Highly Sensitive Detection of Strontium Ions Using Metal-Organic Frameworks Functionalized Solid-State Nanochannels

Xu-Gang Wang
Zheng-Xu He
De-Fang Ding
Xue-Qin Luo
Li Dai
Wei-Qi Zhang
Qun Ma
Yu Huang
Fan Xia
Highly Sensitive Detection of Strontium Ions Using Metal-Organic Frameworks Functionalized Solid-State Nanochannels

Xu-Gang Wanga, Zheng-Xu Hea, De-Fang Dinga, Xue-Qin Luoa, Li Daia, Wei-Qi Zhanga, Qun Mab, Yu Huanga,*, Fan Xiaa,c

a State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
b Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8570, Japan
c Shenzhen Research Institute of China University of Geosciences

* Corresponding author: Yu Huang
E-mail: yuhuang@cug.edu.cn

Abstract

Strontium-90, a highly radioactive isotope, accumulates within the food chain and skeletal structure, posing significant risks to human health. There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples. Here, solid-state nanochannels, modified with metal-organic frameworks (MOF) and specific aptamers, were engineered for highly sensitive Sr2+ detection. The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr2+ by aptamers amplifies the difference in ionic current signals, enhancing detection sensitivity significantly. The MOF-modified nanochannels exhibit highly sensitive detection of Sr2+, with a detection limit (LOD) of 0.03 nM, whereas the LOD for AAOs without the modified MOF nanosheets is only 1000 nM. These findings indicate that the LOD of Sr2+ detected by MOF-modified nanochannels is approximately 33,000 times higher than that of the nanochannels without MOF modification. Additionally, highly reliable detection of Sr2+ in various water samples was achieved, with a recovery rate ranging from 94.00% to 118.70%. This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples, including environmental contaminant detection, food analysis, medical diagnostics, and more.

Keywords: Nanochannels; MOF; Sensor; Sr2+; Sensitivity Detection

1. Introduction

The ocean stands as Earth's most vital natural resources crucial for human survival. Ocean monitoring serves as a crucial method for real-time observation and data collection in marine environments, playing a fundamental role in safeguarding marine ecosystems and ensuring human sustenance and progress[1,2]. Especially, due to the recent Fukushima nuclear wastewater discharge incident in Japan, marine life is facing numerous uncertainties. Hence, the monitoring of the marine environment, particularly the surveillance of radioactive elements in seawater, has garnered escalating significance in scientific research[3,4]. Traditionally, offshore marine water quality monitoring relies on manual sampling, involving the collection of samples by vessels at specific locations, followed by analysis and processing in onshore laboratories[5]. Current water quality monitoring technologies in laboratories mainly rely on
In recent decades, solid-state nanochannels have emerged as chemically and mechanically stable platforms [12-14], offering adjustable dimensions and exceptional enrichment capacity. These attributes address the limitations of traditional methods for trace element enrichment. Moreover, the confined space within nanochannels, coupled with their functionalization strategies, presents a distinct advantage for detection [15-17]. The integration of aptamers into nanochannel sensors through chemical modifications on the nanochannel surface has demonstrated remarkable sensitivity and specificity in target detection. [18-22] Notably, commercial anodized aluminum oxide (AAO) featuring an arrayed nanochannel structure within the 30-200 nm range is extensively employed in constructing solid-state nanochannel-based sensing platforms [23]. For example, Kuang's research group first modified the penicillamine molecule on copper selenide nanoparticles, and then self-assembled the nanoparticles onto AAO to form heterogeneous nanochannels to construct a sensing system. The detection of limit (LOD) as low as 0.027 nM were achieved [24]. Zeng et al. devised a sensing system employing AAO and mesoporous silica for dopamine detection, achieving a LOD of 0.1 nM [25]. Our research group used AAO to achieve ultra-high sensitivity and specificity for the detection of proteins [26]. On the other hand, leveraging the advantages of Metal-Organic Frameworks (MOF), such as high porosity, large specific surface area, and adjustable structure, MOF-modified nanochannels are regarded as advanced chemical sensors [27-31]. Therefore, with the organic ligand TCPP utilizing aluminum ions provided by AAO to synthesize two-dimensional nanosheets Al-TCP (MOF) in situ, modifying the inner and outer surfaces of AAO nanochannels, we chose this material to investigate the sensing performance toward Sr$^{2+}$. However, the direct use of MOF-modified nanochannels for detecting radioactive elements in complex water samples is not yet widespread, and their specific sensing properties in this context remain to be fully elucidated.

