Journal of Electrochemistry

Volume 27 | Issue 5

2021-10-28

Janus-TiNbCO₂ for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity

Li-Li Xu

1. Mianyang Vocational and Technical College, Department of Materials Enginerring, Mianyang 621000, Sichuan, China;, Il-xu2008@163.com

Dong-Yan Ren

Xiao-Feng Zhao

2. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;3. Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden;, xfz_33@126.com

Yong Yi

Recommended Citation

Li-Li Xu, Dong-Yan Ren, Xiao-Feng Zhao, Yong Yi. Janus-TiNbCO₂ for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity[J]. *Journal of Electrochemistry*, 2021, 27(5): 570-578. DOI: 10.13208/j.electrochem.201109 Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss5/5

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

[Article]

DOI: 10.13208/j.electrochem.201109

Http://electrochem.xmu.edu.cn

高导电性和催化活性的 Janus-TiNbCO₂ 析氢反应催化材料

徐黎黎1*,任冬燕1,赵骁锋2,3*,易 勇2

(1. 绵阳职业技术学院,材料工程系,四川 绵阳 621000; 2. 西南科技大学,材料科学与工程学院, 四川 绵阳 621010; 3. 乌普萨拉大学,物理与天文学系,瑞典 乌普萨拉 SE-75120)

摘要:探寻具有高导电性和高催化活性的桥氢反应(HER)催化材料一直是可持续能源发展研究中的热点。Ti₂C 具有表面活性位点多和优良的力学稳定性、导电性等,已成为潜在的制氢催化剂。然而,终端 O 修饰 Ti₂C 表面,会 降低该材料的导电性,进而限制了电子在价带与导带间的输运。本研究通过 Nb 掺杂,构建双电层 Janus-TiNbCO₂, 并借助 VASP 软件研究了 Janus-TiNbCO₂ 的能带结构、HER 性能和 HER 反应路径过渡态。结果表明,Janus-TiNb-CO₂ 为导体材料,其在应力、氧空位缺陷和 H* 覆盖度的影响下,均表现出极优异的催化活性,计算获得的最优 ΔG_{H*} 值为 0.02 eV。H* 在 Janus-TiNbCO₂上可能以 Heyrovsky 路径进行反应,该路径的迁移能势垒为 0.23 eV。 Janus-TiNbCO₂是一种具有 HER 应用前景的催化材料。

关键词: MXene; Janus-TiNbCO₂;能带; 析氢反应

1 引 言

氢气是一种可代替传统石化燃料的可再生清 洁能源。现有的工业化制氢技术主要有电解水制 氢和石化燃料的重整制氢等。电解水制氢较其他 方法具有能耗小、产量高、污染小和原料可循环利 用等优势。在电解水制氢过程中,常将 Pt 金属添加 到电极上来降低析氢反应(hydrogen evolution reaction, HER)的能量势垒^[1],但 Pt 金属价格昂贵,在 地壳中含量极少,科研人员一直在努力寻找可替 代 Pt 金属的 HER 催化剂^[24]。二维材料具有比表面 积大、表面活性位点多和理想的电子迁移率的特 点,已经成为催化制氢研究领域的热点^[57]。过渡金 属碳/氮化物(简称 MXene)是近些年快速兴起的一 种低维材料^[8,9],其通常具有优良的透光性、导电性 及力学稳定性等^[1,1013]。 理想的 HER 材料需要两个必要客观因素^[10,14]: 1)吸附 H* 后,获得的吸附吉布斯自由能($\Delta G_{\rm H}$)应 接近于 0 eV,保证 H* 在材料表面具有优良的吸附 和脱附行为;2)材料需有良好的导电性,以降低电 子在价带(valence band, VBM)与导带(conduction band,CBM)迁移中的能量势全^[15]。基于第一性原理 计算的相关研究表明^[2,16],当终端 O 官能团覆盖 MXene 表面时,O-2p 轨道会与过渡金属的 3d 轨 道杂化,改变材料原有的导电性能。例如,Ti₂C 经终 端 O 自由基修饰后,其禁带宽度从 0 eV 增加到 0.9 eV^[14]。Wang 等人^[14]曾借助 Vienna Ab initio program package (VASP)软件,采用非金属掺杂来优化 Ti₂CO₂ 材料的电子结构,研究结果表明,当 P 和 S 元素掺杂 Ti₂CO₂ 结构时,Ti₂CO₂-P/S 材料的带隙 可从 0.9 eV 降低至 0.3 eV。为进一步改善Ti₂CO₂

引用格式: Xu L L, Ren D Y, Zhao X F, Yi Y. Janus-TiNbCO₂ for hydrogen evolution reaction with high conductivity and catalytic activity. J. Electrochem., 2021, 27(5): 570-578.

