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Ordered Mesoporous Carbon/Graphene/Nickel Foam for Flexible
Dopamine Detection with Ultrahigh Sensitivity and Selectivity

WANG Lai-yu1, XI Xin1, WU Dong-qing2, LIU Xiong-yu1, JI Wei1, LIU Rui-li1*

(1. Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China;
2. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai,

200240, P. R. China)

Abstract: Flexible biosensors have received intensive attentions for their potential applications in wearable electronics. To ob-

tain flexible electrochemical dopamine (DA) sensors, the ordered mesoporous carbon/graphene/nickel foam (OMC/G/Ni) composite

was fabricated in this work via the growth of graphene on Ni foam by chemical vapor deposition, and the formation of the OMC

layer followed by the carbonization of co-assembled resol and block polymer., The monolithic Ni foam in the resultant OMC/G/Ni

electrode provided an interconnected metal framework with high conductivity and good flexibility, while the OMC layer with the

vertically aligned mesopore arrays rendered the composite a large electroactive surface with highly exposed active sites. More im-

portantly, the graphene sandwiched between the OMC layer and Ni foam greatly enhanced the compatibility of each component. As

the integrated electrode in DA sensor, the OMC/G/Ni electrode exhibited excellent performances with a large linear detection range

(0.05 ~ 58.75 滋mol窑L-1), an ultra-low detection limit (0.019 滋mol窑L-1), high selectivity, good reproducibility and high stability, out-

performing the recently reported flexible DA sensors. Moreover, the OMC/G/Ni electrode still kept the good DA sensing behavior

at its bent states, demonstrating its potential for flexible biosensors.
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Dopamine (DA) is regarded as one of the most

important neurotransmitters in human nervous system,

mainly due to its vital role in many brain activities and

functions [1-4]. Some serious nervous system diseases

including depression, Parkinson and Alzheimer are

closely related to the abnormal levels of DA activity[5].

Therefore, simple and accurate detection of DA has a

high clinical significance. In this respect, diversified

DA detection methods such as electrochemical

sensing[6-7], fluorescence[8-9], chromatography coupled

spectroscopy[10] and surface enhanced Raman scatter-

ing[11] have been developed over the last decades.

Compared with the spectroscopy based DA sensing

strategies, the electrochemical approaches, which are

mainly based upon the oxidation-reduction process of

DA over the working electrodes, have received more

attentions because of their obvious advantages in cost

and sensitivity[12-13].

Very recently, accompanying with the intriguing

concepts of real-time monitoring and diagnosis, the

ever-growing interests in wearable electronics and ar-

tificial skins have aroused a high demand on flexible

sensors for biological analytes such as DA, ascorbic

acid (AA) and uric acid (UA)[14-15]. For this purpose,

electrochemical DA sensors are regarded as the ap-

pealing candidates because their detection behaviors

are mainly determined by the working electrodes and

the structural simplicity offers the opportunity to

manufacture flexible or miniaturized DA sensors[16-17].

The key to obtain flexible electrochemical DA sensor

is the fabrication of bendable working electrodes be-

ing able to reserve the sensitivity during the deforma-

tion of the sensor.

In this work, we report a step-wise strategy to



电 化 学 2020 年

fabricate the ordered mesoporous carbon/graphene/

nickel foam (OMC/G/Ni) as the electrode for the ele-

ctrochemical DA sensors. In the integrated OMC/G/Ni

electrode, monolithic Ni foam serves as the highly

conductive and flexible substrate with three-dimen-

sional (3D) interconnected metal framework. Contain-

ing the vertically aligned mesopore arrays with the

size of ~ 10 nm, the OMC layer over the whole elec-

trode provides a large electroactive surface with high-

ly exposed active sites for the electrochemical detec-

tion of DA. More importantly, the graphene layer

sandwiched between the OMC layer and Ni foam can

effectively increase the compatibility of each compo-

nent and enhance sensing ability of the electrode. As

the result, the electrochemical sensors with the

OMC/G/Ni electrode manifest high sensitivity and

selectivity towards DA with a large linear detection

range of (0.05 ~ 58.75 滋mol窑L-1) and a very low de-

tection limit of 0.019 滋mol窑L-1, outperforming the re-

cently reported flexible DA sensors. Moreover, the

OMC/G/Ni electrode can reserve the good DA detec-

tion ability even under different bent states, demon-

strating its potential for flexible biosensors.

