Journal of Electrochemistry

Volume 26 Issue 4 *Special Issue of the Award Winners*

2020-08-28

Electrochemical Carbon Dioxide Reduction in Flow Cells

Jia FAN

Na HAN

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China;, hanna@suda.edu.cn

Yan-guang LI

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China;, yanguang@suda.edu.cn

Recommended Citation

Jia FAN, Na HAN, Yan-guang LI. Electrochemical Carbon Dioxide Reduction in Flow Cells[J]. *Journal of Electrochemistry*, 2020, 26(4): 510-520. DOI: 10.13208/j.electrochem.200443 Available at: https://jelectrochem.xmu.edu.cn/journal/vol26/iss4/7

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

DOI: 10.13208/j.electrochem.200443 **Cite this**: *J. Electrochem.* **2020**, *26*(4): 510-520 Article ID:1006-3471(2020)04-0510-11 Http://electrochem.xmu.edu.cn

基于流动池的电化学二氧化碳还原研究进展

范佳,韩娜*,李彦光*

(苏州大学功能纳米与软物质研究院,江苏苏州 215123)

摘要:采用电化学方法将二氧化碳(CO₂)还原转化为基础化学品或碳基燃料是目前极具前景的碳资源利用新方 式.考虑到该技术未来的发展方向和大规模应用需求,人们亟需开发具有高转化效率和高稳定性的电解设备.在 本文中,作者详细介绍了现阶段发展的两种流动池的结构特点及性能优势,阐述了每种反应体系的内在局限性, 深入分析了整个反应体系所用组件(电解池、气体扩散电极、离子交换膜)对于性能的影响.最后,针对目前该领域 存在的挑战及未来发展趋势进行了总结与展望.

关键词:二氧化碳还原;电催化;流动池;电流密度

中图分类号: O646.5

随着全球人口数量的增加和社会经济的不断 发展,能源供需矛盾不容忽视.化石能源的大量使 用所引起的能源短缺和环境恶化已成为人类 21 世 纪所面临最重要的全球性问题[1-2].从长远角度看. 发展新能源技术来充分利用如太阳能、风能及地 热能等绿色能源是解决能源与环境问题的有效涂 径.为了确保可再生能源发电、供电的连续性和稳 定性,需要开发和利用新型能源存储技术.利用可 再生电能驱动 CO2转化为增值产品是一种极具吸 引力的存储机制,它不仅有效解决了电力供应和 需求的不匹配问题,还能够将 CO₂转化为高附加 值的碳基燃料或化学产品(例如一氧化碳、甲酸、 甲醇、乙烯、丙醇等),有望摆脱当前能源需求对 传统化石产品的依赖,是实现能源清洁低碳转型 的有效途径[38]. 尽管电化学 CO2 还原反应(carbon dioxide reduction reaction, CO2RR)表现出良好的发 展前景和应用潜力,但在技术发展上仍有许多障 碍需要克服,包括过电位高、电流密度低、产物选 择性不理想、副反应竞争以及稳定性差等问题[69-10]. 为了克服这些障碍,人们在开发高效催化剂和改 进电解装置等方面做了很多努力.

近年来,国内外科研人员试图通过多种策略^[11-17] 来提升电催化材料的 CO₂RR 性能,力求实现某一

文献标识码: A

目标产物在低过电位区间的高选择性转化,并发 展了一系列性能优异的 CO2RR 电催化材料[18-25],极 大地扩展了人们对 CO₃RR 的基本认识和理解. 然 而,当前研究往往集中于电极催化剂材料本身的 设计与优化.一个完整的电化学 CO2RR 系统是由 多个部分组成的,除催化剂材料本身外,电解液、 离子交换膜、电解池等部分都可能对 CO₂RR 系统 的整体性能产生直接的影响.在已有催化剂性能 的基础之上,完善电解池的结构可进一步提升 CO₃RR 整体性能. 现阶段绝大多数的研究是基于 常规H型电解池开展的(图1A),这种电解池容易 组装、操作简单、成本低廉,可以较直观地反映催 化剂的本征活性,适合快速评价并筛选电催化材 料. 然而,从H型电解池实验中获得的信息结果却 往往忽略了电解池整体动态环境对 CO₂RR 性能的 影响^[26-27], 其较低的 CO₂ 溶解度(< 0.034 mol·L⁻¹)和 受限的传质过程使得反应电流密度通常低于100 mA·cm⁻²,难以满足工业生产中对电流密度的要求 (>200 mA·cm⁻²)^[28-29]. 此外,由于碱性电解液(如 KOH 等)中的氢氧根离子(OH)会与溶解的 CO2 发生反应形成碳酸盐,因此它们在 H 型电解池中 的使用也受到了极大的限制.

为了实现 CO2RR 技术的大规模应用,进行流

收稿日期: 2020-05-05,修订日期: 2020-05-20 * 通讯作者, Tel: (86-512)65883963, E-mail: hanna@suda.edu.cn; yanguang@su-da.edu.cn

国家科技部基金项目(No. 2017YFA0204800)和国家自然科学基金项目(No. 2190020225)资助

动电解池(以下简称流动池)的相关研究成了必然 选择. 流动池主要采用气体扩散电极, 在进行 CO₂RR 时, 主要将 CO₂ 分子通过气相直接输送到 阴极背面并快速穿透气体扩散电极达到催化剂表 面进行反应,这有效地解决了传质受限的问题.目 前,基于流动池的相关研究已取得了一定进展,但 与传统的 H 型电解池相比,对其系统研究还非常 有限.在本篇工作中,作者详细介绍了现阶段两种 不同类型 CO2RR 流动池的研究进展,通过重点比 较液相流动电解池(flow cell)和膜电极组件反应 器(membrane electrode assembly, MEA)的结构特 点及性能优势. 概述了提升 CO₃RR 催化电流密度 和选择性的主要策略.此外,作者还探讨了流动体 系中关键组件对 CO₃RR 整体性能的影响.最后分 析了流动相 CO2RR 体系面临的技术挑战和未来发 展方向.