Here, a highly sensitive method for detecting Sr$^{2+}$ in complex water was developed by synthesizing binary MOF nanosheets directly on AAO substrate. This method involves modifying a DNA strand capable of folding into G-quadruplexes in response to Sr$^{2+}$, serving as specific probes (referred to as APT) on the surface of MOF-modified AAOs (APT/MOF/AAO). During the recognition process of Sr$^{2+}$, the effective pore size of the nanochannels was significantly reduced due to the synergistic effect of specific aptamers and uniformly dispersed 2D nanosheets on both the inner and outer surfaces of the AAO. This resulted in a considerable amplification of the variance in the ionic current signal, showcasing ultra-high sensitivity. Consequently, compared to the APT/AAO detection system, the APT/MOF/AAO detection system significantly improved the LOD from 1000 nM to an ultra-low 0.03 nM, which is lower than the Sr$^{2+}$ concentration in natural seawater (90.1 μM), and the Sr$^{2+}$ concentration in nuclear wastewater (0.1 μM to 1 mM) [32]. Additionally, the general ionic conductivity model of cylindrical nanochannels was employed to elucidate the sensing mechanism of the nanochannels. COMSOL was also utilized to simulate the increase in
ion currents before and after the binding of nanochannels to the target, yielding calculated results that align with the experimental findings. Furthermore, APT/MOF/AAO demonstrated the ability to accurately detect Sr$^{2+}$ nanomolar levels in complex samples such as tap water and mineral water. This research offers valuable insights into the burgeoning domain of advanced nanochannel-based sensors and their diverse applications for complex samples, spanning environmental contaminant detection, food analysis, medical diagnostics, and beyond.

Scheme 1. Schematic diagram of the principle for the aptasensor. It describes the construction of two sensing systems, APT/AAO and APT/MOF/AAO, as well as the process of target identification.

2. Experimental Section

2.1 Chemicals and materials

AAO membranes, with height of 60 μm and the pore size of 80~100 nm, were purchased from Pu Yuan Nano (Hefei, China). Tetras-(4-carboxyphenyl)porphyrin (TCPP), N,N-dimethylformamide (DMF, 99%), isopropanol, and glutaraldehyde 25% aqueous solution were purchased from Sinopharm (Beijing, China). 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxysulfosuccinimide (NHS), 3-aminopropyltriethoxysilane (APTES), strontium chloride, Tris-HCl buffer, PBS buffer were purchased from Aladdin (Shanghai, China). Single-stranded Aptamers (5-NH$_2$-C$_6$-49 AGGGTAGGGTTAGGGTACGCC-3’) for Sr$^{2+}$ sensing was purchased from Sangon Biotech Inc. (Shanghai, China). All solutions were made with deionized water (18.2 MΩ cm, Milli-Q system).

2.2 Preparation of APT/AAO

Firstly, AAO was placed in ultrapure water to sonicate for 5 min to remove surface impurities and dried at 60°C for 5 min. Then, the dried AAO was immersed in a pre-prepared 15% APTES isopropanol solution to seal the shading reaction for 12 h. After the reaction was completed, it was washed three times with isopropanol to remove any unreacted APTES. Subsequently, the sample was dried in a 120°C oven for 2 h to obtain APTES-modified AAO. Subsequently, 5% glutaraldehyde aqueous solution was added, which was also sealed for 12 h, and then repeatedly rinsed with deionized water three times to remove the unreacted glutaraldehyde to obtain aldehyde-modified AAO. Finally, the aldehyde-modified AAO was placed in Tris-HCl buffer containing 1 μM Sr$^{2+}$ specific aptamer for 12 h to obtain the aptamer-modified AAO, called APT/AAO.