国家自然科学基金项目(No. 12105236)资助

收稿日期: 2020-11-09,修订日期: 2020-12-22. * 通讯作者, Tel: (86)13778155968; E-mail: ll-xu2008@163.com; Tel: (86)13990150096, E-mail: xfz_33@126.com

材料的导电性,本研究采用 Nb 掺杂工程,构建出 具有金属性质的 Janus-TiNbCO₂,并详细研究了该 材料的 HER 性能及 H* 在该材料表面的 HER 反 应路径^[17]。

2 理论计算方法

本工作采用 VASP 软件^[18]进行计算。采用广义 梯度近似的 Perdew-Burke-Ernzerhof 泛函描述电子 间相互作用^[19]。计算过程中考虑了范德华力的影响 (zero-damped DFT + D₃)^[20]。通过 Monkhorst-Pack 方法, 划分布里渊区的 K 点网格。 $3 \times 3 \times 1$ 超胞的 K 点选取 $3 \times 3 \times 1$, 截断能设定为 540 eV, 原子间 相互作用力设定为 0.001 eV·Å⁻¹, 二维结构真空层 设定为 20 Å, 采用 HSE06 泛函计算能带结构、态 密度和局域电荷分布^[21], 采用 Nose-Hoover 方法 的从头算分子动力学(Ab-initial Dynamics simulation, AIMD)研究 Janus-TiNbCO₂ 在 500K 下的热力 学稳定性^[17]。

采用如下方程计算 H* 的吸附能[22]:

$$\Delta E_{\rm H^*} = \frac{1}{n} (E_{\rm sheet+H^*} - E_{\rm sheet} - \frac{n}{2} E_{\rm H_2}) \tag{1}$$

方程中,*n* 为吸附 H* 的数目, E_{sheet} 为 Janus-TiNbCO₂ 的能量, $E_{\text{sheet+H*}}$ 为 Janus-TiNbCO₂ 吸附 H* 后的能 量,* 代表 Janus-TiNbCO₂ 表面的活性位点。采用 $\Delta G_{\text{H*}}$ 描述 HER 活性, $\Delta G_{\text{H*}}$ 越接近 0 eV,代表 HER 活性越高。 $\Delta G_{\text{H*}}$ 为^[22]:

$$\Delta G_{\mathrm{H}^*} = \Delta E_{\mathrm{H}^*} + \Delta E_{\mathrm{ZPT}} - T\Delta S_{\mathrm{H}^*} \tag{2}$$

方程中, ΔE_{2TT} 和 ΔS_{H*} 分别代表零点能和 H*的熵 值。 ΔE_{2TT} 定义为^[22]:

$$\Delta E_{\rm ZPT} = E_{\rm ZPT}^{n\rm H} - E_{\rm ZPT}^{(n-1)\rm H} - \frac{1}{2} E_{\rm ZPT}^{\rm H_2}$$
(3)

方程式中, $E_{ZPT}^{^{nH}}$ 为吸附 $n \land H^* 后 MXene$ 的零点能, $E_{ZPT}^{^{H_2}}$ 为 H_2 分子的零点能。 ΔS_{H^*} 为^[1]:

$$T\Delta S_{\rm H^*} = TS_{\rm H^*} - \frac{1}{2}TS_{\rm o}$$
(4)

方程式中,为H*在MXene 表面的振动熵,其在 300 K时,熵值为 0.026 eV^[22]。 S_o 为 H₂分子的振动熵, TS_o 的值为 0.41 eV。计算获得的值为 0.248 eV^[23]。基 于Norskov 的假设^[23],计算了吸附交换电流(i_o)。当 $\Delta G_{H*} < 0$ eV 时, i_o 为:

$$i_{o} = -ek_{o} \frac{1}{1 + \exp\left(\frac{-\Delta G_{H^{*}}}{k_{b}T}\right)}$$
(6)