1 流动池的结构设计

除了电催化剂外,电极结构和电解池体系的 设计对于 CO₂RR 性能同样具有至关重要的影响, 尤其是在产物分布、催化电流密度和稳定性等方 面.根据 Burdyny 和 Smith 等^[30-31]建立的反应扩散 模型,流动池中的 CO₂ 扩散路径仅为 ~ 50 nm,比 传统 H 型电解池 (~ 50 μm)缩短了近 3 个数量级 (图 1B),它有效地克服了 CO₂在水溶液中溶解度 和扩散的限制,为实现高电流密度提供了可能^[31]. 现阶段发展的 CO₂RR 流动池主要包含液相流动电 解池(图 1C)和膜电极组件反应器(图 1D),两者主 要区别在于有无阴极电解液的使用.其中,液相流 动电解池是由三个流动的通道组成的,分别用于 CO₂气体、阴极电解液和阳极电解液的传输.该结 构采用气体扩散电极将阴极电解液和 CO₂ 气体通 道分开,催化剂层沉积在与电解液接触的一侧, CO₂则通过气体扩散电极的背面被输送到催化剂 上. MEA 是在液相流动电解池结构设计上的进一 步延伸,装置中不使用阴极电解液,阴极催化剂可 以直接涂覆在聚合物膜表面或者通过气体扩散电 极负载以零间隙的方式被直接压在膜上,这种设 计有效地降低了体系的欧姆电阻损耗.

根据反应中生成还原产物和使用电解液的不同来选择合适的电解池类型,可发挥其最佳用途.表1总结比较了现阶段研究中常用的三种 CO₂RR 电解装置的优缺点.综合看来,流动池相比于 H型 电解池更适合进行商业化体系的 CO₂RR 反应,其结构特点有助于大幅提升催化电流密度,但仍存在相关问题亟待解决,主要包括:1)流动池中水淹和碳酸盐析出的问题;2)流动池整体稳定性不足.

- 图 1 (A)传统 H 型电解池示意图;(B)H 型电解池(左)和流动池(右)中 CO₂ 气体传输路径的比较^[31];(C)液体流动电解池^[32] 和(D)膜电极组件反应器示意图.
- Fig. 1 (A) Schematic configuration of H-cells; (B) comparison of CO₂ gas diffusion paths in H-cells (left) and flow cells (right)^[31];
 (C) schematic configuration of flow cells^[32] and (D) schematic configuration of membrane electrode assembly cells.

表1 目前研究中常用的三种类型电解池特点比较

Tab. 1 Comparison of three different types of CO2RR electrolyzers

Reactor type	Characteristic	Advantage	Disadvantage
H-cells	Standard CO ₂ RR reactors	Suitable for fast screening electrocatalysts, straightforward, low cost	Limited current density, not for commercial use
Flow cells	Three channels for the circulation of CO ₂ , catholyte and anolyte	No CO_2 solubility and diffusion limit, compatible with alkaline electrolytes, suitable for liquid product production	Susceptible to GDE flooding, impurity deposition or carbonate precipitation
MEAs	No catholyte,zero-gap configuration	Low impedance, suitable for high-pressure operation	Usually challenging to extract liquid products

这些方面作者将在后面的章节中详细讨论.

虽然上述两种流动池的工作方式存在一定的 差异,但它们的基本结构是类似的,主要由支撑外 板、流道隔板、气体扩散电极、离子交换膜四个部 分组成[32].其中,支撑外板的主要是用于支撑和固 定流动池各部分组件,多为不锈钢或聚四氟乙烯、 聚甲基丙烯酸甲酯等高分子材料制成,外板表面 平整且具有耐腐蚀性质,以确保整个反应池的紧 实密封,防止出现体系漏气或者渗液现象.流道隔 板的两端连有导气管以保证体系 CO2 气体或电解 液(对于 flow cell 体系)的顺利流通. 目前,流动池 中较普遍的流场设计是采用蛇形孔道,也有少数 研究采用尼龙网片,通过交错流道以起到稳定电 流的作用.不同的流道长度、数量和宽度等参数会 影响体系的压力平衡.如果设计不合理,就会导致 电流呈现梯度波动,从而影响对流动池整体性能 的分析.

