Journal of Electrochemistry

Volume 27 | Issue 5

2021-10-28

Application of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ Anode in Rural Drinking

Water Disinfection

Jing-Ru Guo, Xue-Jiao Zhang, Shuai Liao, Xue-Ming Chen. Application of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ Anode ulingurauDigute ing Water Disinfection[J]. Journal of Electrochemistry, 2021, 27(5): 549-557. DOI: Sodium hypochlorite disinfection has many advantages, including reliable operation, low cost, easily Available raw ansterials. It is, therefore, suitable for disinfection of drinking water in remote rural areas. The service life and chlorine evolution efficiency of the anode are the main factors restricting the Shuai Liao performance of the sodium hypochlorite generator. The special conditions of frequent shutdown and low electrolyte concentration in the rural drinking water application also put forward high requirements on the College of Environmental & Resource Sciences of Zhejiang University, Hangzhou 310058, Zhejiang, China;, exelutionang, china; perfection and further applied to disinfection of drinking water in rural areas. Comparison was also made between this anode with Ti/RuO₂-SnO₂-Sb₂O₅, Ti/RuO₂-TiO₂ and Ti/RuO₂-TiO₂-IrO₂ anodes. The surface morphology, elements and composition of the anodes were examined by SEM, EDS and XRD. The effects of sodium chloride concentration, current density and shutdown frequency on chlorine evolution efficiency and lifetime of the anodes were also investigated. It was found that the Ti/RuO2-IrO2-SnO2-Sb2O5 electrode exhibited strong activity and high stability, and its coating components were highly fused into a solid solution with dense structure and great stability. The current efficiency of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode reached 91.55% in 15 a·L⁻¹ NaCl solution at 400 A·m⁻² and 20°C. In the enhanced electrolysis lifetime experiment, the service lifetime of Ti/RuO2-IrO2-SnO2-Sb2O5 anode reached 231 h, which was 77 times longer than that of Ti/RuO2-TiO2 anode. It was estimated that the Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode could be used for 20 years under the

current density of 400 A·m⁻². Therefore, compared with the traditional electrode materials, Ti/ RuO₂-IrO₂-SnO₂-Sb₂O₅ achieved higher chlorine evolution efficiency and stability. It could be used for a long time in the condition of frequent shutdown and low electrolyte concentration. Besides, it could greatly reduce the equipment operation cost, the raw material feeding frequency and the impurities introduction. Thus, the Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode developed in this studymight be suitable for rural drinking water disinfection application.

Available at: https://jelectrochem.xmu.edu.cn/journal/vol27/iss5/7

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

[Article]

DOI: 10.13208/j.electrochem.200909

Http://electrochem.xmu.edu.cn

Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极在 农村饮用水消毒中的应用

郭静如,张雪娇,廖 帅,陈雪明* (浙江大学环境与资源学院,浙江杭州 310058)

摘要:采用热分解法制备了一种新型高效析氯阳极 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅,将其应用于农村饮用水消毒频繁停 开、低电解液浓度的特殊工况下,并与 Ti/RuO₂-SnO₂-Sb₂O₅、Ti/RuO₂-TiO₂、Ti/RuO₂-TiO₂-IrO₂ 三种析氯阳极进行性 能对比。通过 SEM、EDS、XRD等方法表征测试阳极表面形貌、元素及组成,考察了氯化钠浓度、电流密度、停开频 率对阳极析氯效果和寿命的影响。研究发现,Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅阳极活性强、稳定性高;阳极涂层各组分高度 融合为固溶体,结构致密,稳定性强;在 15 g·L⁻¹ NaCl、400 A·m² 电流密度、20 ℃ 条件下,Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极电解的电流效率达到 91.55%;频繁停开、强化电解条件下寿命达到 231 h,是 Ti/RuO₂-TiO₂ 阳极的 77 倍,预估 在 400 A·m² 电流密度下能够使用 20 年。

关键词:Ti/RuO2-IrO2-SnO2-Sb2O5;农村饮用水;次氯酸钠发生器;强化电解寿命

1 引 言

消毒是我国农村饮用水工程中的薄弱环节, 同时也是饮用水安全的最后保障^[1]。相比于液氯、 二氧化氯消毒,次氯酸钠可由次氯酸钠发生器现 场电解食盐水制取,兼备安全可靠、成本低廉、原 料易采购等众多优点,更适用于偏远农村饮用水 的消毒处理^[2],也契合当今社会可持续发展的理念。