1 Experimental
1.1 Materials and Reagents

Dopamine (DA), ascorbic acid (AA), uric acid

(UA), glucose, and triblock copolymer F127 were

purchased from Sigma-Aldrich Co., Ltd. Phenol, for-

maldehyde, sodium chloride (NaCl), sodium hydrox-

ide (NaOH), hydrochloric acid (HCl), disodium hy-

drogen phosphate (Na2HPO4) and sodium dihydrogen

phosphate (NaH2PO4) were purchased from Sinopharm

Chemicals Reagent Co., Ltd. All the reagents were of

analytical grade and used as received without further

purification. Phosphate buff ered saline solution

(PBS, pH = 7.4, 0.1 mol窑L-1) was prepared by mixing

the stock solutions of Na2HPO4 and NaH2PO4. The

nickel foam (99.8%) was bought from Hefei Kejing

Materials Technology Co., Ltd. Deionized water was

used throughout the experiments.

1.2 Apparatus
Field emission-scanning electron microscopic

(FE-SEM) images were obtained on a JSM-7401F

(JEOL Ltd., Japan) microscope at a voltage of 3 kV.

Raman spectra were recorded on a Senterra R200-L

(Bruker Optics, Germany) with the excitation from

532 nm line of an Ar-ion laser (5 mW). X-ray diffrac-

tion (XRD) patterns were recorded on a Bruker D8

Advance powder Diffractometer (Bruker, Germany)

using Cu K琢 radiation (40 kV, 35 mA) at the scan rate

of 5毅min-1 from 10毅 to 80毅 (2兹). Transmission electron

microscopic (TEM) measurements were conducted on

a JEM-2010F (JEOL, Japan) operated at an accelerat-

ing voltage of 200 kV. Before the TEM measure-

ments, OMC/G/Ni was etched with HCl solution (3

mol窑L-1) at 80 oC for 5 h to remove the Ni compo-

nent. The resulting sample was suspended in ethanol

and then transferred onto a Cu grid for TEM charac-

terizations. The X-ray photoelectron spectra (XPS)

were collected on ESCALAB 250Xi instrument

(Thermo Fisher Scientific, USA) with a monochro-

matic Al K琢 X-ray source. Nitrogen absorption

isotherms were measured on an ASAP 2460 (Mi-

cromeritics Instrument Corp, USA). The samples

were degassed in a vacuum at 200 毅C for about 12 h

before measurements.

Cyclic voltammetry (CV), differential pulse vol-

tammetry (DPV), electrochemical impedance spec-

troscopy (EIS) and amperometry tests were carried

out with a CHI 760E electrochemical workstation

(Shanghai Chenhua Limited Co.) under ambient con-

ditions. In a three-electrode system, a piece of OMC/

G/Ni served as the working electrode, while a plat-

inum wire and a Ag/AgCl electrode (3 mol窑L-1 KCl)

as the counter electrode and the reference electrode,

respectively. All the measurements were performed

in a stirred PBS (pH = 7.4, 0.1 mol窑L-1) solution.