方程式中,k。和 k,分别为速率常数和玻尔兹曼常数。

3 结果与讨论

3.1 Janus-TiNbCO2的电子结构性质

构建的 Janus-TiNbCO₂ 如图 1 所示。Nb 掺杂 前,计算获得 Ti₂CO₂ 的晶格常数为:a = b = 3.03 Å, $\alpha = \beta \approx 90^{\circ}$ 。在 Ti₂CO₂ 结构中,Ti-O 键的键长为 1.98 Å。Nb 掺杂后,获得 Janus-TiNbCO₂ 的晶格常 数为:a = b = 3.05 Å, $\alpha = \beta \approx 90^{\circ}$ 。在 Janus-TiNbCO₂ 结构中,Ti-O 和 Nb-O 的键长分别为 1.99 Å 和 2.08 Å。结果表明,Nb 掺杂会增大 Ti 与 O 原子之 间的距离。采用 AIMD 研究 Janus-TiNbCO₂ 在 500 K 下的热力学稳定性。如图 1(C)所示,在离子弛豫 1000 fs 后,体系能量趋于稳定,总能在 -420.5 eV ~ -419.4 eV,单个原子的平均动能约为 0.03 eV,该动 能与平动能方程(E = 3kT/2)的计算结果一致^[23]。结 果表明,构建的 Janus-TiNbCO₂ 具有较高的稳定 性。

采用 HSE06 泛函,研究 Ti₂CO₂ 和 Janus-TiNb-CO2能带结构和局域态密度。如图 2(A)所示, Ti2CO2 为间接带隙半导体,其 VBM 最高点在 Γ 点,CBM 最低点在 M 点,禁带宽度为 0.88 eV,该结果与 Du 和 Zhang 等人的计算结果一致(约 0.9 eV)^[14]。在 MXene 体系中,能带结构的 VBM 通常是由过渡 金属的 3d 轨道和 O* 官能团的 2p 轨道的杂化构 成,且过渡金属的 3d 轨道占据主导地位^[24]。如图 3 (A)所示, Ti-3d 轨道在低能级稳定, 其在费米能级 处的杂化程度低,Ti₂CO₂表现出半导体性质。在 Janus-TiNbCO2结构中,Nb元素具有较强的反键 效应,可以通过 Nb-3d 和 O-2p 轨道杂化使 VBM 跃迁到更高的能级。如图 3(B)所示, Nb 和 O 元素 在能级 0 eV 附近均有较强的轨道占据;随着 O-2p 轨道占据费米能级,VBM 处的 Ti-3d 轨道通过 d-p 杂化向 CBM 迁移, 使 VBM 和 CBM 重叠, 进而 Janus-TiNbCO2表现出导体性质。

3.2 Janus-TiNbCO₂的HER性能

通过构建 $3 \times 3 \times 1$ 的 Janus-TiNbCO₂ 超胞,依 次在 Ti、Nb、O、Ti-O 键和 Nb-O 键位置吸附单个 H*,并计算吸附稳定后的 ΔG_{H*} 。结果表明, · 572 ·

图1(A)和(B)为 Janus-TiNbCO2结构的侧视图和俯视图;(C)为500 K下 AIMD 模拟获得的 Janus-TiNbCO2 总能量波动。(网络版彩图)

Figure 1 Top (A) and side (B) views of Janus-TiNbCO₂. (C) The total energy fluctuation of $TiNbCO_2$ at 500 K in AIMD simulation. (color on line)

图 2 HSE06 计算获得的(A)Ti₂CO₂ 和(B)TiNbCO₂ 能带结构图,(B)中插图为 Janus-TiNbCO₂ 在费米能级附近的电子分布,电 荷密度图使用 0.02 e·bohr³ 作图(网络版彩图)

Figure 2 DFT-HSE06 calculations obtain the band structures of (A) Ti_2CO_2 and (B) Janus-TiNbCO₂. The illustration in (B) is the charge density of Janus-TiNbCO₂ around the Fermi level, where the iso-surface is plotted at 0.02 e • bohr⁻³ (color on line)

Janus-TiNbCO₂ 中 Ti 面(@Ti)和 Nb 面(@Nb)是 通过 O 位吸附 H*,获得 ΔG_{H^*} 分别为: ΔG_{H^*} (@Ti) = -0.55 eV, ΔG_{H^*} (@Nb) = 0.02 eV。图 4(B)和(C)为 H* 在 Ti 和 Nb 面吸附稳定后的差分电荷密度图。对 于 Ti 面吸附,H* 距 Ti 面的距离为 0.974 Å,Ti 面 上的 O 原子获得 0.543 e的电荷;而对于 Nb 面吸 附,H* 距 Nb 面的距离为 0.975 Å,Nb 面上的 O 原 子获得 0.537 e 的电荷。为了解释 Nb 面的弱吸附能 力,我们采用 HSE-06 泛函研究了 Janus-TiNbCO₂ 在费米能级处的电荷分布。如图 2(B)所示,Ti 面上 的 O 原子在费米能级处表现出电荷不饱和性,而 Nb 面上的 O 原子拥有较强的电荷饱和性。Nb 面 的电荷饱和性会影响 O 原子对 H* 的吸附,进而使 Nb 面表现出优良的 HER 活性。

