[Journal of Electrochemistry](https://jelectrochem.xmu.edu.cn/journal)

[Volume 28](https://jelectrochem.xmu.edu.cn/journal/vol28) | [Issue 1](https://jelectrochem.xmu.edu.cn/journal/vol28/iss1)

2022-01-28

Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol

Meng Li

Li-Gang Feng School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China;, ligang.feng@yzu.edu.cn

Recommended Citation

Meng Li, Li-Gang Feng. Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol[J]. Journal of Electrochemistry, 2022 , 28(1): 2106211. DOI: 10.13208/j.electrochem.210621 Available at:<https://jelectrochem.xmu.edu.cn/journal/vol28/iss1/2>

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

[Review] DOI: 10.13208/j.electrochem.210621 Http://electrochem.xmu.edu.cn

$\begin{array}{rcl}\n&\text{\#} & \text{\#} & \text{\#} & \text{\#} \\
&\text{\#} & \text{\#} & \text{\#} \\
&\text{DOL: } 10.13208/j.\text{electrochem}.210621} & \text{Htp.}\text{\#} & \text{letrochem.} \text{xmu.edu.} \text{m} \\
&\text{Advances of Phosphide Promoter Assisted Pt Based Catalyst for} &\text{Electrooxidation of Method} & \text{Methanol} & \text{Meng Li, Li-Gang Feng} & \text{Feng}^*\n\end{array}$ $\begin{array}{lll} &\text{\#} & \text{\#} \\ \text{\#} & \text{\#} & \text{\#} \\ \text{\textbf{DOI: }} 10.13208/j.\text{electrochem}. 2106211}\; \text{(1 of 12)} \end{array} \qquad \qquad \text{\textbf{Htp://electrochem.xml.edu.cn}} \\ \text{\textbf{phide Promoter Assisted Pt Based} } \text{Catalyst for} \\ \text{\textbf{Electrooxidation of Method}} & \text{\textbf{Method of Method}} \\ \text{Meng Li, Li-Gang Feng}^{*} & \text{\#} \\ \text{\#} & \text{\#} \\ \text{\#} & \text{\#} \\ \text{\#} & \text{\#} \\$ セルティル

Mem. 2022, 28(1), 2106211 (1 of 12)

10.13208/j.electrochem.210621
 Http://electrochem.xmu.edu.or
 romoter Assisted Pt Based Catalyst for
 oridation of Methanol

Meng Li, Li-Gang Feng^{*}

vering, Yangzhou Un $\frac{1}{2}$ *L Electrochem.* 2022, 28(1), 2106211 (1 of 12)
 Eview] DOI: 10.132085j-electrochem.210621
 **Advances of Phosphide Promoter Assisted Pt Based Catalyst for

Electrooxidation of Methanol**

Meng Li, Li-Gang Fe $\begin{array}{rcl}\n&\text{E} & \text{E} & \text{E} & \text{E} & \text{E} \\
\text{L} & \text{Eletrochem. 2022, 28(1), 2106211 (1 of 12)} \\
&\text{DOL: 10.13208/j.electrochem.210621} & \text{Htp://electrochem.xml.edu.cn}\n\end{array}$

hool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China)
 dract: Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received incr **Abstract:** Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased
utention because of its multifirmctional active sites, tamble structure and composition, as w **A hatract:** Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased
attention because of its multificancional active sites, tumble structure and composition, as **Abstract:** Transition metal phosphids (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased
internom because of its multiformediated active sines, tunable structure and composition, as attention because of its multifunctional active sizes, hundels arruce and composition, as well as unique physical and elementative is the matter of the matter is the summation because of the matter is the advantage of the properties and extinent muni-composition synegotic effect. Some and we been made for this can
be an energy and the research progresses of transition metal phosphides (TMPs) in the ansied electroxicalition of melthanol incl not encomple the example prompt and the polytom and the promptom and the promotion and their performance evaluation for methanol oxidation are reviewed. The promotion effect of TMFs has been firstly presented and the catal -Gang Feng^{*}

thow University, Yangzhou, 225002, Jiangsu, China)

ic promoter in methanol fuel oxidation, has received increased

re and composition, as well as unique physical and chemical

vances have been made for thi **Example 12.**

Consequence in methanol fuel oxidation, has received increased

re promoter in methanol fuel oxidation, has received increased

re and composition, as well as unique physical and chemical

vances have been ic promoter in methanol fuel oxidation, has received increased
re and composition, as well as unique physical and chemical
vances have been made for this catalyst system recently. In the
(TMPs) in the assisted electrooxid ic promoter in methanol fuel oxidation, has received increased
re and composition, as well as unique physical and chemical
vances have been made for this catalyst system recently. In the
s (TMPs) in the assisted electroox ic promoter in methanol fuel oxidation, has received increased
re and composition, as well as unique physical and chemical
vances have been made for this catalyst system recently. In the
s (TMPs) in the assisted electroox $\begin{tabular}{ll} \textbf{4e} & $\langle k \rangle$ & $\langle k \rangle$ \\ \hline \textbf{1} & \textbf{1} & \textbf{2} & \textbf{2$ **Exercise of Phosphide Promoter Assisted Pt Based Catalyst for

Advances of Phosphide Promoter Assisted Pt Based Catalyst for

Electrooxidation of Methanol

Meng Li, Li-Gang Feng^{*}

(School of Chemistry and Chemical Engi Properties and Express and effects** and effects and the effect multi-composition syntential composition syntential multi-composition syntential composition syntems. The effect of the material composition of Methannol

Me **Externe review and Fig. 2014**
 **current reviews FE Current research propriate research propriate interaction of Methanol

Advances of Phosphide Promoter Assisted Pt Based Catalyst for**
 Electrooxidation of Methanol *thermolenn*, 2022, 28(1), 2106211 (1 of 12)
 Ekview] DOI: 10.132085, determokem, 2022, 28(1), 2106211 (1 of 12)
 Catalyst for
 Catalyst for
 Catalyst for
 Catalyst for
 Catalystication and the performance eval *L Bectrochem*, 2022, 28(1), 2106211 (1 of 12)

DOI: 10.13208/j.electrochem.210621
 **Advances of Phosphide Promoter Assisted Pt Based Catalyst for

Electrooxidation of Methanol

Meng Li, Li-Gang Feng^{*}

(School of Chemis** functional catalytic mechanism. The problems and catalytic mechanism. The problems and challenges in the **Electrooxidation of Methanol**

Meng Li, Li-Gang Feng^{*}

(School of Chemistry and Chemical Engineering, Yangzhou Uni Advances of Phosphide Promoter Assisted Pt Based Catalyst for
Electrooxidation of Methanol
Merginian Methanol
Methanol
(School of Chemistry and Chemical Engineering, Yangshou University, Yangshou, 225002, Jiangsu, China)
 Advances of Phosphide Promoter Assisted Pt Based Catalyst for

Electrooxidation of Methanol

Meng Li, Li-Gang Feng^{*}

(School of Chemistry and Chemical Engineering, Yangehou University, Yangehou, 225002, *Eangsu*, China)
 Example 11 Conferent Conference C

unsafe problems involving the application of hydro-

EMPCs systems with a power output range of 25 ~

gen fuel; the advantages of small size, high theoreti-

2000 W for portable applications have been done by

San's resea Direct methanol fitel cells (DMFCs) that use liq.

