g⁻¹ | Li ₂ MnO ₃ sample | Charge capacity/
(mAh·g ⁻¹) | Discharge capacity/
(mAh·g-1) | First cycle efficiency/% | |---|--|----------------------------------|--------------------------| | Pristine | 200.9 | 116.1 | 57.7 | | 0.5wt.%-MgF ₂ | 178.2 | 125.6 | 70.1 | | 1 wt.%-MgF $_2$ | 178.5 | 138.2 | 77.5 | | $2wt.\%-MgF_2$ | 129.7 | 110 | 84.9 | Fig. 6 Cyclic voltammograms of (A) Li_2MnO_3 , (B) 0.5wt.%MgF2- Li_2MnO_3 , (C) 1.0wt.%MgF2- Li_2MnO_3 and (D) 2.0wt.%MgF2- $\text{Li}_2\text{-MnO}_3$ in the voltage range of 2.0 ~ 4.8 V with a scan rate of 0.1 mV·s⁻¹ Fig. 7 Nyquist plots of the pristine and MgF2-coated Li2MnO3 samples: (A) before the cycle and (B) after the 40th cycle The alternating current (AC) impedance spectra of the MgF₂-coated and pristine Li₂MnO₃ electrodes, and the equivalent circuit are presented in Fig. 7. In the equivalent circuit (the inset in Fig. 7(A)), W, R_c , R_c and R_{sf} represent the Warburg impedance of lithium ion diffusion, the resistance of liquid electrolyte, charge transfer resistance and electrode surface film resistance, respectively. The semicircle in the high frequency region of Nyquist plot could elucidate $R_{\rm sf}$, and the fitted values are compared in Tab. 4. As we can see from Tab. 4, the MgF₂-modified electrodes showed lower $R_{\rm sf}$ value than the pristine electrode before the cycle. However, the $R_{\rm sf}$ value of the pristine electrode increased significantly faster than those of | $R_{ m sf}$ | Pristine | 0.5 wt.%-MgF ₂ | 1wt.%-MgF ₂ | $2wt.\%-MgF_2$ | |-------------|----------|---------------------------|------------------------|----------------| | 0 | 180.8 | 157.8 | 108 | 146 | | 40th | 424.9 | 406.3 | 195.4 | 352.2 | Tab. 4 The fitted R_{sf} values of the pristine and MgF₂-coated Li₂MnO₃ electrodes the MgF₂-coated electrodes after the 40th cycles, indicating that MgF₂ coating could reduce the interface impedance. Since the MgF₂ coating alleviated the rapid growth of the SEI film^[31-32], thereby, enhancing the cycle stability of the modified material. #### 3 Conclusions The pristine and MgF₂-coated Li₂MnO₃ electrodes were prepared by the sol-gel method. The results showed that the presence of MgF₂ coating could induce the partial layer structure of the material to the spinel structure, which improved the initial coulombic efficiency and cycle stability of the Li₂MnO₃ material. The capacity retention rate of the 1.0wt.% MgF₂-coated Li₂MnO₃ sample reached 81% after the 40th cycles, while that of the pristine Li₂MnO₃ sample was only 53.6%. In addition, this coating could prevent the Li₂MnO₃ particles from directly contacting the electrolyte, reducing the dissolution of Mn³⁺ and the oxidation of the electrolyte. The results presented in this work suggested that the MgF₂ surface modification might be practically applicable to lithium-rich layered compounds to improve their electrochemical performance. #### Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 51327902). #### **References:** - [1] Croy J R, Abouimrane A, Zhang Z C, et al. Next-generation lithium-ion Batteries: The promise of near-term advancements[J]. MRS Bulletin, 2014, 39(5): 407-415. - [2] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334 (6058): 928-935. - [3] Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2013, 7(1): 14-18. - [4] Wang J X, Liu Z M, Yan G C, et al. Improving the electro- - chemical performance of lithium vanadium fluorophosphate cathode material: Focus on interfacial stability [J]. Journal of Power Sources, 2016, 329(5): 553-557. - [5] Amine K, Kanno R, Tzeng Y H. Rechargeable lithium batteries and beyond: progress, challenges, and future directions[J]. MRS Bulletin, 2014, 39(5): 395-409. - [6] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. - [7] Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. - [8] The control and performance of Li₄Mn₅O₁₂ and Li₂MnO₃ phase ratios in the lithium-rich cathode materials[J]. Electrochimica Acta, 2016, 190: 1142-1149. - [9] Yan J H, Liu X B, Li B Y. Recent progress in Li-rich layered oxidesas cathode materials for Li-ion batteries[J]. RSC Advances, 2014, 4: 63268-63284. - [10] Zhong S K, Hu P, Luo X, et al. Preparation of LiNi₀₅Mn₁₅O₄ cathode materials by electrospinning[J]. Ionics, 2016, 22 (11): 2037-2044. - [11] Wu L, Lu J J, Wei G, et al. Synthesis and electrochemical properties of xLiMn_{0.9}Fe_{0.1}PO₄·yLi₃V₂(PO₄)₃/C composite cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014, 146: 