图 4(A)为不同材料吸附 H* 后的交换电流火 山型关系。从图 4(A)可知,Ti₂CO₂ 的 HER 活性稍优 于Nb₂CO₂;对于 Janus-TiNbCO₂ 材料,其 Nb 面的 HER 活性优于 Ti 面。这可能是由于 Janus-TiNbCO₂ 的双电层结构影响到 Nb 面上 O 原子的活性。对 比分析不同材料的 *i*。值,Janus-TiNbCO₂ 比 Pt、 h-B₂O、Graphene 和 g-C₃N₄ 的 HER 活性更加优异。 综上可知,Janus-TiNbCO₂ 可作为潜在的析氢反应

图 3 DFT-HSE06 计算获得的(A)Ti₂CO₂ 和(B)TiNbCO₂ 局域态密度图(网络版彩图) Figure 3 DFT-HSE06 calculations obtain the local density of state of (A) Ti₂CO₂ and (B) Janus-TiNbCO₂ (color on line)

图 4 (A)不同材料吸附 H* 后的交换电流火山型关系^[22,23, 25, 26],(B)和(C)分别为 Janus-TiNbCO₂ 中 Ti 面和 Nb 面吸附单个 H* 后的差分电荷密度,(B)和(C)使用 0.05 e · bohr³ 作图。(网络版彩图)

Figure 4 (A) Volcano curve of exchange current (i_0) for different materials ^[22, 23, 25, 26]. (B-C) Charge density difference for H* adsorbed on the (A) Ti and (B) Nb sides in Janus-TiNbCO₂, where the iso-surface is plotted at 0.05 e • bohr³. (color on line)

催化剂。

3.3 H* 覆盖率和结构应力对 HER 的影响

接下来,我们研究了 H* 覆盖率(θ)对 Janus-TiNbCO₂ 析氢催化活性的影响。在 Janus-TiNbCO₂ 结构中,Ti 和 Nb 面各有 9 个 O 原子, θ 在 Ti 和 Nb 面上的取值范围均为 1/9 ~ 9/9。图 5 为 Janus-TiNbCO₂ 吸附不同数目 H* 的 ΔG_{H*} 变化。从 图 5 可以看出,Janus-TiNbCO₂ 的不同面呈现出不 同的 HER 活性。例如,Ti 面上 H* 活性位点较多, 可以同时吸附 9 个 H*, 而 Nb 面的 θ 最大值为 2/9。对于 Ti 面,其平均 ΔG_{H*} 随着 H* 个数的增加 依次增加, ΔG_{H*} 在 -0.55 eV ~ 0.11 eV; 当 $\theta \ge 6/9$ 时,不同覆盖率的 ΔG_{H^*} 分别为: $\Delta G_{H^*}(6/9) = -0.12$ eV, $\Delta G_{H^*}(7/9) = -0.06$ eV, $\Delta G_{H^*}(8/9) = 0.03$ eV, $\Delta G_{H^*}(9/9) = 0.11$ eV。结果表明,在Ti面上高覆盖H* 时,Janus-TiNbCO₂ 表现出极高的 HER 活性,该活 性与 Pt 金属($\Delta G_{H^*} = -0.09$ eV)相当。对于 Nb 面, 不同覆盖率的 ΔG_{H^*} 分别为: $\Delta G_{H^*}(1/9) = 0.02$ eV, $\Delta G_{H^*}(2/9) = 0.17$ eV。结果表明,在 $\theta \leq 2/9$ 下, Janus-TiNbCO₂ 的 Nb 面拥有极高的 HER 活性。

表 1 为 Janus-TiNbCO₂ 在施加应力条件下的 $\Delta G_{\text{H*o}}$ 从表 1 可知,在压应力(-4% ~ -2%)和拉应力 (+2% ~ +4%)的作用下,Janus-TiNbCO₂的 θ (H*) 未受影响,仅平均 $\Delta G_{\text{H*}}$ 发生微弱变化,揭示 Janus-

图 5 (A) Janus-TiNbCO₂ 吸附不同数目 H* 的吉布斯自由能变化,(B)为 Janus-TiNbCO₂ 中 Nb 面和 Ti 面上 O 原子得电子数 随 H* 浓度的演化。(网络版彩图)

Figure 5 (A) The effect of H* coverage (θ) on the adsorption Gibbs free energy of Janus-TiNbCO₂. (B) the obtaining number of O elements in Ti site and Nb-site of Janus-TiNbCO₂ under different H* coverages. (color on line)