and Smart Fuel Cells (Germany) with the system

and Smart Fuel Cells (Germany) with the system

conversion technique hecause they can overcome the

manying charge ranging hanol as fuel are kind of promising energy

and Smart Fuel Cells (Germany) with the s

magnig from 25 to 1000 W, ir nearwhile, a section with a power coupler

the advantages of small size, high theoretic are all to Wicky **1 Introduction** The initial commercialization of DFMCs has been been firstly presented and the catalystystems based on the different metal centers of TMPs are then mainly discussed. It is concluded
that the TMPs are the samply pronons metalanon consider on through the electoric effect ed that the TMPs can greatly promote methanol oxidation through the electronic effect and the oxypthilic property bosed on the bi-

functional early in emetasion. The problems and challenges in methanol fatle oxidation by functional eatalytic mechanism. The problems and challenges in methanol fuel oxidation by using TMFs are also described at the developed and the direction direction being paid to the precise cather direction of the fuel c end with the attention being paid to the precise catalyst design. The catalytic mechanism probing and application of the fuel cells
device are proposed. The current effort might be helpful to the community for novel catal device are proposed. The current effort might be helpful to the community for novel catalyst system design and fabrication.
 Key words: cansition metal phosphide; methanol oxidation reaction; promoter; electrocatalysis
 Example 19 Example 19 Example 19 Example 19 Example 19 CHE CONFIGS CHEC INTERVIER INTERVIER CONFIGERAT CONFIGS CHECK CERTIFY EXAMPLE 19 EXAMPLE 19 EXAMPLE 19 EXAMPLE 19 EXAMPLE 19 EXAMPLE 19 1 Introduction

The initial commercialization of DFMs has been

Direct methanol fiel cells (DMFCs) that use liq-

iried by some companies like UltraCell (United States)

uid methanol as fuel are kind of promising energy **1 Introduction**

The initial commercialization of DFMCs has been

Direct methanol fitel cells (DMFCs) that use $\frac{1}{2}$ ried by some companies like UltraCell (United States)

uid methanol as fuel are kind of promising e more challenging for their commercial applications^[5,6]. the noble metal active sites and carbon support rere and composition, as well as unique physical and chemical
vances have been made for this catalyst system recently. In the
(TMPs) in the assisted electrooxidation of methanol including
nol oxidation are reviewed. The pro by
ances have been made for this catalyst system recently. In the

(TMPs) in the assisted electrooxidation of methanol including

nol oxidation are reviewed. The promotion effect of TMPs has

metal centers of TMPs are the s (TMPs) in the assisted electrooxidation of methanol including
nol oxidation are reviewed. The promotion effect of TMPs has
metal centers of TMPs are then mainly discussed. It is conclud-
e electronic effect and the oxyph not oxidation are reviewed. The promotion effect of TMPs has
metal centers of TMPs are then mainly discussed. It is conclud-
e electronic effect and the oxyphilic property based on the bi-
thanol fuel oxidation by using TM metal centers of TMPs are then mainly discussed. It is conclude electronic effect and the oxyphilic property based on the bi-
thanol fuel oxidation by using TMPs are also described at the catalytic mechanism probing and a is electronic effect and the oxyphilic property based on the bi-
thanol fuel oxidation by using TMPs are also described at the
catalytic mechanism probing and application of the fuel cells
unity for novel catalyst system thanol fitel oxidation by using TMPs are also described at the catalytic mechanism probing and application of the fuel cells unity for novel catalyst system design and fabrication.

The initial commercialization of DFMCs calalytic mechanism probing and application of the fuel cells
unity for novel catalyst system design and fabrication.
The initial commercialization of DFMCs has been
tried by some companies like UltraCell (United States)
 the point of novel calaryst system design and faoteation.

The initial commercialization of DFMCs has been

tried by some companies like UltraCell (United States)

and Smart Fuel Cells (Germany) with the system

ranging f Ether, promoter, electrocatalysis

The initial commercialization of DFMCs has been

tried by some companies like UltraCell (United States)

and Smart Fuel Cells (Germany) with the system

ranging from 25 to 1000 W; meanwh The initial commercialization of DFMCs has been
tried by some companies like UltraCell (United States)
and Smart Fuel Cells (Germany) with the system
ranging from 25 to 1000 W; meanwhile, a series of
DMFCs systems with a The initial commercialization of DFMCs has been
tried by some companies like UltraCell (United States)
and Smart Fuel Cells (Germany) with the system
ranging from 25 to 1000 W; meanwhile, a series of
DMFCs systems with a

Example 12
 Example 12 EVALUAT Example, the particles are detected to enhanoneus the incorporation surface that support as analogies and the specific sur-

sults in the particles agglomeration, migration and oxidation. For example, either Ni $\pm 0.48\%$ (*L. Electrochem.*) 2022, 28(1), 2106211 (2 of 12)
sults in the particles agglomeration, migration and oxidation. For example, either Ni-P or Fe-P coupled
leaching during the methanol oxidation reaction with P $\pm \frac{1}{2}$ the support and the support of the support and the support and the support (MOR) process, leading to the rapid eatalytic performa ticles; besides, catalyst promoter modified carbon \pm 42 \pm 22 \pm 22 \pm 22 \pm 22 \pm 23 \pm 23 \pm 23 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm 24 \pm $\pm \frac{1}{2}$ **Example 18**
 the particles agglomeration, 2022, 28(1), 2106211 (2 of 12)

ts in the particles agglomeration, migration and oxidation. For example, either Ni_rP or Fe_rP coupled

chemp during the methodol oxidation reaction with Pt w $#3E\% (L\text{ *Electrochem*.) } 2022, 28(1), 2106211 (2 of 12)$
sults in the particles agglomeration, migration and oxidation. For example, either Ni₃P or Fe₃P coupled
costing during the methanol oxidation reaction with Pt was sho $48/27$ *LEtermohem*, 2022. 28(1), 2106211 (2 of 12)
sults in the particles agglomeration, migration and oxidation. For example, either Ni=P or Fe-P coupled
leaching during the methanol oxidation reaction with Pt was show ¹³(*LT+Cl, Literionham,* 2022, 28(1), 2106111(2 of 12)

sults in the particles agglomeration, migration and oxidation. For example, either Ni-P or Fe-P coupled

leaching during the methanol oxidation reaction

(MOR) pro sults in the particles agglomeration, migration and oxidation. For example, either Ni_pP or Fe_pP coupled
leaching during the methanol oxidation reaction with Pt was shown to largely improve etanly
(MOR) process, leadin

for methanol oxidation, while in light of the high cost

or to understand the catalysis mechanism and the devel-

and instability of Ru, attention has been given to the oppenent of novel can

and method alternatives^{[0,14} and instability of Ru, attention has been given to the opment of novel eatalyst systems. While to our knowl-

atternatives^{inathing} One of the effective approaches is in edge, the summary report about TMPs system has not alternatives^{10,18}. One of the effective approaches is in-

dege, the summary report about TMPs system has not

trocharing the calatyty promoter that can assist the acc-

between provided. Considering their approaches th troducing the catalyst promoter that can assist the ac-

trive sites in promoting mehranol oxidation. The cata-

tive sites in permoting mehranol oxidation and oxidation and the performance of MOR. The cata-

tive study r tive sites in promoting methanol oxidation. The eata-

fuel cells technology as well as the promoting effect

lyigh promotion group and character like in the findamental catalyisis, we have tried to review

lyigh stabilit lyst promoter must have some good characters like in the fundamental catalysis, we have tried to review
high stability, good conductivity as well as the elec-
the adventus in the performance in the promotion of TMP as a c high stability, good conductivity as well as the clee-
the advances in the application of TMP as a catalytic
modiates adidescorption^{10,38}. Transition metal phosph-
primetiple of the promoter is firstly described in this tronic structure tuming ability in promoting the inter-
monotion of methanol oxidation. The promotion is
ides (TMPs) have received wide attention in the water-
review, including the electronic effect of the fuel devices i mediates ad/desorption^{[0,1,10}]. Transition metal phosph-

principle of the promoter is firstly described in this

did (TMPs) have recoived wide attention in the water-

review, including the electronic spectrome of thei ides (TMPs) have received wide attention in the ware-

voiw, including the electronic effect and the ligand

splitting reaction because of their unique electronic effect on the bifurcional catalysis mechanism; and

splitt <p>\n splitting reaction because of their unique electronic effect on the bifunctional catalysis mechanism; and cataly is mechanical at a higher number of 1MPs classified into nickel and catalyst promoters in enhancing the phosphides, in the physical analysis, etc.\n</p>\n<p>\n and calculated as ideal catalyst rhometers in enhancing the phosphides, in terms of the hybrid catalyst fibria-
\n public active sites for methanol oxidation^[49,48]. Com-
\n are discussed in terms of the hybrid catalyst fibria-
\n public active sites for methanol oxidation^[49,48]. Then, the individual
\n distribution of methods^[40,48]. This method is the probability of methods of methods^[40,48]. This method is the complexity and the previous methods of the high-
\n of the and catalytic properties^{[47,10}]. They have also been con-

sidered as ideal catalytic promotes in enhancing the phosphides, iron phosphides, colouly phosphides, ecc.

