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Abstract: The electrochemical conversion of carbon dioxide into valuable chemicals is a feasible way to mitigate the negative impacts of12
overmuch carbon dioxide emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient13
electrochemical carbon dioxide reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a14
monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-15
carboxyphenyl) porphyrin) and Cu2O, where TCPP play significant roles in regulating the morphology. In-situly formed Cu during ECR16
process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress hydrogen evolution, enrich CO intermediate and promote C-C coupling17
towards C2 products. Cu-TCPP@Cu supported on porous carbon (PC) show ultrafine Cu nanoclusters on PC and displays high ECR activity18
and selectivity towards C2 products, with a C2 faradaic efficiency of 62.3% at –1.0 V versus the reversible hydrogen electrode (RHE) and a C219
partial current density of 83.4 mA cm–2, which is 7.6 times and 13.1 times that of pure Cu2O and TCPP. In this paper, the morphology and20
hybrid structure of the catalyst were studied to improve the selectivity of ECR to produce C2 products, which provided a new idea for the21
design of high-performance ECR catalyst.22

Keywords: organic/inorganic hybrid electrocatalysts; TCPP; cuprous oxide; cascade electrocatalysts23
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1. Introduction25

Human activities lead to excessive emission of carbon26
dioxide (CO2) into the atmosphere, resulting in serious27
environmental and climate problems, such as glacier melting28
and greenhouse effect[1-4]. Powerful methods of storing and29
converting CO2 have been developed to reduce CO2 levels in30
the atmosphere[5-8], among which, renewable energy driven31
electrocatalytic reduction of CO2 (ECR) into valuable multi-32
carbon products is one of the promising and sustainable33
approaches[9-12]. However, catalysts limit the efficiency and34
selectivity of electrochemical CO2 reduction[13-15]. Therefore,35
people have been committed to the development of a variety36
of efficient selective conversion of carbon dioxide37
electrocatalysts[16, 17], like metal oxides[18, 19], carbon-based38
materials[20] and metal organic frameworks (MOFs)[21, 22].39
Despite the significant progress, it remains a huge challenge40
to direct the reaction path to the ideal product, which requires41
the development of better electrocatalysts with higher42
product selectivity and catalytic activity[23-25].43
MOFs is regarded as an advantageous ECR44

electrocatalyst because of its porous crystalline structure and45
CO2 affinities[26, 27]. Therefore, a large number of molecular46
catalysts combining transition metal elements (like Fe, Co, Ni,47
Mn and Cu) with macrocyclic ligands (such as polypyridine,48
porphyrins and phthalocyanine) have been examined for the49

electrochemical reduction of CO2[28]. For instance, Chi and50
co-workers synthesized a kind of porous three-dimensional51
porphyrinic cobalt MOF with a CO faradaic efficiency of52
92.4% at –0.6 V vs reversible hydrogen electrode (RHE)[29].53
In addition, Kongpatpanich[30] prevented the aggregation of54
porphyrins by embedding functionalized cobalt-based and55
iron-based porphyrins into rigid frame structures and ensured56
the H bond interface was only close to the intermediate57
products of ECR at the same time, thus reducing the limit58
potential of ECR and improving the selectivity of ECR.59
Besides, Su's team synthesized a series of structurally stable60
metallic two-dimensional (2D) polyoxometale-61
metalloporphyrin organic frameworks (TM-PMOFs, TM = Fe,62
Co, Ni, Cu, Zn, Ru, Rh, Pd, Os, Ir, Pt). Their calculations63
showed that Lindqvist type clusters [Mo6]2e/2H can act as a64
multi-electron regulator of the reduction reaction, reducing65
the drive potential of the reaction (0.08V)[31]. Unfortunately,66
considering the completion of the multi-electron transfer67
process required to obtain any reduced product in ECR, the68
poor conductivity and electron-donating capacity of MOF has69
always been a major limitation of MOF as an efficient70
electrocatalyst[32]. Therefore, it is imperative to design a71
novel catalyst with active components, electron-rich units72
and electron mobility.73
At present, metals[33-35], metal sulfides [36] , organic groups74