在农村饮用水工程中,为保证出水有效氯浓 度一定,需根据实时水质和水量情况动态调节次 氯酸钠发生器产氯量,因此次氯酸钠发生器需频 繁停开,以保证单位时间内产生一定量有效氯。同 时,电解的盐水浓度一般为 30~50 g·L⁻¹³,盐耗较 大,运行成本较高,药剂投加频繁导致引入杂质较 多。这些问题对次氯酸钠发生器的寿命及析氯效 率提出了更高的要求。电解池阳极的使用寿命、析 氯效率是制约次氯酸钠发生器性能的主要因素, 因此找到一种高性能、高稳定性的阳极具有十分 重要的意义。

早期电解食盐水主要采用石墨电极和铂电极,析氯效果差、稳定性不佳,同时铂金属价格昂贵^[4]。直至1960s,Beer发明了尺寸稳定阳极(DSA), 凭借其导电性好、析电位低、催化活性强及机械稳 定性好,被广泛应用于氯碱工业^[5]。同时,研究者们 也开始探索性能更优的阳极。Zeng Yi^[6]、王科^[7]、王 伶俐^[8]等对 RuO₂-TiO₂-IrO₂ 电极的结构、析氯性能 等进行了研究,发现电极效率较高但稳定性差。陈 晟颖^[9]等制备了 Ti/RuO₂-SnO₂-Sb₂O₅ 阳极并将其应 用于海水电解中,发现其阳极析氯性能良好,电流 效率范围大致为 84% ~ 90%,但仅能在低电流密 度下稳定工作。在我们之前的研究中,研制了一种 新型高稳定性阳极 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅, 王斯 文等^[10]将其用于海水电解,发现 Ir 的添加能够显

引用格式: Guo J R, Zhang X J, Liao S, Chen X M. Application of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode in rural drinking water disinfection. J. Electrochem., 2021, 27(5): 549-557.

收稿日期: 2020-09-10,修订日期: 2020-10-30. * 通讯作者, Tel: (86)13858099424, E-mail: chenxm@zju.edu.cn 国家重点研发计划项目(No. 2019YFC0408800)资助

著提升阳极稳定性。但在农村饮用水消毒工程中, 电解液浓度更低,应用工况更苛刻。因此,本研究 将 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极用于频繁停开、低 盐水浓度等使用工况下,并与多种析氯阳极对比, 为选择适用于农村饮用水工程的次氯酸钠发生器 阳极提供参考。本研究的工作内容包括以下三部 分:Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极性能的表征、析氯 性能对比、电解操作参数的影响。

2 实 验

2.1 试剂与仪器

四氯化锡(SnCI₄·5H₂O,99%,Amethyst)、三氯 化锑(SbCl₃,99%,上海阿拉丁)、四氯化钛(TiCl₄)、 三氯化钌(RuCl₃·xH₂O,97%,上海皓鸿生物医药)、 氯铱酸(H₂IrCl₆·xH₂O,Ir 35% in HCl,上海麦克林)、 草酸(H₂C₂O₄,AR)、可溶性淀粉(0.25%)、碘化钾 (KI,AR)、冰乙酸(CH₃COOH,AR)。

采用德国场发射扫描电子显微镜(FE-SEM; Gemini SEM 300,Zeiss)观察制备阳极的表面形貌 特征;通过爱尔兰 X 射线衍射仪(XRD; X'Pert PRO, Panalytical)分析阳极涂层的微观晶体结构组成;通 过德国能量分散光谱仪和扫描电子显微镜 (EDS-SEM;Gemini SEM 300, Zeiss)表征分析涂层 中的元素组成。

2.2 阳极制备

将金属钛板加工切割为 15 mm × 20 mm × 1 mm 长方形小板,经喷砂、化学除油、超声清洗、草酸溶液中刻蚀 2 h 后保存至无水乙醇溶液中备用。

取一定量 SnCl₄·5H₂O、SbCl₃、TiCl₄ 溶于异丙 醇中配成 0.5 mol·L⁻¹ SnCl₄、SbCl₃、TiCl₄ 溶液,将 RuCl₃·xH₂O、H₂IrCl₆·xH₂O 溶于异丙醇、盐酸体积 1:1 混合溶液中,制备成 0.5 mol·L⁻¹ RuCl₃、H₂IrCl₆ 溶液。将五种溶液按一定比例混合,配制成不同组 分、不同比例的阳极涂液。

采用热分解法制备阳极,将现配涂液均匀薄涂于预处理后的钛板上,80 ℃烘干 5 min 后转入500 ℃ 马弗炉中进行热分解,5 min 后取出冷却至室温。重复上述步骤 16~18 次,直至涂层氧化烧结载量达到 1.5~2.0 mg·cm²,最后一次涂刷烘干后在马弗炉中烧结 1 h 以使涂层充分氧化。