sidered as ideal catalytic spotter in enhancing the sidered as ideal eatalyst promoters in enhancing the phosphides, ion phosphides, colalr phosphids, etc.

nohe active sites for methanol oxidation¹⁷⁸ 11. Com-

are discussed in terms of the bybrid eatalyst finite-

pared noble active sites for methanol oxidation¹²⁶.²¹¹. Com-

are discussed in terms of the hybrid catalyst fabrica-

pared with metal oxides²⁷, antilacte⁸³, suffices²⁹, TMPs simulated backin-

have an electron-rich m

 $\# \ell \# (J. Electron) 2022, 28(1), 2106211 (2 of 12)$
sults in the particles agglomeration, migration and oxidation. For example, either Ni₂P or Fe₂P coupled
leaching during the methanol oxidation reaction with Pt was shown to lar $#E\# (J. Electrochem.) 2022, 28(1), 2106211 (2 of 12)$
sults in the particles agglomeration, migration and
leaching during the methanol oxidation reaction
(MOR) process, leading to the rapid catalytic perfor-
formance for methanol oxi $\# \&L \# (L \&Electrochem.)$ 2022, 28(1), 2106211 (2 of 12)

sults in the particles agglomeration, migration and

leaching during the methanol oxidation reaction

(MOR) process, leading to the rapid catalytic performance for metha $\frac{1}{2}$ $\frac{4k\omega}{2}(L\text{ }Electrochem.) 2022, 28(1), 2106211 (2 of 12)$
sults in the particles agglomeration, migration and oxidation For example, either Ni₂P or Fe₃P coupled
leaching during the methanol oxidation reaction with Pt was shown $28(1)$, 2106211 (2 of 12)

oxidation. For example, either Ni₂P or Fe₂P coupled

with Pt was shown to largely improve catalytic per-

formance for methanol oxidation, and the high

catalytic performance was attributed 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)

oxidation. For example, either Ni₂P or Fe₂P coupled

with Pt was shown to largely improve catalytic per-

formance for methanol oxidation, and the high

catalytic performance was attributed t 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)

oxidation. For example, either Ni₂P or Fe₂P coupled

with Pt was shown to largely improve catalytic per-

formance for methanol oxidation, and the high

catalytic performance was attributed t . 2106211 (2 of 12)

tion. For example, either Ni₂P or Fe₂P coupled

Pt was shown to largely improve catalytic per-

nece for methanol oxidation, and the high

yitic performance was attributed to the hy-

ilic propert 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 28(1), 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to th 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (2 of 12)
ration, migration and oxidation. For example, either Ni₂P or Fe₂P coupled
pl oxidation reaction with Pt was shown to largely improve catalytic per-
rapid catalytic

leaching during the methanol oxidation reaction

With Pt was shown to largely improve catalytic per-

(MOR) process, leading to the rapid catalytic performance dogation, and the high

mance degradation. The commercializat (MOR) process, leading to the rapid catalytic perfor-
mannee for methanol oxidation, and the high
manne degradation. The commercialization of DM-catalytic performance was attributed to the hy-
FCs relies on the highly eff mance degradation. The commercialization of DM-catalytic performance was attributed to the hy-

FCs relies on the highly efficient ratalytic for drophilic property of TMP induced electronic effect

emethanol oxidation, In FCs relies on the highly efficient catalyst for

encontrile property of TMP induced electronic effect

nenshaved coidation. In orter to solve the above prob-

nenshaved Fermatical Courses and the ligand effecte^{82,32};Th methanol oxidation. In order to solve the above prob-

lemathe defigured 27 ; The physically mixed carbon

lemathe area have been developed to enhance the inter-

were found to share developed to channel enter-

frace lems, novel earbon supports with a high specific sur-

black and Cu_PP as a mixed support of Pt nanoparticles

frace area have been developed to enhance the inter-

were found to have high catalytic activity for the

ste face area have been developed to enhance the inter-
netro-
netro-
netro-netro action between the support and active metal nanopar-
electrooxidations of methanol and ethanol²⁸¹,
ticles; besides, catalyst syponotr modified carbon
support as anchoring sites have also been done to in-
for methanol oxi ricles; besides, caralyst promoter modified carbon
since the promotion effect of TMP is efficient
support as anchoring sites have also been done to in-
methanol oxidation, and some significant works
recase the interaction. support as anchoring sites have also been done to in-

for methanol oxidation, and some significant works

rease the interaction.

The actalyst system are been done to develop this kind of catalyst

for methanol oxidation erease the interaction.
 EVAC acadayst system that the set catalyst system from the revive on these columes for methanol oxidation, while in light of the high cost to understand the catalysis mechanism and the helpelu
 Pt-Ru catalyst is currently the best eatalyst system (cm, the review on these advances would be helpful
of renthanol oxidation, while in light of the high cost to understand encalysis mechanisms and the devel-
and instabi $28(1)$, 2106211 (2 of 12)
oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
dealytic performance was attributed α , α (1), α 100211 (2 01 12)
oxidation. For example, either Ni₃P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attri oxidation. For example, either Ni₂P or Fe₂P coupled
with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to the hy-
drophilic property with Pt was shown to largely improve catalytic per-
formance for methanol oxidation, and the high
catalytic performance was attributed to the hy-
drophilic property of TMP induced electronic effect
and the ligand effect[[] formance for methanol oxidation, and the high
catalytic performance was attributed to the hy-
drophilic property of TMP induced electronic effect
and the ligand effect^[$56,77$]; The physically mixed carbon
black and Cu catalytic performance was attributed to the hy-
drophilic property of TMP induced electronic effect
and the ligand effect^[26,27]; The physically mixed carbon
black and Cu₃P as a mixed support of Pt nanoparticles
were drophilic property of TMP induced electronic effect
and the ligand effect^[α , \overline{z}]; The physically mixed carbon
black and Cu₃P as a mixed support of Pt nanoparticles
were found to have high catalytic activity fo and the ligand effect^{$(x, 27)$}, The physically mixed carbon black and Cu₃P as a mixed support of Pt nanoparticles were found to have high catalytic activity for the electrooxidations of methanol and ethanol^[28]. Sinc black and Cu₃P as a mixed support of Pt nanoparticles
were found to have high catalytic activity for the
electrooxidations of methanol and ethanol²⁸¹.
Since the promotion effect of TMP is efficient
for methanol oxidati were found to have high catalytic activity for the
electrooxidations of methanol and ethanol^{paj}.
Since the promotion effect of TMP is efficient
for methanol oxidation, and some significant works
have been done to develop electrooxidations of methanol and ethanol²⁸¹.