气体扩散电极 (gas diffusion electrode, GDE) 是流动池的核心部件,它通过提供多孔疏水的传 输通道来促进 CO₂气体向催化剂表面的扩散,其 结构中形成的气-液-固三相界面是提高 CO₂RR 催 化性能的关键.据报道使用 GDE 可以使 CO₂RR 的电流密度增加一到两个数量级.通常, GDE 基本 结构是由气体扩散层 (gas diffusion electrode, GDL)、集流体(current collector, CC)和多孔催化剂 层(catalyst layer, CL)组成的,三者之间通过良好 的结合有助于实现整个反应过程的平稳运行.其 中,气体扩散层为反应提供了丰富的 CO₂传输通 道,同时对催化剂层起到了稳定支撑的作用,保证 了电解质快速的扩散速率.集流体则主要用于维 持体系良好的电子传输效率,用以降低整个装置 的电阻损耗.催化剂层具有气-液-固三相界面,为 CO₂RR 提供主要反应场所.越来越多的研究工作 发现气体扩散电极的界面调控是非常重要的,不 同反应体系中 GDE 的设计和制备也成为影响 CO₂RR 性能的关键技术因素.目前常见的催化剂 沉积方式主要包括滴涂、喷涂、电沉积、压入多孔 层等方法.其中,喷涂获得 GDE 的催化剂负载更 加均匀、效果最佳^[33].

离子交换膜是流动池的另一个核心部件,尤 其是在 MEA 体系中对 CO₂RR 整体性能有着重要 的影响.利用离子交换膜可以将电解池的阴阳两 极分开,不仅有效防止了还原产物在阳极的氧化, 还维持了整个体系良好的离子平衡. 理想的离子 交换膜应具有良好的离子导电性、较高的机械强 度和足够的化学稳定性,能够维持连续数千小时 的工作寿命.不同类型的离子交换膜将影响离子 传输种类和离子传输速率.因此,了解各种离子交 换膜的性质(包括膜中官能团浓度、膜的厚度、吸 水率和离子电导率等)对于提升流动相 CO₂RR 的 转化效率和产物选择性是十分必要的.目前应用 在流动相 CO₂RR 体系中的离子交换膜主要包括三 种: 阴离子交换膜 (anion exchange membrane, AEM)、阳离子交换膜(cation exchange membrane, CEM)和双极膜(bipolar membrane, BPM).

在阳离子交换膜结构中,质子或其他带正电的离子可以通过交换膜从阳极传输到阴极.阳离子交换膜组成的流动池体系会在高电流密度下发生阴极的酸化现象,导致较严重的析氢反应(hy-drogen evolution reaction, HER),从而降低了CO₂RR转化效率^[3435].相反,阴离子交换膜则是主要通过OH⁻或其他阴离子的流传输来发挥作用.

与阳离子交换膜相比,这种离子迁移机制有助于 促进 CO₂ 向生成产物的方向进行,有效抑制了 HER 发生,是目前大部分研究中使用的离子交换 膜.然而,使用阴离子交换膜的流动池也存在一定 的问题:碱性条件下的 OH 会与 CO₂ 快速反应形 成碳酸氢根(HCO3)或碳酸根(CO32)离子,由于这 些离子迁移速率较慢,会在膜表面发生聚集而抑 制其他阴离子的迁移能力,导致 CO₂RR 转化效率 下降[3637]. 近期,双极性离子交换膜已逐渐被应用 在 CO₂RR 体系中,这类膜可以促进水的分解,生成 OH 和 H⁺分别输送到阳极和阴极,这种作用机制 为体系提供了独特的优势,一定程度地解决阴离 子或阳离子交换膜的不足[26,38-40]. 通过保持阴阳两极 恒定的 pH 值, 双极膜解决了单极膜系统中因 pH 梯度问题导致的体系电压波动和不稳定问题[4042]. 综合看来,维持 CO2 有效的传质过程和催化剂的 局部反应环境是提高流动池体系 CO₂RR 性能的关 键.现阶段离子交换膜的材料设计和总体性能还 有很大的改进空间.

2 流动池 CO₂RR 的测试与评价

H型电解池和流动池不同的结构设计决定了 两种类型电解池评价方式的差异. 当检测液体产 物时,流动池中较大的电流密度有效地缩短了反 应测试的电解时间,通常在达到稳态后进行20~ 30 min 即可对其液体产物进行定量分析.同时,区 别于 H 型电解池中固定不变的气体流速,液相流 动电解池中会根据反应的实际情况对气体和液体 流速分别进行精准调控以保证良好的气液两相压 力平衡,当气相压力大于液相压力时,过量的 CO, 气体和气体产物会通过气体扩散电极直接溶解在 流动的电解液中.反之,当气相压力小于液相压力 时,电解液会从气体扩散电极的背面渗出,破坏了 电极的气体输送能力,从而影响整个反应的稳定 性. 在 MEA 体系测试时需要保证交换膜的湿润程 度,并及时移走催化层和扩散层内积累的多余液 态水,以防止膜失水以及电极水淹等问题.因此, 在流动池体系中测试时,需要综合考虑气体扩散 电极的种类、离子交换膜的选择、电解电压的设 置、催化剂的性能等多方面因素.

考虑到未来实际应用的运行成本,流动相体 系中除了需要考察法拉第效率、电流密度以及运 行寿命等基本评价参数外,能量转换效率和单程 转化率也是评价其性能的重要指标.能量转换效 率是指生成某一还原产物消耗的电能占施加总电能的百分比,可以直观、真实地反映全电池体系的电能利用率.然而,现阶段报道的全电池能量转换效率普遍小于 20%,距离商业化要求还有一定差距.除了优化 CO₂RR 催化剂和电解池设计外,寻找合适阳极析氧(oxygen evolution reaction, OER)催化对于提升全电池能量转换效率也至关重要.单程转化率是指 CO₂ 反应气一次通过反应器时,参加反应消耗的 CO₂ 含量占通入反应器 CO₂ 总量的百分数.目前的研究对于体系单程转化率的关注还非常少,并且在已报道的工作中单程转化率还普遍较低(<40%).如何进一步提高原料气的单程转化率,是降低工业生产成本、节能降耗的迫切要求.