2.3 电化学性能

2.3.1 有效氯浓度及电流效率

为了测定制备阳极在低氯化钠浓度下的性能,该研究通过电解实验,在密封电解槽中测定电

解过程的有效氯浓度及电流效率。电解装置由恒 温水浴锅、电源、电解槽组成,以自制阳极为阳极, 钛板为阴极,氯化钠溶液为电解液。在电解过程 中,每0.5h取样5mL使用碘量法,按照 GB12176-1990测定有效氯浓度,测试过程如下:

用移液管吸取 5 mL 待测溶液放入 250 mL 碘 量瓶中。加入 50 mL 蒸馏水后迅速加入 5 mL 36% 冰乙酸溶液、10 mL 的 1 mol·L⁻¹ 碘化钾溶液,加盖 水封摇匀。在暗处静置 5 min 后用 0.05 mol·L⁻¹ Na₂S₂O₃溶液滴定。滴定中当试样由棕黄色变成浅 黄色时,加入 1 mL 淀粉指示剂。继续以 Na₂S₂O₃标 准溶液滴定至蓝色刚好消失为止,记录消耗滴定 液毫升数。

有效氯浓度计算公式为:

$$C = N \times V \times 35.45/5 \tag{1}$$

式中,C为有效氯浓度($g\cdot L^{-1}$);N为 Na₂S₂O₃溶液当 量浓度(mol·L⁻¹);V为滴定时消耗 Na₂S₂O₃溶液的 体积(mL)。

并计算电流效率,计算公式为:

 $\eta = CQ/I \times n \times 1.323 \times 100\% \tag{2}$

式中, η 为电流效率;Q为进出水流量(L·h⁻¹);I为 电解电流(A);n为电极串联级数;1.323为每安培 小时电量有效氯的理论生成量(g·(A·h)⁻¹)。

2.3.2 电解盐耗及能耗

该研究计算电解实验中的盐耗及能耗,直观 对比阳极的性能。由于本研究中小试实验电极面 积仅为3 cm²,远低于实际设备中的电极面积,盐 耗和能耗数据较大,仅作为电极间性能参数对比, 实际装置电极面积较大,盐耗、能耗将大幅降低。 按照 GB12176-1990 计算公式为:

$U_{\rm s} = S/C \tag{3}$

$$P_{\rm C} = UI/(QC) \tag{4}$$

式中, U_s 为盐耗(kg·kg⁻¹);S为电解液浓度(g·L⁻¹); P_c 为能耗(kW·h·kg⁻¹);U为电解电压(V)。

2.3.3 强化寿命实验

在实际使用条件下,阳极寿命的测试较为耗时,因此采用强化电解实验测试阳极稳定性。同时,为模拟真实农村饮用水工程中频繁停开环境, 采用微型可编程控制器自动控制停开工况。在 20000 A·m² 电流密度、6次·h¹的停开工况下,测 试了制备阳极的加速寿命。电解液采用1 mol·L¹ H₂SO₄ 溶液,在非氯环境测试强化电解寿命,电极 析氧电位更高(析氧电位 1.3 V 大于析氯电位 1.15 V)、条件更为苛刻、强化寿命时间更短,且国标 GB12176-1990 亦采用硫酸电解液进行老化寿命 试验。电解池温度保持在 26 ℃ 左右。定期监测电解 槽电压,当电压开始大幅度上升时,强化寿命实验 结束。实际使用中,电流密度远小于强化电解实验 条件 20000 A·m²,可根据阳极实际使用寿命与电 流密度关系公式^{□□}估算实际使用大概时长:

 $SL_r = SL_a(i_a/i_r)^n$ (5) 式中, SL_a 为强化电解寿命(该实验中仅计算开启 工况下时间, h); SL_r 为阳极实际使用寿命(h); i_a 为 实验电流密度(A·m²); i_r 为实际电流密度(A·m²); n为电流密度指数, 一般为 1.4 ~ 2.0^[12,13]。

2.3.4 电化学测量

研究采用上海辰华 CHI660 电化学分析仪,通 过 经典 的 三 阳 极 体 系 : 工 作 电 极 为 制 备 的 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 析氯阳极,对电极为钛电 极,参比电极为饱和甘汞电极。在 20 ℃、0.5 mol·L⁻¹ NaCl 溶液中,测量阳极的循环伏安曲线。扫描电压 范围为 0.2 ~ 1.6 V,扫描速率为 1 V·s⁻¹。

3 结果与讨论

3.1 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 析氯阳极表征

3.1.1 表面形貌观察

Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极放大 2500 倍后

表面形貌如图 1(A)所示,可以看出,阳极的表面 晶粒排布致密均匀,无裂纹。进一步放大至 10000 倍如图 1(B)所示,涂层呈棒状相互交错形成了大 量的微孔与缝隙,增大了阳极表面的表面积,增加 阳极的活性位点,从而提高阳极的活性。