[37] and metal oxides[38-40] have been combined with porphyrin75

http://electrochem.xmu.edu.cn


COMMUNICATION

2

complexes to improve their activity and produce synergistic1
effects. Tetrakis (4-carboxyphenyl) porphyrin (TCPP) is a2
kind of electron donor which has been used to improve the3
ECR performances of MOFs[41]. Electron transfer could be4
facilitated by integrating electron-rich units into porphyrin-5
based MOFs, which could obtain excellent ECR activity. For6
example, Chang and colleagues reported a urea pendant7
modified molecular iron porphyrin catalyst with high CO8
faradic efficiency and the catalytic rate is 1500 times that of9
the unmodified parent iron porphyrin[42].10
In addition, Zheng’s group also developed a donor–11

acceptor modified Cu porphyrin (Cu-TAPP), which exhibits12
an excellent CO2-to-CH4 electroreduction performance,13
including a high CH4 partial current density of 290.5 mA cm−214
and a corresponding Faradaic efficiency of 54.8% at –1.63 V15
vs RHE in flow cells[43]. Liang's team[44] also synthesized16
nickel phthalocyanine (NiPc-MDE) with methoxy (-OMe) and17
cyanide (-CN). Compared with cyano-substituted NiPC-CN-18
MDE, the methoxy-substituted NiPC-OMe-MDE catalyst can19
stabilize *COOH intermediates and improve the selectivity of20
CO. NiPC-OMe-MDE catalyst can maintain 99.5% CO21
selectivity in the current density range of 10~300 mA cm−2.22
Although these materials can effectively promote the23
catalysis of electrochemical reduction of CO2, the ECR C224
products are still very limited. Promoting the multi-electron25
transfer reactions with high selectivity of C2 products remains26
a grand challenge for molecular-based electrocatalysts.27
Herein, we report the deliberate synthesis of28

monodispersed and spherical organic/inorganic hybrid Cu-29
TCPP@Cu2O, composed on 2-dimentional Cu-TCPP and30
Cu2O, which is converted to Cu-TCPP@Cu during ECR31
process and displays a Faradic efficiency of 62.3 % at –1.0 V32
vs. RHE. Our study shows that the interaction between Cu-33
TCPP and Cu2O is the key factor contributing to its excellent34
ECR performance.35

2. Experimental Section36

2.1 Materials37
Tetrakis (4-carboxyphenyl) porphyrin (TCPP, 97%), zinc38

nitrate hexahydrate (Zn(NO3)2·6H2O, 98%), Trifluoroacetic39
acid (99%) and copper nitrate trihydrate (Cu(NO3)2·3H2O,40
99%) were purchased from Macklin. N, N-dimethylformamide41
(DMF, 99.9%), methanol, ethanol, 2-methylimidazole,42
potassium hydroxide (KOH, 95%) and polyvinylpyrrolidone43
(PVP, average mol wt 50,000) were purchased from Energy44
Chemical Co. Deionized water (DI, 18.2 MΩ·cm) was45
acquired from Milli-Q system. All agents were analytically46
pure and used without further purification.47
2.2 Preparation of Cu-TCPP@Cu2O and contrastive48
samples49
2.2.1 Synthesis of Cu-TCPP@Cu2O nanoparticles50
A solution of TCPP (20 mg, 0.025 mmol) and PVP (50051

mg) in DMF (16 mL) was added to a solution of52
Cu(NO3)2·3H2O (121.91 mg, 0.65 mmol) in DMF (10 mL).53
The solution was refluxed for 24 h at 120 ºC after stirring for54

2 mins[45]. After cooling down to room temperature, the55
resulting red Cu-TCPP@Cu2O nanoparticles were washed56
four times with deionized water and collected by centrifuging57
at 8,500 rpm for 5 mins.58
The synthesis process of pure Cu2O was the same as Cu-59

TCPP@Cu2O without TCPP.60
The synthesis process of pure Cu-TCPP was the same as61

Cu-TCPP@Cu2O except for the addition of trifluoroacetic62
acid (20 μL, 1.0 M).63
In addition, the catalysts after ECR corresponding to Cu-64

TCPP@Cu2O, Cu2O, Cu-TCPP and TCPP were named Cu-65
TCPP@Cu, OD-Cu, Cu-TCPP spent and TCPP spent,66
respectively. The samples mixed with porous carbon were67
named Cu-TCPP@Cu2O/PC, Cu2O/PC, Cu-TCPP/PC and68
TCPP/PC.69
2.2.2 Synthesis of porous carbon by carbonization of70
ZIF-871
The Zn(NO3)2·6H2O (5.94 g, 0.02 mol) and 2-72

methylimidazole (6.56 g, 0.08 mol) was added into methanol73
(500 mL). After mixing with 12 h at room temperature, the74
formed ZIF-8 nanoparticles were washed for three times with75
methanol and collected by centrifuging at 8,500 rpm for 376
mins.77
The ZIF-8 (500 mg) was put at a porcelain boat in a quartz78