3 流动池的研究进展

3.1 液相流动电解池

液相流动电解池是目前最常见的流动相电解 装置.液相流动电解池的设计成功解决了传统 H 型电解池的 CO₂溶解和扩散受限问题,有效提升 了反应电流一到两个数量级.它的另一大优势是 能和高浓度碱性电解液(如 KOH)配套使用,研究 表明使用碱性电解液不仅可以抑制 HER 的竞争, 还可以降低 CO₂RR 的反应能量势垒,从而提高反 应选择性^[43].

目前,液相流动电解池已被用于 CO₂ 还原生 成甲酸盐、CO和多碳(C2+)产物等反应中,并且取 得了显著的进展[4454]. 李彦光[44]等人设计了一种新 型流动相电解池用于富缺陷金属铋(NTD-Bi)催化 剂 $CO_2 RR$ 生产甲酸盐的研究(图 2A). 在 1 mol·L⁻¹ KOH 电解液中,NTD-Bi 催化 CO2 还原产甲酸盐 的起始电位降低到~-0.3 V vs. RHE(reversible hydrogen electrode, 可逆氢电极), 电流密度高达 210 mA·cm²,法拉第效率为98%,基本满足了商业化 应用的技术要求 (图 2B). 尽管该体系表现出高效 的 CO₂RR 生产甲酸盐的性能, 但作者也指出反应 长时间的进行会使阴极电解液渗透到气体扩散电 极背面,造成电极孔道堵塞,从而降低了体系的转 化效率和稳定性,这严重限制了这类电极的进一 步应用.针对这一类问题,Sargent等[49]人设计了一 种聚合物修饰的气体扩散电极(图 2C),通过在聚 四氟乙烯(polytetrafluoroethylene, PTFE)多孔薄膜 上溅射一层 Cu 催化剂并喷涂炭黑纳米颗粒,构造 了稳定的电极界面,保证了催化材料的均匀分散

- 图 2 (A)液相流动电解池装置示意图^[44];(B) NTD-Bi 催化剂在 1 mol·L⁻¹ KHCO₃ 和 1 mol·L⁻¹ KOH 中催化电流密度随时 间变化曲线^[44];(C)石墨/碳纳米颗粒/Cu/PTFE@ 电极示意图^[49];(D)电极横截面 SEM 图像^[49];(E)稳定性测试图和 150 小时后电极截面SEM 和 EDX 图像^[49].
- Fig. 2 (A) Schematic illustration of the flow cell configuration^[44]; (B) Chronoamperometric responses of NTD-Bi at different potentials in 1 mol·L⁻¹ KHCO₃ or 1 mol·L⁻¹ KOH^[44]; (C) Schematic illustration and (D) cross-sectional SEM image of the graphite/ carbon NPs/Cu/PTFE electrode^[49]; (E) Long-term stability of the electrode. The insets show the SEM and EDX mapping images of the electrode after 150 h.

和体系良好的导电性能(图 2D). 在 7 mol·L⁻¹ KOH 电解液中,电极表面生成乙烯的法拉第效率高达 70%,催化电流密度为100 mA·cm⁻²(图 2E).同时, 该流动电解池的寿命达到150小时以上,这比传 统的 GDE 延长了 15 倍. 这种新型气体扩散电极 的孔隙率均匀、透气性理想、机械强度好且制造成 本低, 疏水 PTFE 层有效地缓解了溢流问题并延长 了催化剂使用寿命. 近期, Sargent 等^[5]人又设计了 一种以 PTFE 为支撑,负载全氟磺酸离子聚合物 (PFSA)包裹 Cu 的气体扩散电极. 在这种结构中, 水和离子与 PFSA 的亲水性基团(SO₃)形成胶束, 疏水基团(-CF₂)则输送气体,实现了气体和离子的 输运范围从数十纳米扩展到微米级.采用该策略,Cu 催化剂在7 mol·L⁻¹ KOH 电解液中实现了高效的 CO₂RR转化,生成乙烯的电流密度高达 1.3 A·cm², 能量转化效率为 45%.

除了有效设计气体扩散电极结构,焦峰^[50]等人 探究了碱性流动相体系中电解液对于 Cu 催化剂 CO₂RR 性能的影响机制(图 3A). 通过比较多孔 Cu 催化剂在四种不同电解液(KOH、KHCO3、KCI 和 K₂SO₄)中的催化性能差异,作者发现 KOH 具有 比碳酸氢盐和其他非缓冲的近中性电解液更好的 CO₂RR 性能,其较高 pH 值反应环境更有利于 Cu 表面发生 C-C 耦合反应. 在 -0.67 V vs. RHE 条件 下生成 C₂₊产物的法拉第效率高达 62%,总催化电 流密度为 653 mA·cm⁻²(图 3B-C). 此外,作者发现 随着反应的长时间进行,碳酸盐在电极-电解液界 面的积累会缓慢地堵塞催化剂和 GDL 的孔隙,从 而造成了体系严重的电压损失并限制了反应物/产 物在界面上的传输.最近,王野等人57以卤素修饰 铜催化剂,通过调节催化剂电子结构实现了可观 的反应电流密度,在-0.89 V vs. RHE 下电流密度 高达到 1600 mA·cm⁻², C₂₊ 选择性高达 80%. 作者 也比较了不同 KOH 浓度下产物的生成速率,发现 高碱性电解液的使用显著改善了产物的起始电位 (图 3D-E). 这是目前液相流动电解池性能最为突 出的一项研究工作.综合看来,虽然液相流动电解 池已展示出良好的产物选择性和催化电流密度,