3.1.2 涂层元素分析

Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅阳极的能谱分析结果 如表 1,由于电极表面涂层存在一定裂纹,探测到 钛基底中的 Ti 元素,这与 SEM 扫描电镜观测到涂 层表面形貌结果一致。EDS 检测结果与配制涂液 元素浓度相比,Ir/Sb元素比值与涂液保持一致,但 Sn 元素检测比例远小于涂液比例,主要由于 SnCl₄ 易挥发。阳极采用高温热分解制备,SnO2在制备 以及高温退火过程中大量挥发,Clemente L^[14]和 Comninellis C^[15]等也报道过类似结果。Sn 的损失 也导致了 Ru、Ir、Sb 的比例的升高。同时, 也通过 XPS 对电极涂层元素进行了分析,结果如图 2,涂 层主要元素为 Ru(3d)、Ir(4f)、Sn(3d)和 Sb(3d),测得 的碳可能是由于涂层表面吸附了碳杂质(如真空 泵中的 CO2 或油)。与 EDS 检测结果相比, XPS 未 检测到 Ti 元素, 主要由于 XPS 采样深度为 2~5 nm,远小于 EDS 的 1 µm,该采样点无裂纹,钛基 体被涂层完全覆盖。

图 1 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极 SEM 图, (A)2500 倍, (B)10000 倍 Figure 1 SEM images of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode, (A)2500×, (B)10000×

表 1 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极 EDS 图谱 Table 1 Elemental contents of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode based on EDS

Element	Ti	Ru	Ir	Sb	Sn
Coating liquid ratio/%	0	20	10	10	60
Atomic ratio/%	10.46	25.26	18.71	17.62	28.05

图 2 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极 XPS 谱图 Figure 2 XPS survey spectrum of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅

3.1.3 涂层微观结构

Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极 XRD 表征结果 如图 3 所示,分析发现,在 27.7°、34.69°、35.1°、38.4°、 40.2°、53°、53.9°位置检测到 7 个明显的衍射峰,与 Ti、Ru、Ir、Sb、Sn 氧化物标准峰谱进行对比,除去一 组与钛基底标准峰相吻合外,只有一组明显的衍射 峰被检测到,峰位置与纯 RuO₂、IrO₂、SbO₂、SnO₂ 位 置都有一定偏移^[16]。这说明 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 各组分高度融合为固溶体^[9,11,17],能够在电解过程中 稳定存在,这与前述 EDS 所观察结果一致。 3.1.4 循环伏安

Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极的循环伏安曲 线如图 4,电解液为 0.5 mol·L⁻¹ 氯化钠溶液,循环 伏安曲线在最初循环中略有变化,10 次之后几乎 保持不变,这可能是由于阳极涂层表面的水化作 用^[18]。在扫描过程中未检测到氧化峰。正向扫描

图 3 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极 XRD 谱图 Figure 3 XRD pattern of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅

图 4 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极循环伏安曲线(0.5 mol·L⁻¹ NaCl, 20 °C, 1 V·s⁻¹)

Figure 4 Cyclic voltammetric curve of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode (0.5 mol·L⁻¹ NaCl, 20 °C, 1 V·s⁻¹)

中,曲线在 1.15 V 位置由于析氯反应产生转折,此 时发生反应方程式为:2Cl - 2e → Cl₂,标准电极电 位为 1.13 V,同时由于溶液存在大量氯离子,随着 电压升高,析氯反应加强,电流不断增大,未检测 到峰值,从而无氧化峰。在负向扫描时溶液中活性 氯发生了还原反应^[19],且因活性氯含量有限,形成 了还原峰。主要反应方程式为:ClO + H₂O + 2e → Cl + 2OH,标准电极电位为0.89 V,ClO₂ + 2H₂O + 4e → Cl + 4OH,标准电极电位为 0.76 V,与实验 检测的还原电位 0.95 V、0.78 V 有一定偏差,主要由 于实验温度为 20 °C、溶液为 0.5 mol·L⁻¹ NaCl 与标 准电极电位测试条件(20 °C,1 mol·L⁻¹ NaCl)不同。

3.2 析氯性能

本研究在频繁停开、低电解液浓度的农村饮用 水消毒的特殊工况下考察 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极的析氯性能,并制备了 Ti/RuO₂-SnO₂-Sb₂O₅、 Ti/RuO₂-TiO₂、Ti/RuO₂-TiO₂-IrO₂ 三种不同组成的 析氯阳极,通过电解实验及强化寿命实验对比不 同阳极的活性、能耗、盐耗及稳定性。