1.3 Syntheses of Ordered Mesoporous Car鄄
bon/Graphene/Nickel Foam (OMC/G/Ni)
The composites of graphene and nickel foam

(G/Ni) were fabricated by a typical chemical vapor

deposition (CVD) method[18]. Firstly, a piece of nickel

foam (4 cm 伊 3 cm 伊 1 mm) was squashed to ~ 0.1

mm by a hot pressing process at 15 MPa, and then

heated to 1000 oC in a tubular furnace under the

flows of H2 (20 sccm) and Ar (180 sccm). After an-
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nealing at 1000 oC for 10 min, methane (15 sccm) was

introduced into the tubular furnace as the carbon

source for 10 min for the growth of graphene. After

rapidly cooled down to room temperature, graphene

wrapped nickel foam (G/Ni) could be obtained as a

piece of black monolith.

Typically, phenol (3 g), formaldehyde (37wt.%

in water, 10.5 mL) and the aqueous solution of NaOH

(0.1 mol窑L-1, 75 mL) were firstly mixed in a round-

bottom flask, and the mixture was heated to 70 oC for

about 30 min to produce low-molecular-weight phe-

nolic resols. Consequently, the phenolic resol solu-

tion (18 g) was mixed with the aqueous solution of

F127 (6wt.% , 15 mL). The resulting mixture was

diluted with deionized water (50 mL), and the mixed

solution was then stirred at 67 ~ 70 oC for 10 ~ 14 h

until the color turned to crimson, indicating the for-

mation of resol-F127 monomicelles[19].

The as-prepared solution of resol-F127 monomi-

celles (7 mL) was diluted with deionized water (23

mL) and then transferred into a Teflon lined stainless

steel autoclave. Subsequently, a piece of G/Ni (1 cm 伊
1.5 cm) was immersed in the solution for 3 h to allow

sufficient contact between each component. Conse-

quently, the mixture was hydrothermally treated for

20 h at 130 oC. After being cooled to room tempera-

ture, the resulting sample was washed by water, dried

in a vacuum oven and calcinated at 750 oC for 2 h

(heating rate = 5 oC窑min-1) under Ar atmosphere to

produce the OMC/G/Ni composite with the sizes of 1

cm 伊 1.5 cm 伊 0.1 mm.

2 Results and Discussion
2.1 Characterizations

The conductivity, structure and surface morphol-

ogy of the working electrodes in the electrochemical

DA sensors are the major factors influencing the de-

tection performances of the sensors[20]. Ordered meso-

porous carbons (OMCs) possess many intriguing fea-

tures including uniform porous structure, highly elec-

tro-active surface area, enhanced electron transfer a-

bility and high chemical stability, which make them

attractive electrode materials for the electrochemical

DA sensor [21-23]. Nevertheless, most OMC materials

are in the form of powders and flakes, and their uti-

lization in flexible electrodes needs the assistance of

binders, which will inevitably reduce the sensing ac-

tivity of the resulting sensors[24-27]. To avoid the unnec-

essary additives in the electrodes, an interface-in-

duced self-assembly approach is adopted in this work

to directly grow OMC on the substrate surface, which

can ensure the formation of the integrated electrodes

with OMC decorated surfaces. In this respect, nickel

(Ni) foam is selected as the substrate. The highly in-

terconnected metal framework of Ni foam has both

high conductivity and macroporous scaffold. The

coating of an OMC layer over it will generate a hier-

archically porous structure for the resulting electrode,

which can effectively facilitate the transportation of

charge carriers and analyte molecules. Between the

Ni foam and OMC, graphene is introduced by chemi-

cal vapor deposition (CVD) method, which is expect-

ed to enhance the interactions between the different

components in the electrode and improve the perfor-

mances of the electrode.