- 图 3 (A)液相流动电解池(上)和电极三相界面(下)示意图;纳米多孔 Cu 催化剂(B)在不同电压下的总电流-时间(*j*-*t*)曲 线和(C)C₂₊产物部分电流密度及法拉第效率^{[50};(D)卤素修饰 Cu 催化剂在不同电压下 C₂₊产物的法拉第效率^[57]; (E)在不同 KOH 浓度下,氟修饰的 Cu 催化剂上 C₂₊产物的生成速率^[57].
- Fig. 3 (A) Schematic flow cell configuration with a zoomed-in schematic of the electrode-electrolyte interface^[56]; (B) Total current density, and (C) C₂₊ product partial current density and Faradaic efficiency of nanoporous Cu catalyst under different potentials^[56]; (D) Faradaic efficiency of C₂₊ products at different working potentials on halogen-modified Cu catalysts^[57]; (E) Formation rate of C₂₊ product over fluorine-modified Cu catalyst at different KOH concentrations^[57].

但是依旧有很多问题亟待解决,进一步改进并优 化气体扩散电极结构,防止气体扩散电极水淹,缓 解盐析问题仍然是当前工作的重点.

3.2 膜电极组件反应器

膜电极组件反应器在燃料电池和电解水等 诸多领域已广泛应用,近年来逐渐被拓展到 CO₂ 还原反应中.它们不仅具有较低的欧姆损耗,阴 极无电解液的设计也一定程度地解决了液相流 动电解池中气体扩散电极的溢流、电解液杂质在 催化剂表面沉积以及碳酸盐结晶等问题,这对于 提高整个体系运行稳定性起到一定的帮助.目前 发展的 MEA 反应器主要包括两种:一种是典型 的阴阳两极均是气体供给的设计.这种情况下长 时间反应会导致膜的脱水从而引起体系欧姆电阻 增大,造成整个反应转化效率的下降;另一种则在 前者基础上进行了一定的改良:阴极通入含一定 水蒸汽的 CO₂ 原料气,而阳极则通过电解液 (KOH 或 KHCO₃)循环来维持膜在运行期间的湿 润性.

近年来,研究人员在 MEA 体系中进行的 CO₂RR 研究也取得了一定的进展^[88-59],证明了利用 MEA 实现 CO₂RR 高电流密度的可行性. Berlinguette^[60]等人通过直接向 GDE 阴极提供湿润 的 CO_2 气流,同时阳极循环 1 mol·L¹ KOH 的方式, 研究了 MEA 中商业酞菁钴(CoPc)的 CO₂RR 性能 (图 4A). 在 150 mA·cm⁻² 的电流密度下, CoPc 高 效还原 CO2 至 CO 的法拉第效率高达 95%,且连 续运行超过100小时(图4B),而在H型电解池中 使用相同催化剂的电流密度仅有 10 mA·cm²,这 充分说明了 MEA 反应器在反应电流密度和稳定 性上的优势.近期,汪淏田等60人制备出高性能的 单原子 Ni 催化剂(Ni-NCB),并利用 MEA 装置实 现了高电流密度下 CO 选择性生成. 在 MEA 反应 器中,Ni-NCB 催化剂生成 CO 的法拉第效率接近 100%,同时CO电流密度相比于H型电解池提高 了近 10 倍(图 4C-D). 此外, MEA 反应器在 CO2 还 原生成多碳产物方面也表现出一定的优势. Sargent 等^[62]人通过设计了一种 MEA 反应器实现了 Cu 催 化剂上高效 $CO_2 RR$ 转化(图 4E-F), C_2 产物的总法 拉第效率高达80%,其中乙烯占~50%,乙醇占~ 4%,且体系能在100 mA·cm⁻²的电流密度下稳定 工作 100 小时(图 4F). 另外,作者还比较了该体系 与中性/碱性液体流动池性能的差别.虽然产物的 转化效率相差并不明显,但是 MEA 电解池的稳定

图 4 (A)零间隙 MEA 装置示意图^{[60};(B)CoPc 催化剂生成 CO 的法拉第效率和催化电流密度随反应时间的变化关系图^{[60}; Ni-NCB 催化剂(C)不同工作电压下电流密度和(D)CO 和 H₂ 法拉第效率^{[61};(E)采用 0.1 mol·L⁴ KHCO₃ 作为阳极电 解液的 MEA 装置示意图^{[60};(F)250 nm-Cu 催化剂在 -3.75 V 电压下总电流密度和各种不同产物法拉第效率^[62].

Fig. 4 (A) Schematic configuration of the zero-gap MEA^[60]; (B) CO selectivity and applied voltage as a function of current densitty^[60]; (C, D) Steady-state current density and corresponding H₂ and CO selectivity on Ni-NCB^[62]; (E) Schematic configuration of the MEA device using 0.1 mol·L⁻¹ KHCO₃ as anolyte^[62]; (F) Total current density and Faradaic efficiency of 250 nm-Cu catalyst for different products at -3.75 V^[62].

性能更加优异.作者通过将产生的少量液体产物 带出体系的操作减少了气体扩散电极被水浸润的 风险,保证了体系高效稳定运行.