Since the promotion effect of TMP is efficient

for methanol oxidation, and some significant works

have been done to develop this kind of catalyst sys-

tem, the review on Since the promotion effect of TMP is efficient
for methanol oxidation, and some significant works
have been done to develop this kind of catalyst sys-
tem, the review on these advances would be helpful
to understand the ca for methanol oxidation, and some significant works
have been done to develop this kind of catalyst sys-
tem, the review on these advances would be helpful
to understand the catalysis mechanism and the devel-
opment of nove have been done to develop this kind of catalyst sys-
tem, the review on these advances would be helpful
to understand the catalysis mechanism and the devel-
opment of novel catalyst systems. While to our knowl-
edge, the s tem, the review on these advances would be helpful
to understand the catalysis mechanism and the devel-
opment of novel catalyst systems. While to our knowl-
edge, the summary report about TMPs system has not
been provided to understand the catalysis mechanism and the devel-
opment of novel catalyst systems. While to our knowl-
edge, the summary report about TMPs system has not
been provided. Considering their application in the
fuel cells t opment of novel catalyst systems. While to our knowledge, the summary report about TMPs system has not been provided. Considering their application in the fuel cells technology as well as the promoting effect in the full c edge, the summary report about TMPs system has not
been provided. Considering their application in the
fuel cells technology as well as the promoting effect
in the fundamental catalysis, we have tried to review
the advance been provided. Considering their application in the
fuel cells technology as well as the promoting effect
in the fundamental catalysis, we have tried to review
the advances in the application of TMP as a catalytic
promoter fuel cells technology as well as the promoting effect
in the fundamental catalysis, we have tried to review
the advances in the application of TMP as a catalytic
promoter for methanol oxidation. The promotion
principle of advances in the application of TMP as a catalytic
moter for methanol oxidation. The promotion
ciple of the promoter is firstly described in this
iew, including the electronic effect and the ligand
et on the bifunctional ca promoter for methanol oxidation. The promotion
principle of the promoter is firstly described in this
review, including the electronic effect and the ligand
effect on the bifunctional catalysis mechanism; and
then, typica principle of the promoter is firstly described in this
review, including the electronic effect and the ligand
effect on the bifunctional catalysis mechanism; and
then, typical examples of TMPs classified into nickel
phosp review, including the electronic effect and the ligand
effect on the bifunctional catalysis mechanism; and
then, typical examples of TMPs classified into nickel
phosphides, iron phosphides, cobalt phosphides, etc.
are dis effect on the bifunctional catalysis mechanism; and
then, typical examples of TMPs classified into nickel
phosphides, iron phosphides, cobalt phosphides, etc.
are discussed in terms of the hybrid catalyst fabrica-
tion an then, typical examples of TMPs classified into nickel
phosphides, iron phosphides, cobalt phosphides, etc.
are discussed in terms of the hybrid catalyst fabrica-
tion and their catalysis application for methanol oxi-
dati phosphides, iron phosphides, cobalt phosphides, etc.
are discussed in terms of the hybrid catalyst fabrica-
tion and their catalysis application for methanol oxi-
dation. Finally, the problems and challenges for this
hybr

Promoter

are discussed in terms of the hybrid catalyst fabrica-
tion and their catalysis application for methanol oxi-
dation. Finally, the problems and challenges for this
hybrid catalysts system are also presented, and hope-
ful

 $\# \# \# (L \: \text{Electrochem.})$ 2022, 28(1), 2106211 (3 of 12)
diates of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic
active sites of the Pt surface, and the strong affinity structure t $\# \ell \neq (L \ \text{Electrochem.}) 2022, 28(1), 2106211 (3 of 12)$
diates of CO-like species will be adsorbed over the
active sites of the Pt surface, and the strong affinity
makes it not easy for further desorption. Thus, the oc-
expecies $\frac{d}{dt}$ $\frac{d}{dt}$ adsorbed over the thus, can be modified by adjusting the elec $\frac{dE}{dt}(J. Electrowe hem.) 2022, 28(1), 2106211 (3 of 12)$
diates of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic
active sites of the Pt surface, and the strong affinity structure to chang **there** (*L Electrochem.*) 2022, 28(1), 2106211 (3 of 12)

diates of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic

active sites of the Pt surface, and the strong affinity s **EVALUATION**
 EVALUATION . Bagotzky et al. found that the CO intermediates are very stable at low potentials (< 0.5 V) and can be con-**EVALUAT EXAMORET (Example 10.5 V and 0.7 V and 0.7 V and 0.7 Planets of CO₂ on the protocol in the section of the Pt surface, and the strong affinity structure to change the adsorption strength of the makes it not easy** $\text{# } \ell \neq 0 \text{ if } \ell \neq 0 \text{ if$ tions (Eqns $(5)-(6)$ ^[19].

$$
CH_3OH + Pt \rightarrow Pt-CH_2OH_{ads} + H^+ + e
$$
 (1
Pt-CH₂OH_{ads} + Pt \rightarrow Pt₂-CHOH_{ads} + H⁺ + e (2
Pt-CIOH₁ + Pt₂ + COH₁ + H⁺ + e (2)

$$
1 \text{ } \mathcal{L} \text{ } \mathcal{
$$

$$
P1_3-COH_{ads} \rightarrow 2PL+PL-CO_{ads}+H+e
$$
 (4)

$$
P \cup CQ_1 + P \cup C\Pi_2 \cup C\Pi_3 \quad \text{or} \quad Q \cap CQ_2 + H^+ \quad \text{or} \quad Q
$$

$$
M + H_1O \rightarrow M_1OH + H^+ + e^-
$$
 (7)

$$
Pt\text{-}CO_{ads} + M\text{-}OH_{ads} \rightarrow Pt + M^+ \text{ } CO_2 + H^+ + e^-(8)
$$

there is almost no CO intermediate on the surface of Pt, which reduces the but there is co-

CH(θ H(θ) and θ) and θ and of Pt when the potential is higher than 0.7 V because th(k^{th}/L *Electrochem*,) 2022, 28(1), 2106211 (3 of 12)
diates of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic
active sites of the Pt surface, and the strong affinity **E** *C*Hike species will be adsorbed over the thus, can be modified by adjusting the electronic

s of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic

e sit not easy for furth (*J. Electrochem.*) 2022, 28(1), 2106211 (3 of 12)

orbed over the thus, can be modified by adjusting the electronic

strong affinity structure to change the adsoption strength of the

1. Thus, the oc-

species^{[33,34}]. (a) cause of the easy filling of the antibonding orbits, and th $fE^2F(J. *Electrochem*)$ 2022, 28(1), 2106211 (3 of 12)

or of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic

e sites of the Pt surface, and the strong affinity structure to c ectrochem.) 2022, 28(1), 2106211 (3 of 12)

dover the thus, can be modified by adjusting the electronic

graffinity structure to change the adsorption strength of the

us, the oc-

species^[73, 34]. Based on the electron 2) the oxidation potential of CO_{ak} is decreased^[20, 26]. In s of CO-like species will be advorbed over the "thus, can be medidined by adjusting the electronic
e sites of the Pt surface, and the strong affinity of the sixten to change the adsorption strength of the
sixt not easy extraordinal points. Solution the distance of the species of the specie (3) the TMPs, the metal is regarded as a hydride-acceps of CO-like species will be adsorbed over the thus, can be modified by adjusting the electronic

sit on the strong of the Pt surface, and the strong affinity structure to change the adsorption strength of the

sit not ea orbed over the thus, can be modified by adjusting the electronic
strong affinity structure to change the adsorption strength of the
1. Thus, the oc-
species^{131, 34]}. Based on the electronic effect, the intro-
cition fro (4) tor center and P is the proton-acceptor center resulte sites of the Pt surface, and the strong affinity

site into teasy for further desorption. Thus, the oc-

species^{185, 94}, Based on the electronic effect, the

detrive sites will prevent the reaction from fur-

duced se and the strong affinity
structure to change the adsorption strength of th
sorption. Thus, the oc-
species^[33,34]. Based on the electronic effect, the intro
the reaction from fur-
duced second component can modulate the (5) ing from electron cloud deviation of metal M induced is it not easy for further desorption. Thus, the oc-
species^{157, 13}. Based on the electronic effect, the introduction
giong on, and the largely reduced scaliyeir perform-
duced sconod component can modulate the adsorp-
 us, the oc-
species^{13, 34]}. Based on the electronic effect, the intro-
from fur-
duced second component can modulate the adsorp-
vic perfor-
tion of CO_{ab} by Pt, which is dependent on the center
effect^[12, 30]. posit (6) by the lower electronegativity of P atoms. TMP of active sites will prevent the reaction from fur-

duced second component can modulate the ac

en langely reduced catalytic erfort-

tion of CO_{ns} by Pt, which is dependent on the c

en langely reduced catalytic erfo the reaction from fur-

the reaction from fur-

duced second component can modulate the adsorp

duced catalytic perfor-

ton of CO_{ss}, by Pt, which is dependent on the cente

cO intermediates are

the promoter and d-band (7) demonstrates strong application ability for water going on, and the largely reduced catalytic perfor-

tion of CO_{ad} by Pt, which is dependent on the center

trake is happens resulted from the poisoning effect^{[0.20}].