tube furnace. Subsequently, the temperature of the tube79
furnace was elevated to 950 ºC with a heating rate of 5 ºC80
min–1 under Ar atmosphere and held at this temperature for 381
h, the obtained porous carbon was named PC.82
2.3 Morphological and structural characterization83
Powder X-ray diffraction (Bruker D8 Advanced, German)84

was performed using a Cu Kα radiation source. X-ray85
photoelectron spectroscopy (XPS) were performed on a PHI86
X-tool X-ray photoelectron spectrometer using Al as the87
exciting source. Scanning electron microscopy (SEM)88
images and the element distribution of the catalyst were89
recorded using a Zeiss Supra 55. Transmission electron90
microscopy (TEM) image were performed in Talos F200x.91
2.4 Electrochemical characterization92
Electrochemical CO2 reduction were performed on a CHI93

660E electrochemical analyzer using a designed gas-tight94
flow cell. None of the electrochemical tests in this paper used95
IR compensation. The platinum foil counter electrode was96
purchased from Sigma Aldrich. The Hg/HgO reference97
electrode and carbon fiber paper was purchased from Gaoss98
Union. The conversion of the Hg/HgO electrode to the99
Reversible hydrogen electrode is performed using the100
following formula[46]:101

ERHE= EHg/HgO + 0.095 V + 0.059 ∗ pH102
Firstly, a diluted Nafion solution was prepared by mixing 5103

mL DI water, 5mL ethanol and 0.5 mL Nafion solution (5%104
w/w). Disperse 2.5 mg of Cu-TCPP@Cu2O catalyst and 2.5105
mg PC into 5 mL of diluted Nafion solution, by sonication for106
30 mins to obtain a catalyst ink. Drop-cast 1 mL the catalyst107
ink onto each carbon paper with gas diffusion layer (GDL) to108
obtain the catalyst-loaded gas diffusion electrode (GDE, 2109
cm × 0.5 cm). The geometric area of each electrode is 1 cm2110
and the catalyst loading on each electrode was controlled to111
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be 1.0 mg cm–2. The working electrodes for pristine Cu2O/PC,1
Cu-TCPP/PC and TCPP/PC were prepared by following the2
same procedure as that of Cu-TCPP@Cu2O/PC.3
For all experiments, 1.0 M KOH (pH=14) solution was4

used as the electrolyte. The durability was evaluated by5
chronoamperometric profiles at a constant current density.6
The double-layer capacitance (Cdl) values and7
electrochemical surface area (ECSA) were determined by8
cyclic voltammetry (CV) curves at different scanning rates.9
Electrochemical impedance spectroscopy (EIS)10
measurements were obtained at frequencies ranging from11
100 kHz to 0.01 Hz in a potentiostatic mode. Current12
densities were calculated based on the catalyst-covered13
geometric area of the working electrode. All potentials were14
referred to the reversible hydrogen electrode. The liquid15
product of ECR was quantified by 1H-NMR spectra recorded16
with an Agilent 400 MHz NMR instrument. The gas product17
generation of ECR was calculated by gas chromatography18
with an HuaAi GC-9560.19

3. Results and Discussion20

21
Fig. 1. The structural characterization: (a) SEM image of the Cu-TCPP@Cu2O22
and the corresponding EDX mapping of Cu, N, O, (b-c) TEM image of Cu-23
TCPP@Cu2O and (d) SEM image of Cu2O, (e) TEM image of Cu-24
TCPP@Cu/PC, (f) SEM image of Cu-TCPP@Cu and (g) SEM image of Cu-25
TCPP.26

The morphology of Cu-TCPP@Cu2O was examined by27
SEM and TEM. In Fig. 1a, Cu-TCPP@Cu2O exhibits a28
spherical shape and a bumpy surface, with a size of 2.78 ±29
0.67 μm in diameter (Fig. S1a-b). It is highly possible that the30
bumpy surface of Cu-TCPP@Cu2O is assembled with ultra-31
thin nanosheet of Cu-TCPP[47]. The element mapping for Cu-32
TCPP@Cu2O demonstrates the uniform distribution of each33
element on the sample. The high-resolution TEM image of34
Cu-TCPP@Cu2O (Fig. 1b) further indicates the rough35
surface, composed of small nanoparticles at 3-5 nanometres.36
The lattice fringe at the heart of the sample were identified to37
be 0.2464 nm (Fig. 1c), which is in agreement with Cu2O (1 138
1) reflection[47]. Similarly, pristine Cu2O sample without TCPP39