虽然在设计之初 MEA 并不适合还原 CO2 生 成液体产物,但是近期研究者通过不断地改进装 置,使得其在性能上有了突破性进展,液体产物也 可被气体带出电解池. Sargent 等⁶³人设计 N 掺杂 碳包覆 Cu(N-C/Cu)作为 CO2RR 催化材料,通过 调节催化剂电子结构,抑制了中间产物 HOCCH* 脱氧,实现了产物选择性从乙烯到乙醇的转变,乙 醇选择性达到 52%(图 5A-B),这是目前报道乙醇 效率最高的一项工作.此外,汪淏田等四人提出了 一种采用固态电解质的 MEA 装置,实现了由 CO2 至纯液态燃料的转化.该工作中的固态电解质由 具有不同官能团的离子导电聚合物制成. 电化学 反应产生的 H⁺和 HCOO 不与其他离子混合直接 形成纯甲酸溶液. 作者以超薄二维 Bi 作为阴极催 化剂,产生12.1 mol·L⁻¹高纯度甲酸并且连续运行 100小时 (图 5C-D). 在这里固体电解质的应用不 仅有效保证了产物的纯度,无后续分离成本,也可 以扩展到其它 C₂₊ 液态燃料(包括乙酸、乙醇和正 丙醇)的生产中.

4 总结与展望

利用可再生能源将 CO₂ 转化为高附加值的碳 基燃料产品是一种切实可行的途径. 在过去几十 年里,人们在实现高效 CO₂ 转换方面取得了重大 进展. 然而,现阶段的技术水平距离实现 CO₂RR 商 业化生产还存在很大的差距. 在这篇综述中,作者 重点介绍了现阶段发展的液相流动电解池和膜电 极组件反应器,重点讨论了装置中关键组件(气体 扩散电极和离子交换膜)的选择对于提升 CO₂RR 整体性能的影响. 尽管如此,该领域在目前发展中 仍存在几个关键挑战需要进一步解决:

1)要满足未来商业化生产需求,维持体系良 好的稳定性是关键.基于现阶段的研究水平,如何 进一步解决流动池水淹和盐析出等问题是当前的 研究重点.通过精准设计气体扩散电极结构,发展 可行的电极处理工艺,合理选择膜材料等策略对 于提升流动池稳定性至关重要.近期的相关工作 中还报道了一种无膜微流反应器,虽然无离子交

图 5 (A)不同电流密度下 Cu 和 34% N-C/Cu 催化剂生成 C₂₊产物的法拉第效率^{[63};(B)不同 Cu 催化剂在不同电流密度下的乙醇法拉第效率^{[63};(C)固态电解质电解池结构示意图^[64];(D)电解池的稳定性和效率测试^[64].

Fig. 5 (A) Faradaic efficiencies of C₂₊ products on Cu and 34% N-C/Cu catalysts under different current densities^[63]; (B) Ethanol selectivity on different Cu-based catalysts under different current densities^[63]; (C) Schematic configuration of the solid-electrolyte cell and (D) its operation stability and efficiency^[64].

换膜的结构一定程度地降低了成本,但是其存在 阴极产物被氧化的问题还需要进行深入探究.

2)降低 CO₂RR 的运行成本和提高体系的能量 转化效率是推动该领域发展的重要因素. 然而,在 目前的大部分研究中只强调了产物选择性和电流 密度等方面的指标,而很少考察体系的能量转化 效率. 随着该领域的深入和技术上的成熟,需要降 低整体系统的电解电位,提高反应的转化能效. 通 过寻找可替代 OER 的阳极反应(例如甘油等物质 的电化学氧化等)来获得具有高经济附加值的阳 极氧化产物,这不仅有利于提高电能的综合利用 效率,也可以降低 CO₂电还原的综合成本.

3)深入探究原料气中潜在气体杂质对 CO₂RR 性能的影响是至关重要的. 到目前为止,大多数关 于CO₂RR 的研究都是使用高纯度 (> 99.999%)的 CO₂ 气体作为反应物,而对气体杂质的影响知之甚 少.考虑到未来用于商业 CO₂ 电解的原料主要来 源于发电厂及化学工厂的燃烧废气或直接从空气 中捕获,不可避免地包含了 SO₄、NO₄ 及少数挥发 性气体,因此,如何在有限纯度原料气供给的条件 下实现高效稳定的 CO₂ 还原转化将具有重要的研 究意义.

4)高温高压是未来 CO₂RR 的一个重要研究方向.实验室水平中的研究多在常温常压下进行,一

定程度地限制了电极表面 CO₂ 的利用率. 高压高 温的反应条件可以有效提高催化剂表面 CO₂ 的局 部浓度,有助于加快 CO₂ 传质和电子转移速率,从 而实现更快的反应速率. 特别是在 MEA 装置中,加 压操作已经被证明可显著提高 CO₂RR 电流密度. 因此,这一方向在未来需要更加深入研究和探索.

电化学 CO₂ 还原技术的发展为应对当今能源 供给与环境污染等问题提供了良好的契机.开发 新型高效的流动池装置是提升催化电流密度的重 要手段,也是将来 CO₂RR 技术商业化的必由之路. 尽管还面临着诸多挑战,但是作者相信,通过对电 极和电解池结构等一系列参数的进一步改进与优 化,能有效推动该技术的商业化应用,实现 CO₂ 高 效电解生产清洁燃料和化学品的新突破.