2.3 Preparation of MOF

To fabricate nanochannel films with smaller and denser pore sizes, certain adjustments were implemented in the experiments, drawing from insights provided in
previous literature. The specific experimental procedure was as follows: TCPP (40 mg) was added to a PTFE liner filled with 25 mL of DMF and ultrapure water mixture (V_{DMF}:V_{water} = 3:1), mixed evenly, and then sonicated at room temperature for 15 min. Then, the bare AAO membrane after sonication was placed on a PTFE scaffold and immersed in the mixture, then the inner tank was put into the reaction kettle, and sealed and placed in an oven at 120°C for 2 h to obtain MOF modified AAO, which was named MOF. After the reaction was completed, the obtained MOF membranes were washed with DMF and deionized water, respectively, and dried at room temperature in an oven.

2.4 Preparation of ATP/MOF/AAO

To obtain an aptamer-modified MOF membrane (APT/MOF/AAO), the MOF membrane was immersed in PBS buffer (pH = 7.4) containing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (50 mg·mL⁻¹) and N-hydroxysulfosuccinimide (25 mg·mL⁻¹) for 1 h to activate the carboxyl groups on the film's surface. Subsequently, the membrane was rinsed three times with deionized water before being immersed in Tris buffer containing the aptamers (10 mM Tris, pH = 7.4) for 12 h [33] to obtain APT/MOF/AAO. Any unbound aptamers were then removed using deionized water.

2.5 Characterizations of Materials

The surface and cross-sectional morphology of AAO and MOF were characterized by using scanning transmission electron microscopy (FESEM, SU8010, Hitachi). X-ray photoelectron spectroscopy (XPS) was used to characterize AAO, MOF, and APT/MOF/AAO. The morphological characteristics of MOF grown on AAO was characterized by using Atomic Force Microscopy (AFM).

2.6 Current-voltage (I-V) testing methods

According to previous reports, the transmembrane current of the sample was measured in a customized dual electrode system transmembrane current testing device, which includes a pair of separated electrolytic cells, a pair of self-made Ag/AgCl electrodes, electrolyte, and an external picoampere meter (Keithley 6487, Jishili Instruments, USA). The electrolyte used in this work is 10 mM Tris HCl (pH=7.4). The nanochannels membrane to be tested was sandwiched between two electrolyzers and an electric field was applied as a scanning voltage ranging from -1 V to 1 V. Its current-voltage value was recorded by Keithley 6487 picoampere meter. All tests were conducted at room temperature, with at least 5 films measured for each sample to obtain the average current-voltage value.

3. Results and discussion

3.1 Characterization of the in-situ growth of TCPP in AAO

FESEM and AFM were employed for the characterization of the surface of both AAO and MOF to confirm the in-situ growth of TCPP in AAO. As shown in Figure 1a and b, presenting the top view and side view of the AAO, respectively, the AAO exhibited a structured array with nanochannels. The pore size of AAO was measured at 88.62 ± 10.60 nm (Figure S1). Meanwhile, SEM images displayed the top view and side view of the MOF, respectively (Figure 1c and 1d). SEM images revealed that the outer surface of the AAO was densely covered by 2D nanosheets (Figure 1c), and the channels were filled with dense 2D nanosheets (Figure 1d) following the in-situ growth of TCPP on AAO. Combining Figure S4, these results indicate that Al-TCPP has grown on both the inner and outer surfaces of the AAO pore.
Figure 1. SEM images of AAO and MOF. (a, b) Top and side views of AAO, respectively. (c, d) Top and side views of MOF, respectively. The images demonstrate the successful in-situ growth of the ligand TCPP on AAO, forming MOF modified nanochannels and effectively reducing the diameter of the AAO.