trake the CO intermediates are to premoter and d-b c perfor-
tion of CO_{as} by Pt, which is dependent on the center
frect^{[13,30}]. position of the d-band of Pt. The interaction between
intes are
the promoter and d-band of Pt changes the electronic
structure of Pt surface (b) splitting reaction because of the robust water activanoe happens resulted from the poisoning effect^{(12,30}) position of the d-band of Pt. The interaction between

gotzky et al. found that the CO intermediates are the promoter and d-band of Pt changes the electronic

prisch Bagotzky et al. found that the CO intermediates are

be promoter and d-band of Pt changes the electronic

very stable at low potential (\leq 0.5 V) and can

be trimuously ovidized to CO₂ between 0.5 V and 0.7 V,

d-han very stable at low potentials (< 0.5 V) and can be con-
tructure of Pt surface, making the center of the
functosity oxidized to CO_p hetwors 0.5 V and 0.7 V, d-band of Pt lower relative to the fermi level, and de-
functi tinuously oxidized to CO, between 0.5 V and 0.7 V,

d-band of Pt lower relative to the Fermi level, and de-

but there is almost no CO intermediate on the surface creases the electron back-donation from the adsor-

of Pt but there is almost no CO intermediate on the surface

of Pt when the potential is higher than 0.7 V because

of Pt, which reduces the binding energy of the

the youi be removed according to the following reac-

that cO i of Pt when the potential is higher than 0.7 V because

will be removed according on the following reac-

translate to Pt, which reduces the binding energy of the

trison (Eqns (S)-(6))^{im},

trison for methanol of columer they will be removed according to the following reac-

than dCO intermediate^[27]. Therefore, the adsorption

streets is weakened be-

CH₂OH(a)^H)^m, P+ -> Pt_{-C}CH_{3O}H_{3a} + H⁺ + c² (2) cause of the easy fillin tions (Eqns $(S)-(6)^{1/8}$, $SU(4)$ strength of CO_{ab} on the Pt surface is weakened be-
CH($SOH + Pt \to Pt$ -CH($SOH_{ab} + H' + c$ (1) eause of the casy filling of the anitomology orbits, and
 Pt -CH($\Theta H_{ab} + Pt \to Pt$)-CH($\Theta H_{ab} + H' + c$ (CH_OOH + Pt → Pt-CH_OOH_{no} + H' + c (1) cause of the easy filling of the antibonding orbits, and

Pt-CH_OH_{no} + Pt → Pt₂-CHOH_{no} + H' + c (2) the oxidation potential of Co_{os} is decreased⁷⁸²⁰, and

Pt₊C-OH Pt-CH₃OH_{4a} + Pt → Pt₃-CHOH_{4a} + H⁺ + e (2) the oxidation potential of CO_{4a} is decreased⁽²⁶₃x). In
Pt_F-CHOH_{4a} + Pt --Pt_{P-}COH_{4a} + H⁺ + c (3) the TMP₅s, the metal is regarded as a hydrid-eace-
Pt_F Pt_r-CHOH_{aa} + Pt_r-> Pt_r-COH_{aa} + H⁺ + e (3) the TMPs, the metal is regarded as a hydride-accep-
Pt_r-COH_{aa} -+ 2Pt+Pt-CO_{os} + H⁺ + e^c (4) to recentr and P is the proton-acceptor center result-
Pt-H₁₅O-H Pty-COH_{as} \rightarrow 2Pt + Pt-CO_{6s} + H⁺ c² (4) tor center and P is the proton-acceptor center result-

Pt + H₂O - Pt-COH_{as} + H¹ + e² (5) ing from electron cloud deviation of metal M induced

Pt-CO_{6s} + Pt-OH_{as} Pt + H(O -- Pt-OH₃₆ + H⁺+ e (5) ing from electron cloud deviation of metal M induced
Pt-CO_{ad} + N-OH₃₆ - 2Pt+CO₂ + H⁺ + c (6) by the lower electronegativity of P atoms. TMP
Pt-CO_{ad} + N-OH₃₆ - Pt +M¹ CO₂ Pt-CO_{ta}.+ M-OH_{ta} \rightarrow Pt+M: CO₂ + F!⁺ + e (8) spliting reaction because of the robust water activa-
At present, there are two main fundamental princi-
incomediby; and formedion of the oxygen-containing
ples for ef At present, there are two main fundamental princi-

ion ability; and formation of the oxygen-containing

plus for efficient catalyst construction, namely, bi- species can thus be helpful to the intermediates of

functiona ples for efficient catalyst construction, namely, bi-
species can thus be helpful to the intermediates of
threthorol catalytic mechanism and electronic effect.

CD-like species oxidation has
do on the above mechanism of t functional eatalytic mechanism and electronic effect.

CO-like species oxidation based on the above mecha-

The bifunctional catalytic mechanism was proposed mism (Fag $(7)(-8)$). Moreover, the metallic properties

by Wata The bifunctional catalytic mechanism was proposed

mism (Eqns (7)-(8)). Moreover, the metallic properties

by Watanabe^{20,33} to explain the catalytic performance

of PH-Ru catalyst system for methanol oxidation;

cent Pt by Watamabe^{n, 13}₁ to explain the catalytic performance
of TMPs can change the electronic structure of adja-
of Pt-Ru catalytis system for methanol oxidation, two active centers on
binding energy positions cell H fis of Pt-Ru catalysts system for methanol oxidation; cent Pt metals, which is generally observed that the during during the methanol oxidation, two eative centers on binding energy posisions of Pt4 shift to two binding the e $(28(1), 2106211 \text{ (3 of 12)}$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can modu $(28(1), 2106211 \text{ (3 of 12)}$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can modu $\frac{1}{28(1)}$, 2106211 (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can $28(1)$, 2106211 (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can mo $(28(1), 2106211 \text{ (3 of 12)}$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can modu $(28(1), 2106211 \text{ (3 of 12)})$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^{[33,34}]. Based on the electronic effect, the intro-
duced second component can modul $(28(1), 2106211)$ (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modu $(28(1), 2106211 \text{ (3 of 12)}$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modul $(28(1), 2106211 \text{ (3 of 12)}$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modul 28(1), 2106211 (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modulat . 28(1), 2106211 (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modul 28(1), 2106211 (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can modula stellation of Co_{ads} on the method of CO_{ads} is decreased to except the TMPs, then the SPecies^{(33, 34}). Based on the electronic effect, the introduced second component can modulate the adsorption of CO_{as} by Pt, whic $(28(1), 2106211 \text{ (3 of 12)}$
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modul $28(1)$, 2106211 (3 of 12)
thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can mo **EXECTS EXECTS** COLLET (COLLET TRIST).