Site	θ	-4%	-2%	+2%	+4%
	1/9	-0.508	-0.507	-0.509	-0.510
	2/9	-0.432	-0.431	-0.431	-0.430
	3/9	-0.340	-0.339	-0.338	-0.337
	4/9	-0.281	-0.280	-0.278	-0.270
@Ti	5/9	-0.196	-0.195	-0.193	-0.192
	6/9	-0.131	-0.130	-0.127	-0.126
	7/9	-0.060	-0.059	-0.056	-0.055
	8/9	0.028	0.032	0.035	0.034
	9/9	0.097	0.099	0.102	0.104
	1/9	0.075	0.069	0.068	0.063
@IND	2/9	0.191	0.190	0.186	0.174

表 1 施加应力(-4% $\leq F \leq +4\%$)对 Janus-TiNbCO₂平均吉布斯自由能(ΔG_{H*} /eV)的影响 Table 1 The effect of strains (-4% ~ +4%) on the ΔG_{H*} (eV) of Janus-TiNbCO₂

TiNbCO₂ 在应力作用下仍有较好的 HER 活性。对 于 Nb 面,应力作用会降低其 HER 活性;与未施加 应力相比, Δ*G*_{H*} 增加了约 0.02 eV ~ 0.05 eV;对比 拉应力和压应力,压应力会更大地降低 Nb 面的 HER 活性。对于 Ti 面,应力作用会增强其 HER 活 性, Δ*G*_{H*} 在 -0.508 eV ~ 0.104 eV;与未施加应力相 比, Δ*G*_{H*} 增加了约 0.04 eV ~ 0.21 eV;在 $\theta \le 7/9$ 时,获得 Ti 面的 Δ*G*_{H*} 为负值, 而 $\theta \ge 8/9$ 时, Δ*G*_{H*} 为正值,揭示 $\theta \le 7/9$ 有利于 HER 的吸附行为, $\theta \ge 8/9$ 有助于 HER 的脱附行为。对比拉应力和压 应力对 Ti 面的影响,发现压应力能更大地提高 Ti 面的 HER 活性。

3.4 氧空穴对 HER 的影响

Janus-TiNbCO₂的O易与H*发生相互作用, 为研究H*作用下Janus-TiNbCO₂的稳定性,计算 了Janus-TiNbCO₂的氧空位缺陷形成能,并探究了 氧空位对其HER活性的影响。氧空位缺陷形成能 通过如下方程进行计算^[23]:

 $\Delta E_{\rm o} = -(E_{\rm sheet} - E_{\rm V_o} - \mu_{\rm o}) \tag{7}$

方程式中, E_{v_o} 为包含一个氧空穴的 Janus-TiNbCO₂ 的总能, μ_o 为O元素在氧气中的化学势。计算获得 Nb 面和 Ti 面的 ΔE_o 分别为 -4.48 eV 和 -3.71 eV。 结果表明,氧空穴在 Janus-TiNbCO₂材料表面是一 种稳定的点缺陷。可以推测,在 H⁺ 作用下, Janus-TiNbCO₂ 表面可能会丢失 O 原子,形成氧空 穴点缺陷结构。通过构建 @Ti 面和 @Nb 面的氧 空穴点缺陷结构,依次在氧缺陷处、及与缺陷相邻 的氧原子上吸附单个 H*,计算吸附稳定后的 $\Delta E_{\rm HP}$ 和 $\Delta G_{\rm HP}$ 。

如表 2 所示, Ti 面和 Nb 面的氧空穴易捕获 H* 原子,获得氧空穴的 ΔE_{H*} 分别为: ΔE_{H*} (@Ti) = -0.59 eV, ΔE_{H*} (@Nb) = -0.99 eV。可以推测,缺陷位 点的吸附能大,非常不利于 HER 的脱附反应,H* 在缺陷结构上的 HER 反应,仍是通过 O 原子进 行。氧原子吸附 H* 后,获得的 ΔG_{H*} 为: ΔG_{H*} (@Ti) = -0.27 eV, ΔG_{H*} (@Nb) = 0.17 eV。结果显示,Nb 面 的 HER 活性仍优于 Ti 面。与不包含缺陷的 Janus-TiNbCO₂ 相比,氧空穴会提高 Ti 面的 HER 活性、 降低 Nb 面的 HER 活性。

3.5 HER 反应路径过渡态

考虑到电催化过程是等电势过程,双电层对于 HER 化学反应至关重要。因此,我们首先研究了 Janus-TiNbCO₂在 z 轴方向的平均静电势。如图 6(A)