3.2.1 活性

阳极的析氯效率如图 5 所示,通过小试装置 试验不同阳极电解效果。研究发现,Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极在低氯化钠浓度下电流效率也能 达到 71.9% ~ 91.55%,盐耗为 13.1 kg·kg⁻¹。相较于 Ti/RuO₂-TiO₂ 电极,电流效率仅为 62.4% ~ 85.2%, 盐耗为 14.9 kg·kg⁻¹,盐耗降低 12%。因此, Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极有较高的活性。 3.2.2 能耗

图 5 不同阳极的电流效率(15 g·L⁻¹ NaCl,400 A·m⁻²,20 ℃) (网络版彩图)

Figure 5 Current efficiency plots of different anodes (15 g·L⁻¹ NaCl, 400 A·m⁻², 20 °C) (color on line)

通过小试装置计算电极能耗,结果如表 2 所 示,Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极在 400 A·m² 电 流密度下电解 150 分钟,能耗为 $1.47 \text{ kW} \cdot \text{h} \cdot \text{kg}^{-1}$,低 于 Ti/RuO₂-TiO₂、Ti/RuO₂-SnO₂-Sb₂O₅、Ti/RuO₂-TiO₂-IrO₂电极。分析其原因,主要由于 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极结构致密均匀,导电性较好,电解过程 中阴阳极间电压较低,因此能耗较少,这也与表面 形貌观察所得结果一致。

3.2.3 稳定性

Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极稳定性在频繁停 开的强化电解实验下测定,结果如表 2 所示。传统 的 Ti/RuO₂-TiO₂ 阳极虽然成本低廉,但阳极寿命 较差,在频繁停开的强化电解工况下仅使用 3 h 即 失效。分析其原因可知,析氧副反应产生的氧气经 由涂层表面的裂缝扩散至钛基底,形成不导电的 TiO₂ 钝化膜^[20-23],涂层活性物质迅速脱落。掺杂 Ir 后的 Ti/RuO₂-IrO₂-TiO₂ 阳极在电流效率和老化寿 命上都有显著的提高。实验也考察以 Sn、Sb 替代 Ti/RuO₂-TiO₂阳极中的Ti,其老化寿命提高至68 h, 而掺杂 10% Ir 后的 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳 极老化寿命增至231 h,是传统钌钛阳极的77 倍。 根据公式(5),假设电流密度指数 n 取平均值 1.7, 估算得阳极在 400 A·m⁻² 电流密度下能够使用 20 年。将Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅阳极稳定性与相关 文献进行比较,陈晟颖¹⁰制备的 Ti/RuO₂-SnO₂-Sb₂O₅ 阳极在寿命在 1000 A·m²、0.5 mol·L¹ NaCl 条件 下为 266 h。Fatemeh Fathollahi^{[18}对比了Ti/RuO₂-TiO₂ 与Ti/RuO₂-IrO₂-TiO₂ 阳极,在6000 A·m⁻²,0.5 mol·L⁻¹ NaCl条件下测得前者寿命为18h,后者寿命为30 h。王科^[7]在 20000 A·m²、1 mol·L¹ H₂SO₄ 连续电解 的条件下,试验其老化寿命仅为 37 h。可以发现, 本研究制备的 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极在使 用寿命上远高于上述阳极。因此,Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅是一种较为理想的用于农村饮用水消毒次 氯酸钠发生器的高活性、高稳定性析氯阳极。

3.3 电解操作参数研究

3.3.1 盐水浓度影响

盐水浓度是决定电解效果、盐耗的重要参数, 实验通过改变电解液浓度考察其对电解效果的影 响,实验结果如图 6 所示。随着盐水浓度升高,有 效氯浓度增大,电流效率也随之提高。盐水浓度从 5 g·L¹升高至 15 g·L¹时,电解的有效氯浓度升 高,电流效率由 63.42% ~ 80.39%提高至 71.9% ~ 91.55%。这主要是由于盐水浓度的增加,电解液中 氯离子浓度升高,促进了电解反应中的析氯主反 应,有效氯浓度显著升高。同时次氯酸根的氧化还 原反应受到了抑制,削弱了阳极副反应,提高了电 流效率^[24]。当盐水浓度继续升高至 35 g·L⁻¹,电流效 率 与 有 效 氯 浓 度 提 高 幅 度 较 小 。 这 表 明 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极在低盐水浓度下电 解,有效氯浓度及电流效率都较高,有较好的析氯

表 2 阳极析氯性能对比 Table 2 Comparison of anode chlorine evolution performance

Anode	Component ratio	Current efficiency/%	Salt consumption/ (kg•kg ⁻¹)	Energy consumption/ (kW•h•kg ⁻¹)	Aging life/ h
Ti/RuO ₂ -SnO ₂ -Sb ₂ O ₅	20:10:70	89.32	13.7	1.63	68
Ti/RuO ₂ -TiO ₂	70:30	84.85	14.9	1.81	3
Ti/RuO_2 - IrO_2 - TiO_2	20:10:70	87.08	14.3	1.69	49
Ti/RuO ₂ -IrO ₂ -SnO ₂ -Sb ₂ O ₅	20:10:10:60	91.55	13.1	1.47	231