According to the aforementioned electrode de-

sign, the fabrication processes of the flexible

OMC/G/Ni electrodes are illustrated in Fig. 1. Firstly,

graphene was grown on the surface of Ni foam via

the classic CVD approach to produce the graphene

wrapped Ni foam (G/Ni). Consequently, G/Ni was

immersed in the solution containing the monomi-

celles of triblock copolymer F127 and low-molecu-

lar-weight phenolic resols. The mixture was hy-

drothermally treated at 130 oC to allow the deposition

of the resol/F127 monomicelles on the surface of

G/Ni and the further solidification of the resols[19]. Af-

ter that, the composite of the monomicelles and G/Ni

were thermally treated at 750 oC under an inert atmo-

sphere. During this process, the carbonization of resol

and decomposition of F127 led to the formation of an

OMC layer over the surface of the G/Ni substrates,

which, thus, generate OMC/G/Ni as the product. To

specify the role of graphene in the OMC/G/Ni com-

posite, a reference sample with the OMC layer direct-

ly grown on the surface of Ni foam was fabricated in

the controlled experiments (Supporting Information),
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which is accordingly named as OMC/Ni.

The microstructures and morphologies of G/Ni,

OMC/Ni and OMC/G/Ni were first characterized by

field emission scanning electron microcopy (FE-SEM)

and transmission electron microscopy (TEM). As illus-

trated in the SEM images of G/Ni (Fig.s S1A and S1B

in the Supporting Information), graphene sheets with

a few wrinkles were uniformly wrapped around the

surface of Ni foam, confirming the successful CVD

growth of graphene. The visible ripples and wrinkles

in graphene were caused by different thermal expan-

sion of Ni foam and graphene, which is a typical fea-

ture of the CVD-derived graphene[28-29]. After the hy-

drothermal treatment, the OMC/G/Ni electrode still

reserved the macroporous structure of the Ni foam

(Fig. 2A). Moreover, the SEM images with higher

magnifications (Fig.s 2B, 2C and S2) indicate that the

surface of the G/Ni foam was covered with a layer of

porous carbon. A closer observation of the carbon

layer (Fig. 2D) reveals that it had vertically aligned

mesopores with the diameter of ~10 nm, which were

arranged in a highly ordered hexagonal pattern.

The N2 adsorption and desorption measurements

of the OMC/G/Ni display a type-II isotherm with H2

hysteresis loop (Fig. S3), which is similar to the re-

cently reported thin-layer mesoporous materials [30-32].

To clarify the mesoporous structure, a piece of

OMC/G/Ni was further treated by hydrochloric acid

at 80 oC for 5 h to remove the Ni substrate. The re-

maining contents with graphene and OMC were then

transferred to a copper grid for TEM characterization.

In accordance with the SEM results, the TEM images

(Fig.s 2E and 2F) also show the existence of the per-

pendicularly aligned mesopore arrays in the residue

sheets from the acid-etched OMC/G/Ni. In contrast,

the surface morphology of OMC/Ni differed from

that of OMC/G/Ni. Although vertical mesopores

could also be found on the surface of OMC/Ni (Fig.s

S1C and S1D), many disordered broken parts with

the sizes of ~ 100 nm were observed in the OMC lay-

er. It should be noted that the OMC in OMC/Ni was

directly grown on the surface of Ni foam without the

assistance of graphene. Therefore, the different sur-

face morphologies of OMC/G/Ni and OMC/Ni could

be attributed to the graphene content. As indicated in

our previous work, the assembly behavior of the

resol/F127 monomicelles depended on the properties

of the substrates[30-31]. Without the graphene layer, the

Fig. 1 The schematic illustration of the fabrication processes for the flexible OMC/G/Ni electrode. a) the CVD process for the

preparation of graphene wrapped Ni foam (G/Ni); b) the deposition of resol-F127 monomicelles on the surface of G/Ni; c)

the carbonization of the monomicelle/G/Ni composite to produce OMC/G/Ni.
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Fig. 2 Morphology and structure characterization of OMC/G/Ni. A-D) SEM images of OMC/G/Ni with different magnifications.

E) and F) TEM images of OMC/G composites (after the etching of Ni foam) with different magnifications.