288-294. - [12] Chen H, IslamMS. Lithium extraction mechanism in Lirich Li₂MnO₃ involvin goxygen hole formation and dimerization[J]. Chemistry of Materials, 2016, 28(18): 6656-6663. - [13] Matsunaga T, Komatsu H, Shimoda K, et al. Structural understanding of superior battery properties of partially Ni-doped Li₂MnO₃ ascathode material[J]. The Journal of Physical Chemistry Letters, 2016, 7(11): 2063-2067. - [14] Cho E, Kim K, Jun C, et al. Overview of the oxygen behavior in the degradation of Li₂MnO₃ cathode material[J]. The Journal of Physical Chemistry C, 2017, 121 (39): 21118-21127. - [15] Xiang Y H, Wu X W. Enhanced electrochemical performances of Li₂MnO₃ cathode materials by Al doping [J]. Ionics, 2018, 24(1): 83-89 - [16] Torres-Castro L, Shojan J, Julien C M, et al. Synthesis, characterization and electrochemical performance of Al- - substituted Li₂MnO₃[J]. Materials Science and Engineering B Advanced Functional Solid-State Materials, 2015, 201: 13-22. - [17] Matsunaga T, Komatsu H, Shimoda K, et al. Structural understanding of superior battery properties of partially Ni-doped Li₂MnO₃ as cathode material[J]. Journal of Physical Chemistry Letters, 2016, 7(11): 2063-2067. - [18] Dong X, Xu Y L, Xiong L L, et al. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li₂MnO₃ cathode material[J]. Journal of Power Sources, 2013, 243: 78-87. - [19] Zhao W, Xiong L L, Xu Y L, et al. Magnesium substitution to improve the electrochemical performance of layered Li₂MnO₃ positive-electrode material[J]. Journal of Power Sources, 2016, 330: 37-44. - [20] Liu H, Du C Y, Yin G P, et al. An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(37): 15640-15646. - [21] Sun Y K, Lee M J, Yoon C S, et al. The role of AlF₃ coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9): 1192-1196. - [22] Myung S T, Izumi K, Komaba S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries[J]. Chemistry of Materials, 2005, 17(14): 3695-3704. - [23] Park J H, Yoon S J, Lee H Y, et al. Estimating the burden of psychiatric disorder in korea[J]. Journal of Preventive Medicine and Public Health, 2006, 39(1): 39-45. - [24] Thackeray M M, Kock A D, Rossouw M H, et al. Spinel electrodes from the Li-Mn-O system for rechargeable - lithium battery applications[J]. Journal of The Electrochemical Society, 1992, 139(2): 363-366. - [25] Sun Y K, Jeon Y S, Lee H K. Overcoming Jahn-Teller distortion for spinel Mn phase [J]. Electrochemical and Solid-State Letters, 2000, 3(1): 7-9. - [26] Yan P F, Xiao L, Zheng J M, et al. Probing the degradation mechanism of Li₂MnO₃ cathode for Li-ion batteries [J]. Chemistry of Materials, 2015, 27(3): 975-982. - [27] Park S H, Myung S T, Oh S W, et al. Ultrasonic spray pyrolysis of nano crystalline spinel LiMn₂O₄ showing good cycling performance in the 3 V range[J]. Electrochimica Acta, 2006, 51(19): 4089-4095. - [28] Bai Y, Jiang K, Sun S W, et al. Performance improvement of LiCoO₂ by MgF₂ surface modification and mechanism exploration[J]. Electrochimica Acta, 2014, 134: 347-354. - [29] Yu D Y W, Yanagida K, Kato Y, et al. Electrochemical activities in Li₂MnO₃[J]. Journal of The Electrochemical Society, 2009, 156(6): A417-A424. - [30] Croy J R, Kim D, Balasubramanian M, et al. Countering the voltage decay in high capacity $x \text{Li}_2 \text{MnO}_3 \cdot (1-x) \text{LiMO}_2$ electrodes (M = Mn, Ni, Co) for Li⁺-ion batteries[J]. Journal of The Electrochemical Society, 2012, 159(6): A781-A790. - [31] Wang Q Y, Liu J, Murugan A V, et al. High capacity double-layer surface modified Li [Li_{0.2}Mn_{0.54}Ni_{0.13}Co_{0.13}]O₂ cathode with improved rate capability [J]. Journal of Materials Chemistry, 2009, 19(28): 4965-4972. - [32] Liu J, Manthiram A. Functional surface modifications of a high capacity layered Li[Li₀₂Mn_{0.54}Ni_{0.13}Co_{0.13}]O₂ cathode [J]. Journal of Materials Chemistry, 2010, 20(19): 3961-3967. ### 富锂层状正极材料 Li₂MnO₃ 的表面改性及其 电化学性能研究 王杜丹1,王 非2,翟欢欢1,李玉鹏2,杨纳川2,陈康华1,2* (1. 中南大学轻合金研究院,湖南 长沙 410083; 2. 中南大学粉末冶金研究院,湖南 长沙 410083) 摘要: Li_2MnO_3 正极材料具有较高的理论容量(459 mAh·g¹),不仅安全无毒还能够大大降低电池的制造成本,从而受到越来越多的关注. 然而,较低的首圈库仑效率和较差的循环性能妨碍了其在锂电池中的实际应用. 在此,作者研究了 MgF₂ 涂层对 Li_2MnO_3 正极材料的电化学性能. 结果表明,MgF₂ 涂层诱导部分层状 Li_2MnO_3 向尖晶石相转化,从而降低了首圈不可逆容量,提高库仑效率. 重量比为 0.5%、1.0%和 2.0%的 MgF₂ 涂层电极的初始库仑效率分别为 70.1%、77.5%和 84.9%,而原始电极仅为 57.7%. 充放电曲线表明,1.0wt.%MgF₂ 涂层改性的 Li_2MnO_3 具有最高的充放电容量和最佳的循环稳定性. 40 个循环后1.0wt.%MgF₂ 涂层样品的容量保持率为 81%,远高于原始样品的容量保持率(53.6%). 电化学阻抗谱结果表明 MgF₂ 涂层减少了不利成分的快速沉积,并改善了电极的循环稳定性. 关键词: Li₂MnO₃ 正极材料;氟化镁涂层;循环稳定性;库仑效率