性能。15g·L⁻¹的盐水浓度远低于市场应用的 30~50g·L^{-1[25]},大幅降低了盐耗与运行成本,同时避免了频繁投加药剂,减少杂质的引入,保障农村饮用水水质质量。

通过失效阳极的 SEM、EDS 分析发现,强化电 解试验后的电极涂层表面凹凸不平,剥落严重,钛基 底 Ti 元素比例由 10%提高至 50%,其他元素比值相 对保持不变,由此分析涂层表面活性物质脱落、TiO₂ 钝化膜的形成是阳极主要失效因素。张琼^[26]、侯艳 远^[27]在探究钛基电极失效原因时也得出相似结果。 3.3.2 电流密度影响

研究了 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极在电流 密度为 200 A·m⁻²、400 A·m⁻²、600 A·m⁻² 时电解的 电流效率变化情况,实验结果如图 7 所示。随着电 流密度的升高,电解的有效氯浓度升高,电流效率 反而下降,这与 Bergmann M H^[28]等研究结果相似。 随着电流密度增加,电解过程中的析氧副反应加 强,导致电荷利用率降低,同时阳极寿命也随着缩 短。综合考虑实际操作、有效氯浓度、电流效率、能 耗、阳极寿命等多方面因素,选择在 400 A·m⁻² 电 流密度下考察 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极的相 关性能。

3.3.3 停开频率影响

实验利用微型可编程控制器自动控制停开频 率为6次·h⁻¹、12次·h⁻¹、20次·h⁻¹、30次·h⁻¹,在强化 电解条件下测得停开频率与阳极寿命关系如图8 所示。研究发现,停开频率对电极寿命有明显影响, 随着停开频率的增大,寿命缩短。主要由于频繁停

图 6 不同盐水浓度对电解有效氯浓度(A)、电流效率(B)的影响(400 A·m², 20 ℃)(网络版彩图)

Figure 6 The influences of brine concentration on electrolysis effective chlorine concentration (A) and current efficiency (B) (400 $A \cdot m^2$, 20 °C) (color on line)

图7 电流密度对有效氯浓度(A)、电流效率(B)的影响(15g·L⁻¹NaCl,20℃)(网络版彩图)

Figure 7 The influences of current density on concentration of available chlorine (A) and current efficiency (B) (15 g \cdot L⁻¹ NaCl, 20 °C) (color on line)

图 8 停开频率对老化寿命的影响(20000 A·m², 1 mol·L⁻¹ H₂SO₄, 20 ℃)(彩图网络版) **Figure 8** The influence of switching frequency on aging life of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode (20000 A·m², 1 mol·L⁻¹ H₂SO₄, 20 ℃) (color on line)

开过程中,涂层受到电流的反复冲击,加快脱落,导 致阳极失活。实际使用中,停开频率小于6次·h⁻¹, 且工作条件为低电流密度,预估实际寿命能够超过 20年。因此,研究制备的Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极适宜在农村饮用水工程频繁停开的苛刻工况 下使用。

4 结 论

(1)Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅阳极涂层各组分 高度融合为固溶体,结构致密,稳定性高,析氯活 性高。

(2)相较于 Ti/RuO₂-SnO₂-Sb₂O₅、Ti/RuO₂-TiO₂、 Ti/RuO₂-TiO₂-IrO₂ 三种钌系涂层阳极,Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极有最优的活性及稳定性。在 15 g·L⁻¹ NaCl、20000 A·m⁻² 电流密度、20 ℃ 条件下电流效 率为 71.9% ~ 91.55%,频繁停开的强化电解条件 下寿命达到 231 h,是 Ti/RuO₂-TiO₂ 阳极的 77 倍, 预估在 400 A·m⁻² 电流密度下能够使用 20 年。

(3)研究制备的 Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ 阳极 有良好的析氯活性及稳定性,大幅度降低了次氯 酸钠发生器电解过程的盐耗及能耗。该电极预估 能够在频繁停开工况、低氯化钠浓度下使用 20 年,为下一步农村饮用水消毒工程次氯酸钠发生 器的设计奠定了良好的基础。

参考文献(References):

 Jia Y N(贾燕南), Hu M(胡孟), Wu X M(邬晓梅), Li X Q (李晓琴), Dong C J(董长娟). Analysis on the selection and application of disinfection technology in rural water supply engineering[J]. Chin. Water Resour.(中国水利), 2016, 19: 53-56.