AFM was also utilized to characterize the outer nanosheets in the outer surface of AAO. From Figure surface of the nanochannels both before and after in-situ growth. As shown in Figure 2a-2d, a comparison of the AFM images before and after in-situ TCPP growth revealed a noticeable increase in surface roughness. This increase strongly suggests the successful growth of MOF two-dimensional nanosheets in the outer surface of AAO.

Figure 2c and 2d, the diameter of the nanochannels with successfully modified MOF nanosheets was analyzed using the method outlined in Figure S2, yielding an average diameter of approximately 12.1 ± 2.3 nm. These results suggest that the modified MOF nanosheets effectively reduce the channel size of AAO.

Figure 2. AFM images and pore size analysis of nanochannels. (a, b) 2D and 3D AFM images of AAO, respectively. (c, d) 2D and 3D AFM images of MOF, respectively. The results further confirm the MOF nanosheets were successfully
grown on the outer surfaces of AAO.

3.2 Surface properties of aptamer-modified nanochannels

In this work, the ligand TCPP utilized the metallic aluminum present in AAO to serve as the required metal ions for coupling, enabling the growth of dense MOF two-dimensional nanosheets in situ. Aptamers were employed to modify the AAO and MOF nanochannels by conjugating their amino groups with the carboxyl groups on the nanochannels, which were treated with carboxyl activators. Here, Guanine tetraplexes (G-quadruplexes) were selected as Sr\(^{2+}\) specific sensing probes. Guanine tetraplexes are higher-order structures derived from biological sources, formed by folding DNA or ribonucleotides rich in tandem guanine repeats\[^{34}\]. These structures can be created by stacking two or more G-quadruplexes\[^{35-38}\]. Studies have shown that in the presence of Sr\(^{2+}\), linear DNA can fold into a stable G-quadruplex structure\[^{39,40}\]. The sensors employed in this study were the resulting APT/AAO and APT/MOF/AAO. To confirm the successful grafting of aptamers onto nanochannels, we carefully analyzed the elemental composition of AAO, MOF, and APT/MOF/AAO film surfaces using XPS. As shown in Figure 3a, MOF exhibited N elements compared to AAO, resulting in the presence of an N1s peak. The O1s (532.02 eV) peak exhibited significant enhancement after the successful grafting of aptamers onto the MOF, indicating an increase in the content of O elements (Figure 3b and 3c). As shown in Figure 3d, a distinctive peak of P2p emerged around 133.86 eV, signifying the presence of phosphorus elements from the aptamers on the surface of MOF. Similarly, the N1s (400.98 eV) peak showed a significant enhancement after the aptamer was successfully grafted onto MOF, indicating an increase in the content of N elements (Figure 3e and 3f). The heightened intensity of the C-NH\(_2\) and C=O peaks from the bases in the aptamer suggested the successful attachment of aptamers onto the MOF. These XPS findings validate the successful attachment of aptamers onto MOF.

Figure 3. XPS spectra of AAO, MOF, and ATP/MOF/AAO. (a) XPS total spectra of bare AAO, MOF and ATP/MOF/AAO. (b, c) The narrow spectra of XPS near the O1s peak of MOF and ATP/MOF/AAO. (d) The narrow spectra of XPS near the P2p peak of MOF and ATP/MOF/AAO. (e, f) The narrow spectra of XPS near the N1s peak of MOF and ATP/MOF/AAO. The above results showed that the aptamers were successfully grafted onto MOF to form ATP/MOF/AAO.
3.3 Sr2+ detection performance of ATP/AAO and ATP/MOF/AAO