thus, can be modified by adjusting the electronic structure to change the adsorption strength of the species^{[33, 34}]. Based on the electronic effect, the introduced second compone thus, can be modified by adjusting the electronic
structure to change the adsorption strength of the
species^[33, 34]. Based on the electronic effect, the intro-
duced second component can modulate the adsorp-
tion of CO structure to change the adsorption strength of the
species^[33,34]. Based on the electronic effect, the intro-
duced second component can modulate the adsorp-
tion of CO_{as} by Pt, which is dependent on the center
positi species^{[33, 34}]. Based on the electronic effect, the introduced second component can modulate the adsorption of CO_{ssk} by Pt, which is dependent on the center position of the d-band of Pt. The interaction between the p duced second component can modulate the adsorption of CO_{ak} by Pt, which is dependent on the center position of the d-band of Pt. The interaction between the promoter and d-band of Pt changes the electronic structure of tion of CO_{abs} by Pt, which is dependent on the center
position of the d-band of Pt. The interaction between
the promoter and d-band of Pt changes the electronic
structure of Pt surface, making the center of the
d-band position of the d-band of Pt. The interaction between
the promoter and d-band of Pt changes the electronic
structure of Pt surface, making the center of the
d-band of Pt lower relative to the Fermi level, and de-
creases the promoter and d-band of Pt changes the electronic
structure of Pt surface, making the center of the
d-band of Pt lower relative to the Fermi level, and de-
creases the electron back-donation from the adsor-
bate to Pt, structure of Pt surface, making the center of the
d-band of Pt lower relative to the Fermi level, and de-
creases the electron back-donation from the adsor-
bate to Pt, which reduces the binding energy of the
Pt and CO in d-band of Pt lower relative to the Fermi level, and de-
creases the electron back-donation from the adsor-
bate to Pt, which reduces the binding energy of the
Pt and CO intermediate^[27]. Therefore, the adsorption
streng creases the electron back-donation from the adsor-
bate to Pt, which reduces the binding energy of the
Pt and CO intermediate^[27]. Therefore, the adsorption
strength of CO_{ask} on the Pt surface is weakened be-
cause of bate to Pt, which reduces the binding energy of the
Pt and CO intermediate^[27]. Therefore, the adsorption
strength of CO_{^{aak} on the Pt surface is weakened be-
cause of the easy filling of the antibonding orbits, and
t</sub>} Pt and CO intermediate^[27]. Therefore, the adsorption
strength of CO_{ask} on the Pt surface is weakened be-
cause of the easy filling of the antibonding orbits, and
the oxidation potential of CO_{ask} is decreased^{[20, 2} strength of CO_{ads} on the Pt surface is weakened be-
cause of the easy filling of the antibonding orbits, and
the oxidation potential of CO_{sa} is decreased^[20, 26]. In
the TMPs, the metal is regarded as a hydride-acce cause of the easy filling of the antibonding orbits, and
the oxidation potential of CO_{ads} is decreased^[20, 26]. In
the TMPs, the metal is regarded as a hydride-accep-
tor center and P is the proton-acceptor center resu the oxidation potential of CO_{ab} is decreased^[20, 26]. In
the TMPs, the metal is regarded as a hydride-accep-
tor center and P is the proton-acceptor center result-
ing from electron cloud deviation of metal M induced
 the TMPs, the metal is regarded as a hydride-acceptor center and P is the proton-acceptor center resulting from electron cloud deviation of metal M induced by the lower electronegativity of P atoms. TMP demonstrates stron tor center and P is the proton-acceptor center result-
ing from electron cloud deviation of metal M induced
by the lower electronegativity of P atoms. TMP
demonstrates strong application ability for water
splitting reacti ing from electron cloud deviation of metal M induced
by the lower electronegativity of P atoms. TMP
demonstrates strong application ability for water
splitting reaction because of the robust water activa-
simility; and fo by the lower electronegativity of P atoms. TMP
demonstrates strong application ability for water
splitting reaction because of the robust water activa-
splitting reaction because of the robust water activa-
tion ability; a demonstrates strong application ability for water splitting reaction because of the robust water activa-
tion ability; and formation of the oxygen-containing
species can thus be helpful to the intermediates of
CO-like spec splitting reaction because of the robust water activa-
tion ability; and formation of the oxygen-containing
species can thus be helpful to the intermediates of
CO-like species oxidation based on the above mecha-
nism (Eqn tion ability; and formation of the oxygen-containing
species can thus be helpful to the intermediates of
CO-like species oxidation based on the above mecha-
nism (Eqns (7)-(8)). Moreover, the metallic properties
of TMPs c species can thus be helpful to the intermediates of
CO-like species oxidation based on the above mecha-
nism (Eqns (7)-(8)). Moreover, the metallic properties
of TMPs can change the electronic structure of adja-
cent Pt m CO-like species oxidation based on the above mechanism (Eqns (7)-(8)). Moreover, the metallic properties of TMPs can change the electronic structure of adjacent Pt metals, which is generally observed that the binding ener nism (Eqns (7)-(8)). Moreover, the metallic properties
of TMPs can change the electronic structure of adja-
cent Pt metals, which is generally observed that the
binding energy positions of Pt 4f shift to low binding
energ of TMPs can change the electronic structure of adja-
cent Pt metals, which is generally observed that the
binding energy positions of Pt 4f shift to low binding
energy positions resulting from partial electron trans-
fer cent Pt metals, which is generally observed that the binding energy positions of Pt 4f shift to low binding energy positions resulting from partial electron transfer from TMP to Pt^[20,35]. The electron transfer is due to 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (3 of 12)
be adsorbed over the thus, can be modified by adjusting the electronic
md the strong affinity structure to change the adsorption strength of the
orption. Thus, the oc

 $\# \ell \# (J. Electron) 2022, 28(1), 2106211 (4 of 12)$
sponding phosphide promoter is classified by the results showed that Pt-Ni₂P/graphene catalyst exhibit-
metal center and some examples of their application ed much higher catalyt

moter in the TMPs family used for methanol oxida-
on the Pt catalyst. Spectral analysis showed that the
droin. It has a hoxegonal crystal structure with highly reckeel and horizon
displayied and chemical stability for wat ion. It has a hexagonal crystal structure with high Pt-Ni₃P-graphene manoparticles exhibited a hybrid
physical and chemical stability for water splitting re-
crystal and chemical stability for water splitting re-
partic physical and chemical stability for water splitting re-

erystal structure with slightly reduced lattice parame-

eactival to is cocellent Pt-like properties and or-

ters. XPS data revealed that the Pt 4 f peak of 20%

r action due to its excellent Pt-like properties and cor-

ters. XPS data revealed that the Pt 4f peak of 20%

resistance²⁰¹. The effects of Ni₂P arounds and Pt-Ni₂P graphene significantly shifled about 0.4 eV to

the rosion resistance^{(wg}). The effects of Ni_tP amounts and Pt-Ni_tP-graphene significantly shifted about 0.4 eV to
the interaction between Pt and Ni_jP on PtC catalyst the low binding energy direction (Figure 1(G)), ind the interaction between Pt and Ni₂P on Pi/C catalyst

the low binding energy direction (Figure 1(G)), indicat-

for methanol oxidation were reported¹²¹. The Ni₂P img as trong electron interaction resulting from some for methanol oxidation were reported¹²¹. The Ni₃^p ing a strong electron interaction resulting from some
anapoprisies anchored ore the carbon support were electrons transfer from Ni²P to Pt. In addition, the
employ nanoparticles anchored over the curbon support were

electrons transfer from Ni_P to Pt. In addition, the

employed to support the Pt nanoparticles by an im-

strong electron interction between Pt and Ni_P

pregration m employed to support the Pt nanoparticle by an im-
strong electron interaction between Pt and Ni₂P
pregnation method and a microwave-assisted ethy-
imagenatieles was influenced by the content of Ni₃P
ten glycol reducti pregration method and a microwave-assisted ethy-
nanoparticles was influenced by the content of Ni-P
the chere glyon reduction method, and the fine distribu-
in the system. When the content of Ni-P axa 20%, the
tion of th lene glyool reduction method, and the fine distribu-
in the system. When the content of Ni-P was 20%, the

trion of the Pt namoparticies with the average particle calulyst and the best sami-CO poisoning ability and

size tion of the Pt nanoparticles with the average particle

size of 2.5 mm was 69 than the ochies of 2.5 mm was 69.9 and the extreme in (Figure 1(11-1)). By performing the physical characterial

mized PtNi₂P/C-30% catalyst size of 2.5 nm was obtained (Figure 1(A)). The opit-

mized Pre-Ni-Pr-N mized Pt-Ni₃P/C-30% catalyst showed significantly
higher proformance than Pt/C, Ni-Pt/C and P-Pt/C carditions and the cletterochemical measurements, it
higher performance than Pt/C, Ni-Pt/C and P-Pt/C carrietions and th higher performance than Pt/C, Ni-Pt/C and P-Pt/C erizations and the electrochemical measurements, it expansives (Figure 1 (Bi)). The improved performance was suggested that to higher elations between Pt be attributed to t entalysts (Figure 1(B)). The improved performance was suggested that the high catalytic performance can was attributed to the strong initeration between Pt be attributed to the Pt and Ni2P hybridization encour-
and Ni2P was attributed to the strong interaction between Pt be attributed to the Pt and Ni₂P hybridization encount-
high phene catalysity correl during the one-set phytothermal process that
from Ni₂P resulting in the pratial