- [2] Cui H J(崔红军), Wu D S(吴东升), Song S Y(宋思怡), Sui H(孙辉), Zhang L M(张利梅). Study on using sodium hypochlorite to replace liquid chlorine for disinfection in waterworks[J]. Chin. Water Wastewater(中国给水排水), 2016, 32(19): 58-61.
- [3] Lian L X(李连香), Liu W C(刘文朝), Qu J F(曲钧浦), Tong W(童闻). Research on design parameters of small batch sodium hypochlorite generator[J]. Water Conser. Hydro. Techno.(水利水电技术), 2018,8:219-224.
- [4] Hu X H(胡小华). Study on chlorine evolution anode in Chlor-Alkali industry[D]. Chongqing: Chongqing University(重庆大学), 2016.
- [5] Zhang Z X(张招贤). Titanium anode 40 years[J]. Chlor-Alkali Ind.(氯碱工业), 2007, 1: 15-20, 22.
- [6] Zeng Y, Chen K N, Wu W, Wang J R, Lee S W. Effect of IrO₂ loading on RuO₂-IrO₂-TiO₂ anodes: A study of microstructure and working life for the chlorine evolution reaction[J]. Ceram. Int., 2007, 33(6): 1087-1091.
- [7] Wang K(王科), Han Y(韩严), Wang L Y(王雷远), Zhang X L(张晓玲), Sun Y P(孙玉璞). Study on Ru-Ti-Ir-Sn oxide anode coating in seawater electrolysis [J]. J. Electro-chem.(电化学), 2005,11(2): 176-181.
- [8] Wang L L(王玲利), Peng Q(彭乔). Research progress on optimization of ruthenium coating titanium anode[J]. Liaoning Chem. Ind.(辽宁化工), 2006, 8: 485-487.
- Chen S Y, Zheng Y H, Wang S W, Chen X M. Ti/RuO₂-Sb₂O₅-SnO₂ electrodes for chlorine evolution from seawate [J]. Chem. Eng. J, 2011, 172(1): 47-51.
- [10] Wang S W, Xu H L, Yao P D, Chen X M. Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anodes for Cl₂ evolution from seawater[J].

Electrochemistry, 2012, 80(7): 507-511.

- [11] Chen X M, Chen G H, Yue P L. Stable Ti/IrO_x-Sb₂O₅-SnO₂ anode for O₂ evolution with low Ir content[J]. J. Phys. Chem. B, 2001, 105(20): 4623-4628.
- [12] El Guindy M I. Precious Metals 1982: Proceedings of the sixth international precious metals institute conference [M]. Elsevier, Amsterdam, 2013: 219-226.
- [13] Yang Y, Michael R, Homann. Synthesis and stabilization of blue-black TiO₂ nanotube arrays for electrochemical oxidant generation and wastewater treatment[J]. Environ. Sci. Technol., 2016, 50(21): 11888-11894.
- [14] Luyo C, Fabregas I, Reyes L, Solis J L, Rodriguez J, Estrada W, Candal R J. SnO₂ thin-films prepared by a spray-gel pyrolysis: Influence of Sol properties on film morphologies[J]. Thin Solid Films, 2007, 516(1): 25-33.
- [15] Comninellis C, Vercesi G P. Problems in DSA coating deposition by thermal-decomposition[J]. J. Appl. Electrochem., 1991, 21(2): 136-142.
- [16] Li X(李雪), Xue M(薛梦), Huang L(黄令), Li J T(李君 涛), Sun S G(孙世刚). Preparation of titanium-based metal oxide electrode and its ammonia nitrogen wastewater degradation performance[J]. J. Electrochem.(电化学), 2015, 21(1): 78-84.
- [17] Bi Q(毕强), Xue J Q(薛娟琴), Yu L H(于丽花), Wang C (汪丛), Yu F L(于芳蕾). Effect of lanthanum doping on electrochemical catalytic performance of Ti/Sb-SnO₂[J]. J. Chin. Rare Earth Soc.(中国稀土学报), 2013, 31(4): 465-472.
- [18] Fathollahi F, Javanbakht M, Norouzi P, Ganjali M R. Comparison of morphology, stability and electrocatalytic properties of $Ru_{03}Ti_{07}O_2$ and $Ru_{03}Ti_{04}Ir_{03}O_2$ coated Titanium anodes[J]. Russ. J. Electrochem., 2011, 47(11): 1281-1286.
- [19] Makarova M V, Jirkovsky J, Klementova M, Jirka I, Macounova K, Krtil P. The electrocatalytic behavior of Ru₀₈Co₀₂O_{2x} - the effect of particle shape and surface composition[J]. Electrochim. Acta, 2008, 53(5): 2266-2656.