Ni foam alone was not favourable for the homoge-

nous deposition of the monomicelles, leading to the

formations of voids and defects in the OMC layer. In

contrast, a graphene layer could absorb the

resol/F127 monomicelles via noncovalent forces such

as 仔-仔 interactions and hydrophobic interactions,

which can, therefore, improve the compatibility be-

tween each component and result in the uniform

packing of the monomicelles over the surface of G/Ni.

Raman spectroscopy andX-ray diffraction (XRD)

were subsequently applied to survey the microstruc-

tures of the samples. In the Raman spectra of OMC/Ni

(Fig. S4A), the two peaks at ~ 1350 and ~ 1590 cm-1

could be assigned to the characteristic D band and G

band of carbon, respectively, which are similar to the

previously reported mesoporous carbon [31-32]. Differ-

ently, only G and 2D bands could be observed in the

Raman spectra of G/Ni, which suggests the high qual-

ity of the graphene layer[33]. Furthermore, the integrat-

ed intensity ratio of the G and 2D bands (IG/I2D) is

~ 2.69, suggesting the existence of a multi-layer

graphene in G/Ni [28, 34]. Compared with the Raman

profile of G/Ni, a pronounced D band at ~ 1350 cm-1

can be observed in the Raman spectra of OMC/G/Ni,

which can be attributed to the introduction of OMC

layer. On the other hand, the XRD patterns of G/Ni,

OMC/Ni and OMC/G/Ni (Fig. S4B) are all dominated

by three strong peaks at 2兹 抑 44毅, 51毅 and 76毅, which

belong to the diffractions from the Ni substrates[35]. In

addition, the weak diffraction peaks around 26.5毅
can be found in the XRD profiles of OMC/Ni and

OMC/G/Ni (Fig. S4C), which should be the typical

(002) planes of their OMC layers[30].

2.2 Electrochemical Performances
The electrochemical DA sensing behaviors of

the obtained electrodes were firstly measured by

recording their cyclic voltammetric (CV) profiles in

phosphate-buffered saline (PBS, pH = 7.4, 0.1 mol窑L-1)

in the presence of DA (100 滋mol窑L-1) at a scan rate

of 50 mV窑s-1 (Fig. 3A). In the CV curve of OMC/G/Ni,

a distinct oxidation peak can be observed at 0.20 V,

and the corresponding reduction peak is located at

0.15 V, which are attributable to the oxidation/reduc-

tion processes of DA on the surface of OMC/G/Ni

(Scheme S1). In contrast, the CV profile of OMC/Ni

only has a very weak redox couple of DA at the cor-

responding potentials, suggesting a much weaker

electrochemical DA sensing ability than OMC/G/Ni.

In the absence of the OMC content, G/Ni only deliv-

ers a structure-less CV curve without obvious oxida-

tion or reduction peaks, implying the absence of elec-

trochemical responses towards DA. The poor electro-

chemical sensitivity of the G/Ni electrode should be

due to the lack of defects such as oxygen containing

groups in the graphene layer, which is crucial for the

catalytic activity of the carbonaceous electrodes in
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electrochemical sensing systems[15].

The different DA sensing activities of the three

electrodes can be explained by their electrochemical

active surface areas (ECSAs). Deduced from the results

in Fig. 3B (Supporting Information)[36-37], the ECSA of

OMC/G/Ni is ~ 7.432 cm2窑g-1, much higher than those

of OMC/Ni (2.774 cm2窑g-1) and G/Ni (1.677 cm2窑g-1),

which can render the efficient contact between active

sites and analyte molecules. The differences among

the three electrodes are alsomanifested in their electro-

chemical impedance spectra (EIS). Generally, a semi-

circle in Nyquist plot can be attributed to the

charge-transfer resistance (Rct) within the electrode.

As shown in Fig. S5, the Rct of OMC/G/Ni is 1.8 赘,

much less than those of G/Ni (309.2 赘) and OMC/Ni

(6.5 赘), which indicates the presence of OMC and

graphene could effectively reduce the Rct of the elec-

trode[38-39] and accelerate the charge transfer kinetics[40].