所示,在 Janus-TiNbCO₂中,Ti 和 Nb 面的真空电势 是一致的,均约为 3.71 eV。对于 Janus-TiNbCO₂ 材 料表面的 O₁和 O₂原子,其在 z 轴方向有不同的空 间坐标,但平均静电势均约为 -9.85 eV。结果表明, Janus-TiNbCO₂ 为等电势材料,且 Ti 和 Nb 面的氧 原子有相似的静电势值。

采用 CINEB 方法计算了 H* 在 Janus-TiNbCO₂ 表面的 HER 反应路径过渡态。HER 反应路径主要 有 Heyrovsky 和 Tafel, Heyrovsky 为 H* + H⁺ + e → H₂ + *, Tafel 为 2H* → H₂ + 2*。在这两种路径中, H* 的迁移能势垒越低越利于 H₂ 析出。考虑到完 整结构的 Janus-TiNbCO₂ 具有更加优异的 ΔG_{H^*} , 故以 Janus-TiNbCO₂ 为例,探讨了 HER 化学反应 过程。计算获得,H* 在 Nb 面的 Heyrovsky 和 Tafel 反应势垒分别为 0.23 eV 和 1.43 eV,H* 在 Ti 面的 Heyrovsky 和 Tafel 反应势垒分别为 0.37 eV 和 1.73 eV。结果表明,Heyrovsky 反应更加有利,该结 果与 Wang 等人的研究结果—致^[12]。比较 Ti 和 Nb 面,H* 在 Nb 面的迁移能势垒更低,说明 HER 反

表 2 含氧空位缺陷 Janus-TiNbCO₂的 H* 吸附能(ΔE_{H^2})和吉布斯自由能(ΔG_{H^2}) Table 2 The ΔE_{H^2} and ΔG_{H^2} of Janus-TiNbCO₂ with an O vacancy defect

Janus-TiNbCO ₂	Adsorption site	$\Delta E_{\mathrm{H}^*}/\mathrm{eV}$	$\Delta G_{ m H^*}/ m eV$
@Ti	Vacancy	-0.52	-0.27
@Ti	O atom	-0.59	-0.34
@Nb	Vacancy	-0.08	0.17
@Nb	O atom	-0.99	-0.75

图 6 (A) Janus-TiNbCO2在 z 轴方向的静电势;(B) H* 在 Nb 面上的 Heyrovsky 反应势垒, 插图中 IS 为初态, TS 为中间态, FS 为终态; 差分电荷密度使用 0.05 e • bohr⁻³ 作图。(网络版彩图)

Figure 6 (A) The average-potential in z axis of Janus-TiNbCO₂. (B) The energy barrier of Heyrovsky reaction for H* migration on @Nb. The insets are initial state (IS), transition state (TS), and final state (FS). The iso-surface in Figure 6(B) is plotted at 0.05 $e \cdot bohr^3$. (color on line)

应倾向于在 Nb 面进行。从图 6(B)可知,在 Nb 面的 Heyrovsky 反应过程中,H* 迁移需要克服水分子的强氢键作用;反应初态(IS),H* 距水分子的距离约为 1.0 Å;当脱离水分子束缚到达过渡态(TS)时,H* 距水分子的距离约为 1.5 Å。

4 结 论

本研究通过 Nb 掺杂,构建 Janus-TiNbCO₂,采 用第一性原理研究了 Janus-TiNbCO₂ 的电子结构, 并探究了施加应力、氧空位缺陷和 H* 覆盖度对 HER 活性的影响。研究结果显示 Nb 掺杂改变 Ti₂CO₂ 的导电性质,Janus-TiNbCO₂ 为导体材料。 构建 Janus-TiNbCO₂ 的 Ti 面和 Nb 面表现出不同 的催化活性;在 H* 低覆盖率时,Nb 面的最优 $\Delta G_{\rm HP}$ 约为 0.02 eV,Ti 面在 H* 高覆盖率时会展现较好 的催化活性。此外,施加应力有助于提高 Ti 面的催 化活性。氧空穴在 Janus-TiNbCO₂ 材料表面是一种 稳定的点缺陷,氧空穴会提高 Ti 面的催化活性、降 低 Nb 面的催化活性。从计算的 HER 反应路径可 知,H* 在 Janus-TiNbCO₂ 表面的 Heyrovsky 反应 更加有利,该路径的反应能量势垒为 0.23 eV。

参考文献(References):