metal center and some examples of their application $\exists k \neq (L \text{ Electrochem.}) 2022, 28(1), 2106211 \text{ (4 of 12)}$
sponding phosphide promoter is classified by the results showed that Pt-Ni₂P/graphene catalyst exhibit-
metal center and some examples of their application ed much higher $\frac{16}{2}$ (*J. Electrochem.*) 2022, 28(1), 2106211 (4 of 12)
sponding phosphide promoter is classified by the results showed that Pt-Ni₃P/graphene catalyst exhibit-
metal center and some examples of their application e $\begin{array}{lll}\n & \text{#1E}\ncong \text{(L Electrochem.) 2022, 28(1), 2106211 (4 of 12)} \\
 & \text{sponding phosphate promoter is classified by the results showed that Pt-Ni_BP/graphene catalyst exhibit-
metal center and some examples of their applicationed much higher catalytic activity and stability for\nfor methanol oxidation are discussed. It is concluded, the TMPs can promote the Pt-based catalyst for\nthat the TMPs can promote the Pt-based catalyst for\natributed the high catalytic performance to the im-
method oxidation, while the real catalytic mecha-
ing is still not clear, and more effort is required to-
thus, promoting the electrooxidation kinetics of CO_{ab}-
our group^{DB} simplified the experimental$ $\frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt}\right) = \frac{d}{dt}\left(\frac{d}{dt}\right)\left(\frac{d}{dt$ **EVALUATION**

We the properties in the precise interaction to the translation of the translation of the translation

the precise interaction that Pt-Ni₃P/graphene catalyst exhibitioned center and some examples of their $\pm \frac{1}{2}$ $\pm \frac$ $\frac{d}{dt}\left\{\frac{d}{dt}\left(f, \frac{d}{dt}\right) - \frac{d}{dt}\right\} = \frac{d}{dt}\left\{\frac{d}{dt}\left(f, \frac{d}{dt}\right) - \frac{d}{dt}\right\}$

Supporting phosphide promoter is classified by the results showed that Pt-Ni₂P/graph

metal center and some examples of their applicati $\frac{1}{2}$ is the first catalyst pro-

(Nickel phosphide promoter is classified by the results showed that Pt-NisP/graphene catalyst exhibitial

enticated center and some examples of their application

or methanol oxidatio **EVALUATION THE THE SET INTERT CONDUCT THE SET AND THE THE SET AND ANONGOTRIZED AND THE SET AND THE S Has a hexagonal manufology Has a head of the manufology Has a hexagonal critical structure in the manufology and the methanol oxidation are discussed. It is concluded methanol oxidation than PtVC alone, and the autho** $\text{#}(E\#Z, Llermchem) \cdot 2022.28(1), 2106211 (4 of 12) \label{thm:4}$

sponding phosphide promoter is classified by the results showed that Pt-Ni-P'
graphene catalyst exhibit-

metal center and some examples of their application ed much the $t^2/2$. Hetomology, 2022, 28(1), 21021, 14 (4712)

sponding phosphide promoter is classified by the results showed that Pt-Ni₁P/graphene catalyst exhibi-

metal center and some examples of their application of much **FIGPF(LE Electrochem.)** 2022, 28(1), 2106211 (4 of 12)

sponding phosphide promoter is classified by the results showed that Pt-Ni₃P graphene catalyst exhibit-

metal center and some examples of their application ed m sponding phosphide promoter is classified by the results showed that Pt-Ni₂P/graphene catalyst exhibit-
metal center and some examples of their application
of much higher catalytic activity and stability for
for methano sponding phosphide promoter is classified by the results showed that Pe-Ni₂P/graphene eatalyst exhibiterarity ener for the methanol oxidation are ancher for their application ed much higher catalytic activity and stabil metal center and some examples of their application
or d much higher catalytic activity and stability for
the methodox constants and the sucessed. It is concluded method oxidation than PVC alone, and the authors
that the for methanol oxidation are discussed. It is concluded methanol oxidation than PVC alone, and the authors
methanol oxidation, while the Pelsost catativity or attributed the high catalytic proferance to the im-
methanol ox that the TMPs can promote the Pt-based catalyst for
method on kingin eatalytic performance to the im-
method oxidation, while the real catalytic mechanism proved electron transfer among Pt, high and graphene,
mism is stil methanol oxidation, while the real catalytic mechanism proved electron transfer among Pt, Ni_jP and graphene,

nis in still not clear, and more clibri is required to thus, promoting the clear

ward the precise interactio nism is still not clear, and more effort is required to-
thus, promoting the electrooxidation kinetics of CO₄,
standing in their catalytic mechanism. Come group^{s i}s implified the experimental process and
standing in t ward the precise interaction tunning and the under-
 Simplified the experimental process and
 SiX (Figure 10.5 nm was obtained the successfully prepared ultraine PN-NB-graphene
 3. Nickel Phosphide

Nickel phosphide standing in their catalytic mechanism.
 SINCEN Phosphide
 SINCEN Phosphide
 Nickel phosphide (NiP) is the first catalyst process are ampleasingly as simple one-starp is obset and Nickel phosphide (NiP) is the first **3 Nickel Phosphide**

Nickel phosphide

Nickel phosphapide (Ni_cP) is the first catalyst pro-

method, and further studied the o-catalysis of Ni₂P

method, and further studied the o-catalysis of Ni-Pt-Ni-Pt-Ri-Pt-Ni-Pt Nickel phosphide (Ni_rP) is the first catalyst pro-
method, and firther studied the co-catalysis of Ni_rP
notes in the TMPs family used for methanol oxida-
note in the TMB standard crystal structure with high
 $P_1N_1P_2$ 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic perfo 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C a . 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic per . 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic per 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C a 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C a 28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C a .28(1), 2106211 (4 of 12)
results showed that Pt-Ni₂P/graphene catalyst exhibit-
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C results showed that Pt-Ni₂P/graphene catalyst exhibit-
results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
att results showed that Pt-Ni₂P/graphene catalyst exhibit-
ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic performance to the im-
proved ed much higher catalytic activity and stability for
methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic performance to the im-
proved electron transfer among Pt, Ni₂P and graphene,
thus, pr methanol oxidation than Pt/C alone, and the authors
attributed the high catalytic performance to the im-
proved electron transfer among Pt, Ni₂P and graphene,
thus, promoting the electrooxidation kinetics of CO_{ak}-
Our attributed the high catalytic performance to the im-
proved electron transfer among Pt, Ni₂P and graphene,
thus, promoting the electrooxidation kinetics of CO_{abs}
Our group^[26] simplified the experimental process and
 proved electron transfer among Pt, Ni₂P and graphene,
thus, promoting the electrooxidation kinetics of CO_{abs}
Our group^[26] simplified the experimental process and
successfully prepared ultrafine Pt-Ni₂P-graphene
na thus, promoting the electrooxidation kinetics of CO_{abs}
Our group^[36] simplified the experimental process and
successfully prepared ultrafine Pt-Ni₂P-graphene
nanoparticles by a simple one-step hydrothermal
method Our group^[26] simplified the experimental process and
successfully prepared ultrafine Pt-Ni₂P-graphene
nanoparticles by a simple one-step hydrothermal
method, and further studied the co-catalysis of Ni₂P
on the Pt c successfully prepared ultrafine Pt-Ni₃P-graphene
nanoparticles by a simple one-step hydrothermal
method, and further studied the co-catalysis of Ni₃P
on the Pt catalyst. Spectral analysis showed that the
Pt-Ni₃P-gra nanoparticles by a simple one-step hydrothermal
method, and further studied the co-catalysis of Ni₂P
on the Pt catalyst. Spectral analysis showed that the
Pt-Ni₂P-graphene nanoparticles exhibited a hybrid
crystal stru method, and further studied the co-catalysis of Ni₃P
on the Pt catalyst. Spectral analysis showed that the
Pt-Ni₃P-graphene nanoparticles exhibited a hybrid
crystal structure with slightly reduced lattice parame-
ters on the Pt catalyst. Spectral analysis showed that the
Pt-Ni₂P-graphene nanoparticles exhibited a hybrid
crystal structure with slightly reduced lattice parame-
ters. XPS data revealed that the Pt 4f peak of 20%
Pt-Ni₂ Pt-Ni₃P-graphene nanoparticles exhibited a hybrid
erystal structure with slightly reduced lattice parame-
ters. XPS data revealed that the Pt 4f peak of 20%
Pt-Ni₃P-graphene significantly shifted about 0.4 eV to
the l erystal structure with slightly reduced lattice parame-
ters. XPS data revealed that the Pt 4f peak of 20%
Pt-Ni₂P-graphene significantly shifted about 0.4 eV to
the low binding energy direction (Figure 1(G)), indicat-
 teraction. Pt-Ni₂P-graphene significantly shifted about 0.4 eV to
the low binding energy direction (Figure 1(G)), indicat-
ing a strong electron interaction resulting from some
electrons transfer from Ni₂P to Pt. In addition, th Example 1.1 and the meaning of irrection (Figure 1(G)), indicated a strong electron interaction resulting from some electrons transfer from Ni₂P to Pt. In addition, the ong electron interaction between Pt and Ni₂P the a strong electron interaction resulting from some
trons transfer from Ni₂P to Pt. In addition, the
g electron interaction between Pt and Ni₂P
particles was influenced by the content of Ni₂P
e system. When the conten is electron interaction resulting from some