functionalization equally shows spherical shape, and two40
size distributions in diameter, 96.56 and 264.74 nm41
respectively, which are much smaller than that of Cu-42
TCPP@Cu (Fig. 1d and Fig. S2a-c). This indicates that43
TCPP plays significant roles in regulating the morphology of44
Cu2O.45
After electrolysis at –1.0 V vs RHE for 30 mins, Cu2O were46

converted to metallic Cu, Cu nanoclusters with a diameter of47
about 3 nm on PC were observed for Cu-TCPP@Cu/PC48
sample (Fig. 1e). Fig. 1f indicate that Cu-TCPP@Cu2O49
retains its spherical structure even after electrolysis. In50
contrast, highly porous and aggregated Cu nanoparticles and51
nanowires at hundreds of nanometre scale were observed52
for pure Cu2O after electrolysis (OD-Cu, Fig S3a-3b).53
Apparently, Cu-TCPP can modulate not only the growth54
dynamics of Cu2O, but also the recrystallization process of55
Cu during ECR process when Cu2O is converted to Cu. Due56
to the strong interaction of Cu-TCPP and Cu, the structure of57
Cu-TCPP@Cu2O was mainly maintained. SEM of Cu-TCPP58
fresh and Cu-TCPP spent (Fig. 1g and Fig. 3c-3d) also59
proves its structural stability. Cu-TCPP display a nanoflower-60
like structure. After electrolysis, the structure collapsed61
slightly but still maintained a flower-like structure in general.62
In Fig. S3e-3f, TCPP shows a severe aggregation both63
before and after64
electrolysis.65

66
Fig. 2. XRD patterns of Cu-TCPP@Cu2O and Cu-TCPP.67

As shown in Fig. 2 and Fig. S4, the peaks at 2θ values of68
7.96, 11.03, 19.0 and 22.02° could be indexed to (110),69
(200), (004) and (400) reflection[47-50] of Cu-TCPP MOF in70
Cu-TCPP@Cu2O and Cu-TCPP both before and after71
electrolysis. The peaks at 36.52, 42.32, 61.43 and 73.34°72
correspond to the crystal planes of (111), (200), (220) and73
(311) of crystalline Cu2O, respectively[51], which are observed74
for both Cu-TCPP@Cu2O and Cu2O. In addition, the small75
peaks at 38.77, 48.84 and 65.73° might be indexed to CuO76
(PDF#89-2529).77
Cu2+ is possibly not completely converted into Cu+ during78

the preparation of catalyst, thus a small amount of CuO79
remains in the catalyst. However, Cu2O is still dominant in80
the Cu-TCPP@Cu2O. XRD results indicate that Cu-81
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TCPP@Cu2O represents Cu-TCPP functionalized Cu2O,1
while only pure phase of Cu2O was obtained without using2
TCPP in the synthetic procedure. After electrolysis at –1.0 V3
vs RHE, the characteristic peak of Cu2O vanished in both4
Cu-TCPP@Cu2O and Cu2O and only diffraction peaks Cu5
was observed, signifying the complete conversion of Cu2O to6
Cu at the ECR process. However, the diffraction peaks of7
Cu-TCPP were well maintained during electrolysis, indicating8
its high stability against ECR process.9
Fig. 3a shows the Cu 2p spectrum for as-prepared Cu-10

TCPP@Cu2O. The binding energy at 932.5, 934.7 and 943.911
eV were assigned to Cu1+ in Cu2O, Cu2+ in CuO and Cu-12
TCPP and the satellite of a Cu 2p3/2 peak, respectively[52, 53].13
Three peaks appeared at 952.4, 954.6, and 963.4 eV were14
attributed to Cu1+ in Cu2O, Cu2+ in CuO and Cu-TCPP and15
the satellite of a Cu 2p1/2 peak, respectively[45, 52, 53]. In Fig. 3b,16
the N 1s spectra of Cu-TCPP@Cu2O/PC exhibit a peak at17
400.3 eV and 398.8 eV, that could be accounted for18
pyridinic–N and Cu–N bond, respectively[50]. This further19
indicates the presence of Cu-TCPP in Cu-TCPP@Cu2O20
composite.As shown in Fig. 3c, after electrolysis, the satellite21
peak of Cu remains, which may come from Cu2+ species in22
Cu-TCPP[50]. This further confirm the integrity of Cu-TCPP23
against ECR24
electrolysis.25