Moreover, the low frequency part of the oblique

curves from OMC/G/Ni and OMC/Ni shows a higher

slope than G/Ni, revealing the decreased obstruction

for ionic movement. Therefore, the excellent DA

sensing activities of OMC/G/Ni can be assigned to

the synergetic effects of its structures and composi-

tions. Firstly, the introduction of the OMC layer can

efficiently increase the surface area of the electrode

and enhance the exposure of the active sites. On the

other hand, the graphene between the OMC layer and

the Ni foam can improve the compatibility between

each component and increase the conductivity of the

whole electrode.

Encouraged by the highest DA sensing ability of

OMC/G/Ni among the obtained electrodes, its elec-

trochemical responses towards DA at different scan

rates in the range of 20 ~ 200 mV窑s-1 were further

recorded. As shown in Fig. 4A, the intensities in both

anodic and catholic peak currents of OMC/G/Ni

show the obvious upward trends with the increased

scan rate. More importantly, the calibration plots of

the redox peak currents (Ipa & Ipc) manifest linear cor-

relations with the scan rates (Fig. 4B). Accordingly,

the calibration equations are calculated as Ipa = 6.114+

0.155v (R2 = 0.996) and Ipc= -4.351-0.167v (R2 = 0.995),

indicating that the electrochemical DA detection be-

havior of OMC/G/Ni is an adsorption-controlled pro-

cess[41].

Consequently, differential pulse voltammetric

(DPV) profiles of OMC/G/Ni were measured to fur-

ther examine its electrochemical detection activity to-

wards DA. As found in Fig.s 5A and 5B, the current

densities of the DA oxidation peaks gradually in-

creased with the variation of the DA concentration.

The increased trend in the current density can still be

observed with the DA concentration in a very low

range from 0.05 to 1 滋mol窑L-1. The current density

and the DA concentration can be linearly fitted, as

seen in Fig. 5C, with the equation of Ip = 2.40 + 0.89

CDA (R2 = 0.996). The excellent DA sensing ability

of OMC/G/Ni can also be confirmed by recording its

amperometric responses on the successive injections

Fig. 3 A) CV curves of G/Ni, OMC/Ni and OMC/G/Ni in PBS (pH = 7.4, 0.1 mol窑L-1) containing DA (100 滋mol窑L-1) at a scan

rate of 50 mV窑s-1. B) The plots of capacitive current (Ianodic-Icathodic) versus scan rate.
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of DA in a homogeneously stirred PBS solution. At

the potential of + 0.2 V, OMC/G/Ni can deliver an

instant response current when the concentrations of

DA in PBS are varying from 0.05 to 10 滋mol窑L-1

(Fig. 5D). Even when the DA concentration is as low

as 0.05 滋mol窑L-1, an amperometric response can still

be observed (the inset of Fig. 5D), indicating the

high sensitivity of the OMC/G/Ni electrode. The cali-

bration plot of i-t current versus DA concentration al-

so follows a linear relationship (Fig. 5E) and the cor-

responding regression equation can be expressed by

Ip = 9.50 + 1.04CDA (R2 = 0.996). As the result, the

linear detection of OMC/G/Ni towards DA ranges

from 0.05 to 58.75 滋mol窑L-1 with the detection limit

as low as 0.019 滋mol窑L-1 and the signal-to-noise (S/N)

ratio of 3.

Since other chemicals such as glucose, uric acid

(UA), sodium chloride (NaCl) and ascorbic acid (AA)

often coexist with DA in body fluids, the selec tivity

of the DA sensors is also an important parameter for

their performances. Therefore, the amperometric re-

sponses of OMC/G/Ni was further measured in the

presence of common interfering analyte molecules in

PBS solution (pH = 7.4, 0.1 mol窑L-1) to clarify its se-

lectivity towards DA. As indicated in Fig. 5F, the

OMC/G/Ni electrode shows a remarkable ampero-

metric response immediately with the addition of

DA. However, the injections of other chemicals in

the sequence of glucose, UA, NaCl and AA barely

cause any current changes in the i-t curve until anoth-

er portion of DA is added to the PBS solution, sug-

gesting the good selectivity of the OMC/G/Ni elec-

trode.