参考文献(References):

- Gattuso J P, Magnan A, Billé R et al. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios[J]. Science, 2015, 349(6243): 47221-47223.
- [2] Solomon S, Plattner G K, Knutti R et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1704-1709.
- [3] Mikkelsen M, Jørgensen M, Krebs F C. The teraton chal-

- [4] Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452.
- [5] Ager J W, Lapkin A A. Chemical storage of renewable energy[J]. Science, 2018, 360(6390): 707-708.
- [6] Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675.
- [7] Han N, Ding P, He L et al. Promises of main group metalbased nanostructured materials for electrochemical CO₂ reduction to formate[J]. Advanced Energy Materials, 2020, 10(11): 1902338.
- [8] Wu J H, Huang Y, Ye W, et al. CO₂ reduction: from the electrochemical to photochemical approach[J]. Advanced Science, 2017, 4(11): 1700194.
- [9] Costentin C, Robert M, Savéant J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013, 42(6): 2423-2436.
- [10] Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015, 6(20): 4073-4082.
- [11] Lu Q, Rosen J, Jiao F. Nanostructured metallic electrocatalysts for carbon dioxide reduction[J]. ChemCatChem, 2015, 7(1): 38-47.
- [12] Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO₂ reduction and their related reaction mechanisms[J]. Angewandte Chemie International Edition, 2017, 56(38): 11326-11353.
- [13] Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO₂ reduction [J]. Joule, 2018, 2(12): 2551-2582.
- [14] He J F, Johnson N J J, Huang A X, et al. Electrocatalytic alloys for CO₂ reduction[J]. ChemSusChem, 2018, 11(1): 48-57.
- [15] Wang Y H, Liu J I, Wang Y F, et al. Tuning of CO₂ reduction selectivity on metal electrocatalysts[J]. Small, 2017, 13(43): UNSP 1701809.
- [16] Jones J P, Prakash G S, Olah G A. Electrochemical CO₂ reduction: recent advances and current trends[J]. Israel Journal of Chemistry, 2014, 54(10): 1451-1466.
- [17] Ringe S, Clark E L, Resasco J, et al. Understanding cation effects in electrochemical CO₂ reduction[J]. Energy & Environmental Science, 2019, 12(10): 3001-3014.

- [18] Han N, Wang Y, Ma L, et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO₂ reduction[J]. Chem, 2017, 3(4): 652-664.
- [19] Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from *in situ* topotactic transformation for selective electrocatalytic CO₂ reduction to formate[J]. Nature Communications, 2018, 9(1): 1320.
- [20] Yang H, Han N, Deng J, et al. Selective CO₂ reduction on 2D mesoporous Bi nanosheets[J]. Advanced Energy Materials, 2018, 8(35): 1801536.
- [21] Yang H, Huang Y, Deng J, et al. Selective electrocatalytic CO₂ reduction enabled by SnO₂ nanoclusters[J]. Journal of Energy Chemistry, 2019, 37: 93-96.
- [22] Han N, Wang Y, Deng J, et al. Self-templated synthesis of hierarchical mesoporous SnO₂ nanosheets for selective CO₂ reduction[J]. Journal of Materials Chemistry A, 2019, 7(3): 1267-1272.
- [23] Zhang X R(张旭锐), Shao X L(邵晓玲), Yi J(易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology [J]. Journal of Electrochemistry (电化学), 2019, 25(4): 413-425.
- [24] Yang F(杨帆), Deng P L(邓培林), Han Y J(韩优嘉), et al. Copper-based compounds for electrochemical reduction of carbon dioxide[J]. Journal of Electrochemistry (电化学), 2019, 25(4): 426-444.
- [25] Zhou R(周睿), Han N(韩娜), Li Y G(李彦光). Recent advances in bismuth-based CO₂ reduction electrocatalysts
 [J]. Journal of Electrochemistry(电化学), 2019, 25(4): 445-454.
- [26] Salvatore D A, Weekes D M, He J, et al. Electrolysis of Gaseous CO₂ to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017, 3(1): 149-154.
- [27] Weekes D M, Salvatore D A, Reyes A, et al. Electrolytic CO₂ reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918.
- [28] Sun Z Y, Ma T, Tao H C, et al. Fundamentals and challenges of electrochemical CO₂ reduction using two-dimensional materials[J]. Chem, 2017, 3(4): 560-587.
- [29] Lu X, Leung D Y, Wang H, et al. Electrochemical reduction of carbon dioxide to formic acid[J]. ChemElectro-Chem, 2014, 1(5): 836-849.
- [30] Gupta N, Gattrell M, MacDougall B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO₂ in KHCO₃ solutions[J]. Journal of Applied Electrochemistry, 2006, 36(2): 161-172.
- [31] Burdyny T, Smith W A. CO₂ reduction on gas-diffusion electrodes and why catalytic performance must be as-

sessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019, 12(5): 1442-1453.