To illustrate the enhanced sensitivity of ATP/MOF/AAO nanochannels in detection, we tested the I-V curves of the ATP/AAO and ATP/MOF/AAO in response to varying concentrations of Sr2+. Upon binding to the target, the initially "stretched" aptamer undergoes a conformational change to form a G-quadruplex structure in response to Sr2+ induction. This alteration increases the effective pore size of the nanochannels and subsequently modifies the ion current passing. As shown in Figure 4a, transmembrane ion currents were recorded before and after immersion in a 100 nM Sr2+ solution using ATP/MOF/AAO. Following immersion in the ionic solution, the transmembrane current of the ATP/MOF/AAO increased from 3.99 μA to 5.80 μA at 1 V, marking an approximate 45% increase in ion current. The increase of current was mainly due to the formation of G-quadruplex induced by Sr2+, triggering a conformational shift in the aptamer within the nanochannels, thereby enlarging the effective channel size and subsequently boosting the current. In the experiment, we defined the transmembrane ion current amplification of the nanochannels as \((I_2-I_1)/I_1 \times 100\%\), where \(I_1\) and \(I_2\) represented the currents before and after detecting the same concentration of the target at 1 V, respectively. In this work, a 10% rise in transmembrane ion current within the nanochannels was deemed a reliable sensing event. Conversely, increases below 10% were considered ineffective, likely due to factors such as physical adsorption or non-specific interactions.

![Figure 4](image-url)

Figure 4. Sensitivity and specificity of ATP/AAO and ATP/MOF/AAO detection for Sr2+. (a) I-V curves before and after ATP/MOF/AAO response to 100 nM Sr2+. After exposure to Sr2+, ATP/MOF/AAO exhibited an increase in ionic current. (b) The relationships between the increase in ionic current and the logarithm of Sr2+ concentration (0.01, 0.1, 1, 10, 100, and 1000 nM) for ATP/AAO and ATP/MOF/AAO, respectively. (c, d) Specificity of nanochannels with ATP/AAO and ATP/MOF/AAO for Sr2+ as well as three analogues, including K+, Ca2+, and Ba2+. ATP/MOF/AAO demonstrates greatly improve detection sensitivity and specificity of Sr2+.

To compare the difference in sensitivity to differential pressure between the ATP/AAO and ATP/MOF/AAO, the relationships between ion current amplification and Sr2+ concentration were analyzed. As shown in Figure 4b, as the concentration of Sr2+ increased from 0.01 nM to 1000 nM, the transmembrane ion currents of...
both the ATP/AAO and ATP/MOF/AAO exhibited gradual increases. For APT/AAO, the increase in ion current increased from 0.55% to 10%, with increases below 10% deemed invalid. Whereas, in APT/MOF/AAO, it escalated from 6.37% to 44.74%. Notably, the ion current increase in APT/MOF/AAO demonstrated a linear correlation with the logarithm of Sr\(^{2+}\) concentration. Upon reaching a 10% increase in transmembrane ion current, the Sr\(^{2+}\) concentrations detected by APT/AAO and APT/MOF/AAO were calculated to be 1000 nM and 0.03 nM, indicating the LOD of APT/AAO and APT/MOF/AAO reached 1000 nM and 0.03 nM, respectively. Remarkably, the LOD of Sr\(^{2+}\) detected by APT/MOF/AAO was approximately 3.3x10\(^4\) times higher than that of APT/AAO.

To verify the specificity of nanochannels detection of Sr\(^{2+}\), three other solutions containing similar metal ions, K\(^{+}\), Ca\(^{2+}\), and Ba\(^{2+}\) were chosen. Both APT/AAO and APT/MOF/AAO were immersed in 100 nM solutions of each metal ion, and the resulting ion current increases were recorded. As shown in Figure 4c, for APT/AAO, there was no significant difference in the ion current increase observed for the APT/AAO following immersion in the aforementioned four ion solutions. The significance analysis revealed a p-value ranging between 0.01 and 0.05, indicating only marginal statistical significance. However, for APT/MOF/AAO, the ion current increase following immersion in the Sr\(^{2+}\) solution was significantly higher compared to the other three ion solutions (Figure 4d). The respective current increases were 79.4%, 34.0%, 17.3%, and 4.9% for Sr\(^{2+}\), K\(^{+}\), Ca\(^{2+}\), and Ba\(^{2+}\). The difference analysis yielded a p-value of less than or equal to 0.01. These findings highlight the remarkable sensing specificity of the APT/MOF/AAO, which exhibited superior specific recognition ability compared to the APT/AAO.