- Bai X W, Ling C Y, Shi L, Ouyang Y X, Li Q, Wang J L. Insight into the catalytic activity of MXenes for hydrogen evolution reaction[J]. Sci. Bull., 2018, 63(21): 1397-1403.
- [2] Ling C Y, Shi L, Ouyang Y X, Wang J L. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor[J]. Chem. Mater., 2016, 28(24): 9026-9032.
- [3] Zheng J N, Sun X, Qiu C L, Yan Y L, Yao Z H, Deng S W, Zhong X, Zhuang G L, Wei Z Z, Wang J G. High-throughput screening of hydrogen evolution reaction catalysts in MXene materials[J]. J. Phys. Chem. C, 2020, 124(25): 13695-13705.
- [4] Li P K, Zhu J G, Handoko A D, Zhang R F, Wang H T, Legut D, Wen X D, Fu Z H, She Z W, Zhang Q F. High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification[J]. J. Mater. Chem. A, 2018, 6(10): 4271-4278.
- [5] Zhang S Z(张绍政), Liu J(刘佳), Xie Y(谢艳), Lu Y J(陆银稷), Li L(李林), Lü L(吕亮), Yang J H(杨建辉), Wei S H(韦世豪). First-principles study of hydrogen evolution activity for two-dimensional M₂XO₂₋₂OH₂(M = Ti, V; X = C, N)[J]. Acta Phy. Chim. Sin.(物理化学学报), 2017, 33: 2022-2028.

- [6] Meshkian R, Näslund L Å, Hallim J, Lu J, Barsoum M W, Rosen J. Synthesis of two-dimensional molybdenum carbide, MO₂C, from the gallium based atomic laminate MO₂Ga₂C[J]. Scripta Mater., 2015, 108: 147-150.
- [7] Ding B, Ong W J, Jiang J, Ding B, Ong W J, Jiang J Z, Chen X Z, Li N. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M₂C MXene (M = Ti, Mo)[J]. Appl. Surf. Sci., 2020, 500: 143987.
- [8] Zhang Y J, Wang L, Zhang N N, Zhou Z J. Adsorptive environmental applications of MXene nanomaterials: a review[J]. RSC Adv., 2018, 8(36): 19895-19905.
- [9] Taheri-Qazvini N, Snyder S A, Jang M, Heo J, Yoon Y. Applications of MXene-based membranes in water purification: a review[J]. Chemosphere, 2020, 254: 126821.
- [10] Hu T, Yang J X, Wang X H. Carbon vacancies in Ti₂CT₂ MXenes: defects or a new opportunity?[J]. Phys. Chem. Chem. Phys., 2017, 19(47): 31773-31780.
- [11] Yang X Y, Luo W, Ahuja R. Fluoride ion batteries: designing flexible M₂CH₂ (M = Ti or V) MXenes as high-capacity cathode materials[J]. Nano Energy, 2020, 74: 104911.
- [12] Huang B, Zhou N G, Chen X Z, Ong W J, Li N. Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene)[J]. Chem. - Eur. J., 2018, 24(69): 18479-18486.
- [13] Zhou X(周雪), Wang H(王虹), Yin Z(尹振), Zhang Y J (张玉军), Li J X(李建新). Preparations of nano-MnO_x/Ti electrocatalytic membrane electrode for catalytic oxidation of cyclohexane using intermittent electrodeposition [J]. J. Electrochem.(电化学), 2020, 26(3): 397-405.
- [14] Wang S, Chen L, Wu Y, Zhang Q J. Surface modifications of Ti₂CO₂ for obtaining high hydrogen evolution reaction activity and conductivity: A computational approach[J]. ChemPhysChem, 2018, 19(24): 3380-3387.
- [15] Li L, Wang X Y, Guo H R, Yao G, Yu H B, Tian Z Q, Li B H, Chen L. Theoretical screening of single transition metal atoms embedded in MXene defects as superior electrocatalyst of nitrogen reduction reaction[J]. Small Methods, 2019, 3(11): 1900337.
- [16] Zhu J, Ha E N, Zhao G L, Zhou Y, Huang D S, Yue G Z, Hu L S, Sun N, Wang Y, Lee L Y S, Xu C, Wong K Y, Astruc D, Zhao P X. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption[J]. Coordin. Chem. Rev., 2017, 352: 306-327.
- [17] Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000, 113 (22): 9901-9904.

- [18] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp. Mater. Sci., 1996, 6(1): 15-50.
- [19] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77 (18): 3865-3868.
- [20] Perdew J P, Emzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations[J]. J. Chem. Phys., 1996, 1996(105): 9982-9985.
- [21] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened coulomb potential[J]. J. Chem. Phys., 2003, 118(18): 8207-8215.
- [22] Gao G, O'Mullane A P, Du A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catal., 2016, 7(1): 494-500.