- [32] Jouny M, Lv J J, Cheng T, et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis[J]. Nature Chemistry, 2019, 11(9): 846-851.
- [33] Tan Y C, Lee K B, Song H, et al. Modulating local CO₂ concentration as a general strategy for enhancing C-C coupling in CO₂ electroreduction[J]. Joule, 2020, 4(5): 1104-1120.
- [34] Merino Garcia I, Albo J, Irabien A. Tailoring gas-phase CO₂ electroreduction selectivity to hydrocarbons at Cu nanoparticles[J]. Nanotechnology, 2017, 29(1): 014001.
- [35] Dewulf D W, Bard A J. The electrochemical reduction of CO₂ to CH₄ and C₂H₄ at Cu/Nafion electrodes (solid polymer electrolyte structures) [J]. Catalysis Letters, 1988, 1 (1/3): 73-79.
- [36] Hori Y, Ito H, Okano K, et al. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide[J]. Electrochimica Acta, 2003, 48(18): 2651-2657.
- [37] Aeshala L M, Uppaluri R, Verma A. Electrochemical conversion of CO₂ to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte[J]. Physical Chemistry Chemical Physics, 2014, 16 (33): 17588-17594.
- [38] Pătru A, Binninger T, Pribyl B, et al. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature[J]. Journal of The Electrochemical Society, 2019, 166(2): F34-F43.
- [39] Li Y C, Zhou D, Yan Z, et al. Electrolysis of CO₂ to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1(6): 1149-1153.
- [40] McDonald M B, Ardo S, Lewis N S, et al. Use of bipolar membranes for maintaining steady state pH gradients in membrane-supported, solar-driven water splitting[J]. ChemSusChem, 2014, 7(11): 3021-3027.
- [41] Reiter R S, White W, Ardo S. Communication-electrochemical characterization of commercial bipolar membranes under electrolyte conditions relevant to solar fuels technologies[J]. Journal of The Electrochemical Society, 2016, 163(4): H3132-H3134.
- [42] Vargas Barbosa N M, Geise G M, Hickner M A, et al. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells[J]. ChemSus-Chem, 2014, 7(11): 3017-3020.
- [43] Chen C, Kotyk J F K, Sheehan S W. Progress toward commercial application of electrochemical carbon diox-

ide reduction[J]. Chem, 2018, 4(11): 2571-2586.

- [44] Gong Q, Ding P, Xu M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10(1): 2807.
- [45] Jiang K, Sandberg R B, Akey A J, et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO₂ reduction[J]. Nature Catalysis, 2018, 1(2): 111-119.
- [46] Jhong H R M, Tornow C E, Smid B, et al. A nitrogendoped carbon catalyst for electrochemical CO₂ conversion to CO with high selectivity and current density [J]. ChemSusChem, 2017, 10(6): 1094-1099.
- [47] Liang C, Kim B, Yang S, et al. High efficiency electrochemical reduction of CO₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO₂ nanoparticles[J]. Journal of Materials Chemistry A, 2018, 6(22): 10313-10319.
- [48] Kopljar D, Wagner N, Klemm E. Transferring electrochemical CO₂ reduction from semi-batch into continuous operation mode using gas diffusion electrodes[J]. Chemical Engineering & Technology, 2016, 39(11): 2042-2050.
- [49] Dinh C T, Burdyny T, Kibria M G, et al. CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787.
- [50] Hoang T T, Verma S, Ma S, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO₂ to ethylene and ethanol [J]. Journal of the American Chemical Society, 2018, 140 (17): 5791-5797.
- [51] Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO₂ to ethanol[J]. ACS Catalysis, 2017, 7(12): 8594-8604.
- [52] Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017, 139(1): 47-50.
- [53] Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO₂ reduction in a flow cell[J]. Science, 2019, 365(6451): 367-369.
- [54] Del Castillo A, Alvarez Guerra M, Solla Gullón J, et al. Sn nanoparticles on gas diffusion electrodes: Synthesis, characterization and use for continuous CO₂ electroreduction to formate[J]. Journal of CO₂ Utilization, 2017, 18: 222-228.
- [55] De Arquer F P G, Dinh C T, Ozden A, et al. CO₂ electrolysis to multicarbon products at activities greater than 1 A · cm²[J]. Science, 2020, 367(6478): 661-666.

- [56] Lv J J, Jouny M, Luc W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018, 30(49): 1803111.
- [57] Ma W C, Xie S J, Liu T T, et al. Electrocatalytic reduction of CO₂ to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper [J]. Nature Catalysis, 2020, 3(6): 478-487.
- [58] Li F, Thevenon A, Rosas Hernández A et al. Molecular tuning of CO₂-to-ethylene conversion[J]. Nature, 2020, 577 (7791): 509-513.
- [59] Yin Z L, Peng H Q, Wei X, et al. An alkaline polymer electrolyte CO₂ electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019, 12(8): 2455-2462.
- [60] Ren S, Joulie D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO₂ reduction in a flow

cell[J]. Science, 2019, 365(6451): 367-369.

- [61] Zheng T T, Jiang K, Ta N, et al. Large-scale and highly selective CO₂ electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3(1): 265-278.
- [62] Gabardo C M, O'Brien C P, Edwards J P, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly [J]. Joule, 2019, 3(11): 2777-2791.
- [63] Wang X, Wang Z Y, de Arquer FPG, et al. Efficient electrically powered CO₂-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5(6): 478-486.
- [64] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO₂ reduction using solid-electrolyte devices[J]. Nature Energy, 2019, 4(9): 776-785.

Electrochemical Carbon Dioxide Reduction in Flow Cells

FAN Jia, HAN Na^{*}, LI Yan-guang^{*}

(Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China)

Abstract: Electrochemical carbon dioxide reduction (CO_2RR) is an appealing approach to convert atmospheric CO_2 to valueadded fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO_2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode and ion exchange membrane. A brief perspective is offered at the end for the possible future research directions in this emerging field.

Key words: CO₂ reduction; electrocatalysis; flow cell; current density