26
Fig. 3. XPS spectra of (a) Cu 2p, (b) N 1s for Cu-TCPP@Cu2O/PC and (c) Cu27
2p, (d) N 1s for Cu-TCPP@Cu/PC.28

It should be also be noted that the intensity of the Cu oxide29
satellite peak becomes much weaker than that of the fresh30
sample due to conversion of Cu2O to Cu. The binding energy31
at 932.5 and 934.7 eV were assigned to Cu0 and a few Cu2+32
in Cu-TCPP a Cu 2p3/2 peak[52-54]. Two peaks appeared at33
952.4 and 954.6 eV were attributed to Cu0 and a few Cu2+ in34
Cu-TCPP a Cu 2p1/2 peak[43]. In Fig. 3d, the N 1s spectra of35
Cu-TCPP@Cu exhibit a higher peak intensity of pyridinic–N36
and lower peak intensity of Cu–N bond than Cu-37
TCPP@Cu2O, possibly due to the partial breakage of Cu-N38
bond in Cu-TCPP and conversion to metallic Cu and39

TCPP[55-57]. However, according to XRD and SEM results,40
the Cu-TCPP structure in Cu-TCPP@Cu2O can generally41
remain stable after electrolysis.42
The LSV (Fig. 4a) curves were recorded in N2 and CO243

atmosphere in 1.0 M KOH from 0 to –1.6 V vs. RHE. The44
current density of Cu-TCPP@Cu2O/PC in CO2 is higher than45
that in N2, which indicates that catalyst does have ECR46
activity. It was found that the products distribution of ECR47
over TCPP@Cu2O/PC depends on the electrode potential48
(Fig. 4b). At −0.8 V and −0.9 V vs RHE, C1 product and H249
dominate in ECR. As the catalyst electrode was further50
negatively polarized to −1.0 V, the yields of ethanol and51
ethylene dramatically increased, with ethylene being the52
dominant ECR product (Figure 4b). C2 product is the53
predominant ECR product for the Cu-TCPP@Cu2O/PC54
catalyst at –1.0 V vs. RHE (Fig. 4b) and its FE is 62.3%. In55
contrast, ECR is dominated by HER and CO on Cu2O/PC56
(Fig. 4c), Cu-TCPP/PC (Fig. S5a) and TCPP/PC (Fig. S5b57
and Fig. S5c). These results indicate that the combination of58
Cu2O and Cu-TCPP on PC is essential for efficient59
production of C2 products in ECR.60
In Fig. 4d, Cu-TCPP@Cu2O/PC displays a supreme partial61

current density of C2 products in the potential range of –0.8 V62
to –1.0 V vs. RHE, which is as high as 83.4 mA cm–2 and63
more than 7.6 times that of the unmodified Cu2O, Cu-TCPP64
and TCPP. As shown in Fig. S5d and Fig. S6, the partial65
current density of C1 (which is mainly CO) on Cu-66
TCPP@Cu2O/PC is comparable to that of Cu2O/PC and Cu-67
TCPP/PC but higher than TCPP/PC. It is further proved that68
the higher selectivity of C2 product on Cu-TCPP@Cu2O/PC69
is obtained by C-C coupling of a large number of CO70
intermediates on Cu2O/PC and Cu-TCPP/PC. Tafel slopes71
are calculated based on Tafel equation (η = b log j + a,72
where η is the overpotential, j is the current density and b is73
the Tafel slope)[32] to elucidate the dynamics activity of74
catalyst for ECR (Fig. 4e). The Tafel slope for C2 product on75
Cu-TCPP@Cu2O/PC is 415.4 mV dec−1, which is much76
smaller than that of Cu2O/PC (1221.5 mV dec−1), Cu-77
TCPP/PC (860.6 mV dec−1) and TCPP/PC (692.1 mV dec−1).78
The result states the favorable kinetics of Cu-79
TCPP@Cu2O/PC for the formation of C2 products.80
It is highly possible that functionalization of OD-Cu with81