The excellent selectivity of the OMC/G/Ni elec-

trode towards DA can be attributed to the abundant oxy-

gen-containing groups (C-O, C=O, and O=C-O,

Fig. S6) in the resol-derived OMC layer and the low

operation voltage (+0.2 V) during the sensing pro-

cess[42-44]. As the disrupting analytes in the sensing sys-

tem, UA and AA are negatively charged molecules,

while DA is a neutral one. Therefore, the oxygen-

containing groups in the surface of the OMC/G/Ni

electrode will block the access of UA or AA due to

the repulsion between them and these analytes, which

could be effectively improve the selectivity of the

electrode[42-43]. On the other hand, the operation voltage

(+0.2 V) of the three-electrode sensing system is

much lower than the oxidation voltage of glucose,

causing no current response at the electrode during

the sensing process[44].

Besides the sensitivity and selectivity, the repro-

ducibility and stability are also vital for electrochemi-

cal DA sensors. In this respect, the CV curves of the

five independent OMC/G/Ni electrodes were mea-

sured in PBS solution with DA (50 滋mol窑L-1). As

shown in Fig. S7, the five electrodes deliver very sim-

ilar CV curves, suggesting the good reproducibility of

the OMC/G/Ni electrodes. According to the corre-

Fig. 4 A) CV curves of the OMC/G/Ni electrode in PBS (0.1 mol窑L-1, pH = 7.4) with DA (50 滋mol窑L-1) at different scan rates:

20, 30, 40, 50, 75, 100, 125, 150, 175 and 200 mV窑s-1. B) The fitting lines for the anodic and catholic peak currents ver-

sus scan rate.
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Fig. 5 A) DPV curves of OMC/G/Ni in PBS (0.1 mol窑L-1, pH = 7.4) solution with the DA concentrations in the range of 0 ~

30 滋mol窑L-1. B) Magnified DPV curves with the DA concentrations of 0, 0.05, 0.15, 0.3, 0.5, and 1.0 滋mol窑L-1. C) Cali-

bration plot of the peak current to DA concentration. D) The amperometric (i-t) curve of OMC/G/Ni upon addition of

DA at 0.2 V. Inset: Magnified i-t curve upon the addition of DA at 0.05, 0.2 and 0.5 滋mol窑L-1. E) Calibration plot of i-t
current to the DA concentration. F) Amperometric responses of OMC/G/Ni with the successive injections of DA, Glucose,

UA, NaCl, AA, DA and DA (All the concentrations of the added analytes are 10 滋mol窑L-1 in the resulting PBS).

sponding oxidation peak currents, the relative stan-

dard deviation (RSD) of OMC/G/Ni is only ~ 2.0%. On

the other hand, the operation stability of OMC/G/Ni

was studied by the continuous CV scans at a scan rate

of 50 mV窑s-1 for 100 cycles in PBS solution with

DA (50 滋mol窑L-1). The oxidation peak current of

OMC/G/Ni still keeps ~ 87% of initial intensity after

100 CV scans (Fig. 6A). Additionally, the long term

storage stability of the OMC/G/Ni electrode is evalu-

ated by comparing the current density of its oxidation

peak towards DA every other day. And no obvious

change could be found after 17 d (Fig. 6B), suggesting
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Fig. 6 Stability tests of the OMC/G/Ni electrode. A) CV profiles for 100 scanning cycles at a scan rate of 50 mV窑s-1; B) Current

responses every other day in PBS (0.1 mol窑L-1, pH = 7.4) with DA (50 滋mol窑L-1). C) CV curves under different bent

states; D) Photograph showing the slightly bent electrode.

its good storage stability[45-46].