- [20] Song X L(宋秀丽), Yang H M(杨慧敏), Liang Z H(梁镇海). Research progress of titanium-based oxide anode intermediate layer[J]. J. Electrochem.(电化学), 2013, 19(4): 313-321.
- [21] Liu J F(刘俊峰), Feng Y J(冯玉杰), Sun L X(孙丽欣), Qian Z G(钱正刚). Preparation and properties of Ti/SnO₂ Nano-coated electrocatalytic electrode[J]. Mater. Sci. Technol.(材料科学与工艺), 2006, 2: 200-203.
- [22] Sun M M(孙猛猛), Wang Q F(王庆法), Zou J J(邹吉军), Zhang X W(张香文). Study on failure behavior of IrO₂-SiO₂ coated titanium anode[J]. Chem. Ind. Eng.(化学工业 与工程), 2014, 31(5): 8-12, 42.
- [23] Hoseinieh S M, Ashrafizadeh F, Maddahi M H. A comparative investigation of the corrosion behavior of RuO₂-IrO₂-TiO₂ coated titanium anodes in chloride solutions[J]. J. Electrochem. Soc., 2010, 157(4): 50-56.
- [24] Shen H(沈浩), Fan J H(樊金红), Ma L M(马鲁铭). Preparation of active chlorine by Ti/Pt anode electrolysis in low concentration NaCl solution[J]. J. Electrochem.(电化 学), 2009, 15(2): 220-223.
- [25] Xu W C(徐万昌). Preparation of sodium hypochlorite and simulation research on its attenuation in rural water supply network[D]. Beijing: China Institute of Water Resources and Hydropower Research(中国水利水电科学研 究院), 2019.
- [26] Zhang Q(张琼), Peng J H(彭俊华), Cai C R(蔡传荣). Preliminary study on the failure mechanism of titanium anode coating peeling[J]. J. Chin. Inst. Water Resour. Hydro. Res.(中国水利水电科学研究院学报), 2001, 4: 410-411.
- [27] Hou Y Y(侯艳远). Electrochemical behavior and failure characteristics of Ti/IrO₂ anode in methanol aqueous solution[D]. Hangzhou: Zhejiang University(浙江大学), 2006.
- [28] Bergmann M E H, Koparal A S. Studies on electrochemical disinfectant production using anodes containing RuO₂
 [J]. J. Appl. Electrochem., 2005, 35(12): 1321-1329.

Application of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ Anode in Rural Drinking Water Disinfection

Jing-Ru Guo, Xue-Jiao Zhang, Shuai Liao, Xue-Ming Chen*

(College of Environmental & Resource Sciences of Zhejiang University, Hangzhou 310058, Zhejiang, China)

Abstract: Sodium hypochlorite disinfection has many advantages, including reliable operation, low cost, easily available raw materials. It is, therefore, suitable for disinfection of drinking water in remote rural areas. The service life and chlorine evolution efficiency of the anode are the main factors restricting the performance of the sodium hypochlorite generator. The special conditions of frequent shutdown and low electrolyte concentration in the rural drinking water application also put forward high requirements on the performance of the anode. In this study, Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅, a new-type and efficient chlorine evolution anode, was prepared by thermal decomposition method and further applied to disinfection of drinking water in rural areas. Comparison was also made between this anode with Ti/RuO₂-SnO₂-Sb₂O₅, Ti/RuO₂-TiO₂ and Ti/RuO₂-TiO₂ anodes. The surface morphology, elements and composition of the anodes were examined by SEM, EDS and XRD. The effects of sodium chloride concentration, current density and shutdown frequency on chlorine evolution efficiency and lifetime of the anodes were also investigated. It was found that the Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ electrode exhibited strong activity and high stability, and its coating components were highly fused into a solid solution with dense structure and great stability. The current efficiency of Ti/RuO2-IrO2-SnO2-Sb2O5 anode reached 91.55% in 15 g·L⁻¹ NaCl solution at 400 A·m⁻² and 20 °C. In the enhanced electrolysis lifetime experiment, the service lifetime of Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode reached 231 h, which was 77 times longer than that of Ti/RuO₂-TiO₂ anode. It was estimated that the Ti/RuO₂-IrO₂-SnO₂-Sb₂O₅ anode could be used for 20 years under the current density of 400 A \cdot m². Therefore, compared with the traditional electrode materials, Ti/RuO2-IrO2-SD2-Sb2O5 achieved higher chlorine evolution efficiency and stability. It could be used for a long time in the condition of frequent shutdown and low electrolyte concentration. Besides, it could greatly reduce the equipment operation cost, the raw material feeding frequency and the impurities introduction. Thus, the Ti/RuO_2 - IrO_2 - SnO_2 - Sb_2O_5 anode developed in this studymight be suitable for rural drinking water disinfection application.

Key words: Ti/RuO2-IrO2-SnO2-Sb2O5; rural drinking water; sodium hypochlorite generator; enhanced electrolytic life