To evaluate the reliability of the APT/MOF/AAO sensing system in real water samples, we added 0, 1, and 10 nM Sr\(^{2+}\) to mineral water, tap water and seawater, respectively, to assess the recovery rate of Sr\(^{2+}\) in these three types of water samples. Subsequently, the resulting increase in ion current was recorded. The recovery rate and coefficient of variation (CV) were 94.00% to 118.70% and 2.89% to 9.35%, respectively (Table 1). These results indicate that the APT/MOF/AAO system exhibits high recovery rates and low variability in real water samples, highlighting its strong detection capabilities in such environments. We also discussed the impact of the sensor system's performance when it is in a high-salt ion solution (Figure S3). The result indicates that the APT/MOF/AAO sensor system can maintain stable detection performance in high salt ion solutions. Therefore, this sensing method can be applied in real seawater detection.

Table 1. Recovery of Sr\(^{2+}\) in real water samples based on APT/MOF/AAO.
3.4 Mechanism of enhanced sensing performance of APT/MOF/AAO.

To explore the enhanced sensitivity and specificity of Sr\(^{2+}\) detection by APT/MOF/AAO, a classical ionic conductance model was employed. When a voltage is applied, ions in the electrolytic solution are driven by an electric field to pass through the nanochannels, generating a current signal. This sensing system adheres to the universal ion conductivity model based on cylindrical nanochannels, where the ion current \(I\) in the nanochannels can be expressed by the following formula:[41]

\[
I = V \left(\frac{4h}{\Pi D^2} \right)^{-1} \left(n_+ \mu_+ + n_- \mu_- \right) e \left(\frac{4h}{\Pi D^2} + \frac{1}{D} \right)^{-1} + \frac{V\mu_0 \Pi D \sigma}{h} \tag{1}\]

Where \(V\) represents trans-membrane voltage, \(h\) and \(D\) represent the thickness and pore size of the nanochannels, which regarded as an effective diameter; \(n_+\), \(n_-\) and \(\mu_+\), \(\mu_-\) represent the density and electrophoretic mobility of positive and negative ions, respectively; \(e\) is the elementary charge; \((V\mu_0 \Pi D \sigma)/h\) represents the ionic current through the highly surface-charged nanochannels. \(\mu_0\) here represents the mobility of ions in solution that are opposite to the charged pore charge, and the surface charge density is \(\sigma\), which is the opposite sign of the opposite ionic charge. Our previous studies have demonstrated that when all electrolyte solutions in the experiment are concentrated at 0.1 M and the nanochannels pore size \(D\) is much smaller than its thickness, equation (1) can be simplified to the following equation:[23]

\[
I = V \left(\frac{4h}{\Pi D^2} \right)^{-1} \tag{2}\]

From equation (2), it can be seen that effective pore size \(D\) of the nanochannels is significantly influences to the trans-membrane ion current in the experiment. Thus, we investigated the relationships between trans-membrane ion current and the effective pore size of APT/AAO and APT/MOF/AAO during detection (Figure 5).
Figure 5. Schematic diagram of the sensing mechanisms of APT/AAO and APT/MOF/AAO. (a) Diagram of the process of aptamer-modified nanochannel recognition of Sr2+. Before the target is recognized, the aptamer is stretched to clog the nanochannels (Closed), after binding to the target, the aptamer is induced by Sr2+, and the aptamer folds into a G-quadruplex structure to open the nanochannel (Open). As a result, the nanopore diameter changes from \(d\) to \(d + \Delta d\). (b, c) Side views of the APT/AAO and APT/MOF/AAO detection process, respectively. The results above indicate that the APT/MOF/AAO has higher sensitivity than APT/AAO due to the synergistic effect of 2D nanosheets and specific probes.