The ability to work under bent states is very es-

sential for flexible electrochemical sensors[47]. There-

fore, the CV profiles of OMC/G/Ni at different bent

states were recorded in PBS solution (0.1 mol窑L-1)

with DA (50 滋mol窑L-1). As displayed in Fig.s 6C, 6D

and S8, the redox peaks are barely changed at the

three bent states, confirming the excellent flexibility

of the OMC/G/Ni electrode. As summarized in Tab.

S1, the excellent sensing performances of OMC/G/Ni

outperform the recently reported flexible DA sensors

in terms of detection limit and selectivity.

The detection ability of OMC/G/Ni towards DA

in a real sample were evaluated by using standard ad-

dition method[48]. As summarized in Tab. S2, the sen-

sor with OMC/G/Ni electrode shows excellent DA

sensing performances with the appropriate recovery

of 97.6% ~ 103.2% and the RSD below 3.6%, con-

firming the reliability and effectiveness of the OMC/

G/Ni based sensor for the practical detection of DA.

3 Conclusions
In this work, the OMC/G/Ni composite was

manufactured by the first CVD growth on a graphene

layer over Ni foam, and followed by the subsequent

formation of an OMC layer via a co-assembly route.

As the flexible electrode for the electrochemical DA

detection, the OMC/G/Ni composite manifested ex-

cellent performances with a large linear detection

range, an ultra-low detection limit, high selectivity,

good reproducibility and high stability, which could

be attributable to the combination of 3D macroporous

framework of Ni foam and highly ordered mesopore

arrays of OMC by the mediation of graphene. More-

over, the OMC/G/Ni electrode still exhibited good

DA sensing behavior under different bent states,

proving its potential application in flexible DA sen-

sors. Based on the unique electrode structure, the fur-

ther modification of the OMC layer in OMC/G/Ni is

D
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exp ected to bring forwards more high performance

electrodes for various flexible electrochemical biosen-

sors.
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有序介孔碳/石墨烯/镍泡沫的制备及其对
多巴胺的高灵敏度和高选择性检测

王来玉1袁奚 馨 1袁吴东清 2袁刘雄宇1袁纪 伟1袁刘瑞丽1*

渊1. 上海交通大学电子工程系袁上海 200240曰2. 上海交通大学化学化工学院袁上海 200240冤

摘要院柔性生物传感器在可穿戴电子设备中有着广泛的应用前景. 为了获得柔性电化学多巴胺传感器袁作者在本

工作中首先在镍泡沫表面通过化学气相沉积生长石墨烯袁 随后通过高温碳化嵌段共聚物与酚醛树脂在石墨烯表

面共组装形成的薄膜制备了有序介孔碳/石墨烯/镍泡沫渊OMC/G/Ni冤复合材料. 其中袁镍泡沫可以为复合材料提

供具有高导电性和良好柔韧性的金属骨架袁 而具有垂直排列介孔阵列的有序介孔碳层为复合材料提供了高的电

活性表面积袁且有利于活性位点的暴露. 值得注意的是袁夹在有序介孔碳层和镍泡沫之间的石墨烯极大地增强了

各组分之间的相容性袁 有利于进一步提升复合材料的电化学性能. 作为电化学传感器中的工作电极袁OMC/G/Ni

体现出优异的多巴胺检测能力.不但具有宽的线性检测范围渊0.05 ~ 58.75滋mol窑L-1冤和低检测限渊0.019滋mol窑L-1冤袁还
具有良好的选择性尧重现性和稳定性. 此外袁OMC/G/Ni 在弯曲状态下依旧能够保持对多巴胺的高检测能力袁证明

了其在柔性生物传感器中的应用潜力.

关键词院有序介孔碳曰石墨烯曰镍泡沫曰多巴胺传感器曰柔性电化学传感器
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