Cu-TCPP may enhance the hydrophobic properties of the82
catalyst composite, thus, suppressing the HER process.83
Additionally, both OD-Cu and Cu-TCPP here are good ECR84
catalysts for CO production and the combination of Cu-TCPP85
and OD-Cu possibly enhances the local concentration of CO86
intermediates on OD-Cu surface, thus, promoting C-C87
coupling for C2 production. According to earlier report[58, 59],88
CO on Cu (2+) in Cu-TCPP and Cu (0) is also favorable to89
C-C coupling. All the three factors concurrently promote C290
product in ECR process on Cu-TCPP@Cu2O/PC catalyst. To91
examine the intrinsic activity of the catalysts, the92
electrochemical active surface area (ECSA) was evaluated93
by electrochemical double-layer capacitance (Cdl). Fig. S7-894
and Table S1 show that Cu-TCPP@Cu2O/PC indeed95
exhibits larger Cdl value and ECSA than that of Cu2O/PC,96
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Cu-TCPP/PC and TCPP/PC, which provide more active sites1
in electrocatalyst to contact the electrolyte for ECR[29]. As2
shown in Fig. S9, the current density normalized to ECSA3
shows basically the same trend as in the geometric current4
density.5

The6
Nyquist7

plots8
(Fig.9
S10)10

proves11
that12
Cu-13

TCPP14
@Cu2O15

/PC16
has17

much18
smaller19
charge20
transfer21
resistan22

ce23
Cu2O/P24
C, Cu-25
TCPP/26

PC and TCPP/PC at the process of ECR, which indicates27
Cu-TCPP@Cu2O/PC can provide faster electron transfer28
from the catalyst surface to the reactant in intermediate29
generation, eventually resulting in largely enhanced activity30
and selectivity[60, 61]. As shown in Fig.31

32

Fig. 4. XPS spectra of (a) Cu 2p, (b) N 1s for Cu-TCPP@Cu2O/PC and (c) Cu 2p, (d) N 1s for Cu-TCPP@Cu/PC.

4f, the faradaic efficiency of C2 product is nearly 60% within
14 hours at a potential of –1.0V (vs. RHE), indicating an
outstanding ECR stability.

4. Conclusion

In summary, we have successfully prepared uniformly
distributed and spherical Cu-TCPP@Cu2O organic/inorganic
hybrid catalysts, which is composed of 2-dimensional Cu-
TCPP ultrathin nanosheet and Cu2O. show excellent ECR
performance towards production of C2 products, with a
faradic efficiency of 62.3% at a flow cell in 1.0 M KOH
electrolyte. The Cu-TCPP@Cu2O/PC catalyst has an
inseparable interaction which can effectively adsorb the
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intermediates as well as promoting the C-C coupling reaction
and then improving the selectivity of C2 products. This work
highlights an effective strategy to design efficient Cu
porphyrin-based MOF catalysts for electrochemical reduction
of CO2 into C2 products.
.
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单分散 Cu-TCPP/Cu2O杂化微球:一种具有优异电

还原 CO2产 C2性能的级联电催化剂

万紫轩 a，Aidar Kuchkaev b，Dmitry Yakhvarov b,c*，康雄武 a*

（a. 华南理工大学环境与能源学院新能源研究所，广东，广州，510006；b. 阿尔布佐夫有机与物理化学研究

所，俄罗斯联邦，俄罗斯联邦喀山市，喀山阿尔布佐夫街 8 号， 420088；c. 喀山联邦大学亚历山大·巴特

列罗夫化学研究所，俄罗斯联邦， 喀山，克里姆廖夫斯卡亚街 18 号， 420008）

摘要：高效电还原 CO2（ECR）为有价值的多碳产物是解决 CO2排放问题的有效解决方案。基于卟啉的金属有机

框架（MOFs）具有多孔结构和有序的活性位点，有望提高 ECR 生成多碳 产物的选择性。本文制备了由铜-四(4-

羧基)卟啉（Cu-TCPP）和 Cu2O 组成的有机/无机杂化 Cu-TCPP@Cu2O 电催化剂，其中 TCPP 在调控形貌方面

起着重要作用。ECR 过程中原位形成的 Cu 与 Cu-TCPP（Cu-TCPP@Cu）结合可以抑制析氢，富集 CO 中间体，

促进 C-C 偶联生成 C2产物。多孔碳（PC） 负载的 Cu-TCPP@Cu 在 PC 上被还原为 Cu 纳米簇，同时对 C2产物

具有较高的 ECR 活性和选择性。催化 剂在–1.0 V 时（相对于可逆氢电极），C2 产物法拉第效率为 62.3%，部分

电流密度为 83.4 mA cm–2，是纯 Cu2O 和 TCPP 的 7.6 倍和 13.1 倍。本论文研究了催化剂形貌和杂化结构如何提

高 ECR 生成 C2产物的选择性，为高性能 ECR 催化剂的设计提供了新思路。

关键词：有机/无机杂化电催化剂；四(4-羧基)卟啉；氧化亚铜；级联电催化剂
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