\[
\Delta I = \frac{l_2 - l_1}{l_1} \quad \Delta I' = \frac{l_2' - l_1'}{l_1'} \quad I = V\left(\frac{4h}{\pi d^2}\right)^{-1}
\]

\[
\Delta I' - \Delta I = \frac{2d_1d_2\Delta d(d_1 - d_2) + \Delta d^2(d_1^2 - d_2^2)}{d_1^2d_2^2}
\]

\[
\therefore d_1 > d_2 \quad \therefore \Delta I' > \Delta I
\]

\(\Delta I' = \frac{l_2 - l_1}{l_1} \quad (4)\)

\(\Delta I' - \Delta I = \frac{2d_1d_2\Delta d(d_1 - d_2) + \Delta d^2(d_1^2 - d_2^2)}{d_1^2d_2^2} \quad (5)\)

Where the \(l_1\) and \(l_2\) represent the ion currents before and after the APT/AAO binds to the target, and \(l_1'\) and \(l_2'\) represent the ion currents before and after the APT/MOF/AAO binds to the target. To compare the increase in ion currents between the APT/AAO and APT/MOF/AAO after binding to the target, we calculated the difference between \(\Delta I'\) and \(\Delta I\) as follows:

\(\Delta I' - \Delta I = \frac{2d_1d_2\Delta d(d_1 - d_2) + \Delta d^2(d_1^2 - d_2^2)}{d_1^2d_2^2}\)

Through previous SEM and AFM images of APT/MOF/AAO, it was confirmed that the nanochannels were filled and covered with dense layers of 2D nanosheets on the inner walls and outer surfaces of AAO. This feature causes the effective pore size of the APT/MOF/AAO to be much narrower, resulting in a smaller effective pore size than that of the APT/AAO (\(d_2 < d_1\)). Based on this observation and Eq. (5), when \(\Delta I' - \Delta I > 0\) is calculated, it becomes evident that the ion current increase of the APT/MOF/AAO...
surpasses that of the APT/AAO upon binding with Sr$^{2+}$. These findings suggest that the enhanced sensitivity and specificity of Sr$^{2+}$ detection with APT/MOF/AAO can be attributed to the reduction of the effective mass transfer pathway within the nanochannels by the 2D nanosheets, along with the synergistic effect of aptamers with the stable structure formed by the target.

3.5 Experiment were modeled using COMSOL. To further corroborate our findings, we conducted simulations using COMSOL Multiphysics 6.0. COMSOL modeling diagram of the potential distribution of nanochannels is illustrated in Figure 6a. This model comprises two cells identical to the top and bottom, with nanochannels situated in the middle. For more detailed parameters of the model, please refer to Figure S5 and Table S2. The potential within the nanochannels channel gradually diminishes from top to bottom. The nanochannels have diameters of 75, 60, 26, and 10 nm, respectively, with an initial electrolyte concentration of 10 mol/m3. Given the focus on the synergistic effect from decreased nanochannel’s effective diameter by MOF and specific binding of Sr$^{2+}$ by aptamer, the influence of nanochannel surface charge is disregarded in this context. Based on the constructed COMSOL model, the outcomes were displayed in Figure 6b and 6c. After Sr$^{2+}$ is recognized by APT/AAO and APT/MOF/AAO, the ion current was larger than that before recognition. Furthermore, the ionic current change ratio before and after the recognition of Sr$^{2+}$ by APT/MOF/AAO nanochannels exceeds that of APT/AAO (Figure 6d). The ion current change ratio of APT/MOF/AAO was calculated to be 452%, approximately 8.3 times higher than APT/AAO's 54.5%. This indicates that APT/MOF/AAO is more sensitive than APT/AAO in detecting Sr$^{2+}$. In conclusion, the calculations’ results align closely with the experimental results.