- [23] Zhao X F, Yang X Y, Singh D, Panda P K, Luo W, Li Y X, Ahuja R. Strain-engineered metal-free h-B₂O monolayer as a mechanocatalyst for photocatalysis and improved hydrogen evolution reaction[J]. J. Phys. Chem. C, 2020, 124(14): 7884-7892.
- [24] Mishra A, Satsangi S, Rajan A C, Mizuseki H, Lee K R, Singh A K. Accelerated data-driven accurate positioning of the band edges of MXenes[J]. J. Phys. Chem. Lett., 2019, 10(4): 780-785.
- [25] Zhao X F, Panda P K, Singh D, Yang X Y, Mishra Y K, Ahuja R. 2D g-C₃N₄ monolayer for amino acids sequencing[J]. Appl. Surf. Sci., 2020, 528: 146609.
- [26] Sinthika S, Waghmare U V, Thapa R. Structural and electronic descriptors of catalytic activity of graphene-based materials: first-principles theoretical analysis[J]. Small, 2018, 14(10): 1703609.

Janus-TiNbCO₂ for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity

Li-Li Xu^{1*}, Dong-Yan Ren¹, Xiao-Feng Zhao^{2,3*}, Yong Yi²

(1. Mianyang Vocational and Technical College, Department of Materials Enginerring, Mianyang 621000,

Sichuan, China; 2. School of Materials Science and Engineering, Southwest University of Science and

Technology, Mianyang 621010, Sichuan, China; 3. Department of Physics and Astronomy,

Uppsala University, 75120 Uppsala, Sweden)

Abstract: Exploring the potential hydrogen evolution reaction (HER) catalysts with the high activity and high conductivity has always been a hot spot in the research of renewable energy development. Ti₂C, as one of the 2D-MXene, has excellent properties relating to many active sites, mechanical stability, conductivity, etc., and has become a potential HER catalyst. However, the modification of the surface of Ti₂C by terminal O will reduce the conductivity, thereby limiting the transport of electrons between the valence band and the conduction band. In this study, an electric double layer Janus-TiNbCO₂ was constructed by Nb doping. The band property, HER activity and HER reaction path of Janus-TiNbCO₂ are studied by the first-principles calculations. The results show that Nb doping increases the distance between Ti and O atoms, which increases the lattice parameters of Janus-TiNbCO₂ comparing with that of Ti₂CO₂ structure. The Janus-TiNbCO₂ structure is stable by calculating the thermodynamic stability at 500 K using AIMD method. The band gap of Ti₂CO₂ is approximate 0.9 eV. After Nb doping, the orbital hybridization between Nd-3d and O-2p affects the electronic rearrangement of Ti-3d, leading that Janus-TiNbCO₂ has the metal band structure. In Janus-TiNbCO₂, both Ti and Nb surfaces adsorb H* by O site, where the $\Delta G_{H^{e}}(@Ti) = -0.55 \text{ eV}$, $\Delta G_{H^{e}}(@Nb) = 0.02 \text{ eV}$, showing Ti and Nb surfaces have different catalytic activities. Comparing with graphenes, e.g., h-B₂O, Pt, and g-C₃N₄, Janus-TiNbCO₂ has better catalytic activity. The charge distribution of Janus-TiNbCO₂ near the Fermi level was analyzed by HSE-06 function. The result reveals that O atoms on the Ti surface exhibit charge unsaturation at the Fermi level, while those on Nb surface strong saturation. Moreover, the effects of H* coverage and strains $(+2\% \sim +4\%)$ on the catalyst activity of Janus-TiNbCO₂ are studied. When the H* coverage is low, the optimal $\Delta G_{H^{*}}$ of Nb surface is approximate 0.02 eV, while Ti surface has an excellent catalytic activity at high H* coverages (θ = 7/9, $\Delta G_{H^*} = -0.06 \text{ eV}$). Under the strain action, the H* coverage on surface is not affected. However, strains will reduce the HER activity of Nb surface, and increase the HER activity of Ti surface. Furthermore, oxygen defect is a stable point defect in Janus-TiNbCO₂. Oxygen defect will increase the HER activity of Ti surface and decrease the HER activity of Nb surface. Comparing to the Tafel pathway, the Heyrovsky is a more suitable pathway for the HER, in which the migration barrier of Heyrovsky is 0.23 eV for H* on Nb surface. Janus-TiNbCO₂ can be used as a potential HER catalyst.

Key words: MXene; Janus-TiNbCO₂; band; hydrogen evolution reaction