Figure 6. Simulation of ionic current in APT/AAO and APT/MOF/AAO. (a) COMSOL modeling diagram of the potential distribution of nanochannels during testing. (b, c) I-V curves before and after binding to the target for APT/AAO and APT/MOF/AAO, respectively. The current increases after APT/AAO and APT/MOF/AAO bind to the targets. (d) Amplification of ion current ratio after target recognition by APT/AAO and APT/MOF/AAO. The increase in ion current after recognition of the target by APT/MOF/AAO is much larger than that of APT/AAO.

Conclusions

Due to the numerous advantages of the biochemical sensing system in nanochannels, such as speed, high
sensitivity, specificity, label-free operation, and excellent throughput, solid-state nanochannels modified with 2D nanomaterials and specific aptamers were designed for the high-sensitivity detection of Sr^{2+}. In the process of Sr^{2+} recognition, the synergistic effect from decreased nanochannel's effective diameter by MOF and specific binding of Sr^{2+} by aptamer, thereby significantly amplifying the difference in ionic current signals. As a result, the LOD of APT/MOF/AAO has been reduced from 1000 nM to 0.03 nM compared to the APT/AAO. Furthermore, the sensing mechanism of nanochannels was elucidated using the general ion conductivity model of cylindrical nanochannels, while COMSOL simulations corroborated the increase in ionic currents in the nanochannels before and after binding to the target, aligning closely with experimental findings. Additionally, APT/MOF/AAO also demonstrated robust capability in reliably detecting nanomolar levels of Sr^{2+} in complex samples. This research enhances understanding of the synergistic effects of nanochannels and offers significant insights into developing solid-state nanochannels with higher sensitivity for analyzing samples from complex environments.

Acknowledgements

National Natural Science Foundation of China (No.JCYJ20220530162406014).

Reference

interlayers for fabricating nanofiltration membranes with enhanced performance[J]. Desalination, 2022, 544.

金属有机框架功能化的纳米通道对锶离子进行高灵敏度检测

王旭刚 a, 何正旭 a, 丁德芬 a, 罗雪芹 a, 戴力 a, 张炜奇 a, 马群 b, 黄羽 a*, 夏帆 a c

(a. 中国地质大学材料科学与化学学院, 纳米地质材料教育部工程研究中心, 生物地质与环境地质国家重点实验室, 武汉 430074; b. 大阪都立大学研究生院工学研究科化学工程系, 日本 大阪堺市 599-8570; c. 中国地质大学深圳研究院)

摘要: 铋-90 是一种高放射性同位素, 在食物链和骨骼结构中积累, 对人类健康构成重大风险。在复杂的环境水样中, 迫切需要一种高灵敏的锶-90 检测策略。在这里, 金属有机框架 (Metal Organic Frameworks) 和特异性适配体修饰的固态纳米通道被设计用于高灵敏度的 Sr²⁺ 检测。MOF 导致的纳米通道有效孔径减小与适配体对 Sr²⁺ 的特异性结合之间的协同作用放大了离子电流信号的差异, 显著提高了检测灵敏度。MOF 修饰的纳米通道对 Sr²⁺ 表现出高灵敏度的检测, 检测限 (LOD) 低至 0.03 nM, 然而没有修饰 MOF 纳米片的 AAO 的 LOD 仅为 1000 nM。结果表明, MOF 修饰的纳米通道对 Sr²⁺ 的检测限 LOD 比未修饰 MOF 的纳米通道高约 33,000 倍。仿真模拟计算结果与这一实验趋势完全吻合。此外, 加标回收实验还实现了对各种水样中 Sr²⁺ 的高度可靠性检测, 回收率在 94.00% 至 118.70% 之间, 变异系数低至 2.89%至 9.35% 之间。APT/MOF/AAO 传感系统在真实水样中表现出高回收率和低变异性, 凸显了其在此类环境中的强大检测能力。这项研究为快速发展的先进纳米通道传感器领域及其在分析复杂样品方面的各种应用提供了宝贵的见解, 包括环境污染检测、食品分析、医疗诊断等。

关键词: 纳米通道; 金属有机框架; 传感器; 铋离子; 高灵敏检测