ansfer from Ni₂P to Pt. In addition, the

tron interaction between Pt and Ni₂P

es was influenced by the content of Ni₂P

m. When the content of Ni₂P was 20%, the

1 th electrons transfer from Ni₂P to Pt. In addition, the
strong electron interaction between Pt and Ni₂P
nanoparticles was influenced by the content of Ni₂P
in the system. When the content of Ni₂P was 20%, the
catalys strong electron interaction between Pt and Ni₃P
nanoparticles was influenced by the content of Ni₃P
in the system. When the content of Ni₃P was 20%, the
catalyst had the best anti-CO poisoning ability and
the electr nanoparticles was influenced by the content of Ni₂P
in the system. When the content of Ni₂P was 20%, the
catalyst had the best anti-CO poisoning ability and
the electrooxidation performance of alcohol fuel
(Figure 1(H in the system. When the content of Ni₃P was 20%, the
catalyst had the best anti-CO poisoning ability and
the electrooxidation performance of alcohol fuel
(Figure 1(H-I)). By performing the physical charact-
erizations a 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (4 of 12)

is classified by the results showed that Pt-Ni₂P/graphene catalyst exhibit-

es of their application ed much higher catalytic activity and stability for

ussed. It

 $Fe^{δ+}$ and $P^δ$ is facile to the mass and charge transfers, catalyst had the best anti-CO poisoning ability and
the electrooxidation performance of alcohol fuel
(Figure 1(H-I)). By performing the physical charact-
erizations and the electrochemical measurements, it
was suggested t the electrooxidation performance of alcohol fuel
(Figure 1(H-I)). By performing the physical charact-
erizations and the electrochemical measurements, it
was suggested that the high catalytic performance can
be attributed (Figure 1(H-I)). By performing the physical characterizations and the electrochemical measurements, it was suggested that the high catalytic performance can be attributed to the Pt and Ni₂P hybridization encountered dur erizations and the electrochemical measurements, it
was suggested that the high catalytic performance can
be attributed to the Pt and Ni₂P hybridization encoun-
tered during the one-step hydrothermal process that
enhanc was suggested that the high catalytic performance can
be attributed to the Pt and Ni₂P hybridization encoun-
tered during the one-step hydrothermal process that
enhanced the anti-poisoning ability and electronic in-
ter be attributed to the Pt and Ni₂P hybridization encoun-
tered during the one-step hydrothermal process that
enhanced the anti-poisoning ability and electronic in-
teraction.
4 Iron Phosphide
Iron phosphide (FeP) with s

-1 **Example 1991**
 Example 10
 Example 200
 Example 20

Example 11
 Example 1 All $\frac{1}{2}$
 Example 1 All $\frac{1}{2}$
 Example 11 All $\frac{1}{2}$
 Example 11 Example and the station reaction reactio Bioding energy $i(\mathbf{v})$
 Figure 1 (A) High-resolution transmission electrom nicroscopic image of a PeNi₂PC-39% sample, (H) cycles when

(C) power-density curves for fiel cells employing Pi-Ni₂PC-30%, Pi-Ni₂PC, **Figure 1** (A) High-resolution transmission electron microscopic image of a Pt-Ni-PC-30% sample, (B) cyclic voltammograms and
(C) power-density curves for fuel cells employing F-Ni-JPC-30% (Pr-NC-, Pt-NC-JM and FC-HR as a (C) power-density curves for fact cells employing Pt-Ni-PC-30%, Pt-Ni-C, Pt-PC, PtC-JM and PtC-H as unode catalysts^[6].

Steady-state polarization curves (O) and power-density curves of the elects employing (i.) PHk-Ni-Sieady-state polarization curves (D) and power-density curves for fitel cells employing (E) PRE-Ni-P'(C-40%, (I) commercial PREW
C-JM as anode catalytis²⁹², (O) High-resolution XPS spectra of Pe4f, (H) CV curves of th CJM as anode eathly same. (ii) High-resolution XPS spectra of Pt-4f, (H) CV curves of the prepared catalysts measured in 0.5 mol-1.¹

H₃G), containing 1 mol-1.² CH5OH at a scan rate of 50 mV-s⁻² and (0) specific a H₃O₆ containing 1 not-1.¹ CH₃OH at a sean rate of 50 mV ·s² and (1) specific activity and mass activity at the peak potential for methunol existingine". (color on line)
The better resistance to CO poisoning was We find that the catalytic strivity and the stricting ore-shell structured catalyst specified or \mathbb{R}^n . The catalytic performance of \mathbb{R}^n with P and P **Propagation**
 Propagation
 PHOSE SECUTE ANCALLY CONSULTER CONSULTER SECUTE AND PROPAGATION SECUTE AND PROPAGATION SECUTE AND PROPAGATION SECURE USE CALCUTE AND PROPAGATION (I) precific activity and mass activity at th EXERCTS
 EXERCTS
 EXECTS
 EXECTS
 EXECTS
 EXECTS
 EXECTS
 EXECTS
 EXECTS
 EXECTS
 EXECTS
 Example 12
 Example 12
 Example 12
 Example 12
 Example Core-shell structured catalysts (B) cyclic voltammograms and
 Example of Pt-Ni-P/C. Pt/C-JM and Pt/C-H as anode catalysts ^[25].

Ideals employing (E) P when $\frac{1}{2}$ and $\frac{10\%}{10\%}$ and $\frac{20\%}{10\%}$ and $\frac{10\%}{10\%}$ and $\frac{10\%}{10\%}$ and $\frac{10\%}{10\%}$ are ptrofing of PtNig-G PtNig-G PtO-H
ige of a Pt-NigP/C-30% sample, (B) cyclic voltammograms and
pt PtNi/ vs.SCE)
 $P^{1.56P_{2}}$ correspondence for the catalytic performance of a Pt-Ni₂PC-3 Pt-Ni₂PC-3 performance for methanol catalytic Pt-Ni₂C Pt-Ni₂PC-40%, (F) commercial PtRu/

(H) CV curves of the prepared catalysts age of a Pt-Ni₂P/C-30% sample, (B) cyclic voltammograms and

pt-Ni/C, Pt-P/C, Pt/C-JM and Pt/C-H as anode catalysts¹⁸⁸.

el cells employing (E) PtRu-Ni₂P/C-40%, (F) commercial PtRu/

(H) CV curves of the prepared ea , Pt-Ni/C, Pt-P/C, Pt/C-JM and Pt/C-H as anode catalysts^[25].

El cells employing (E) PtRu-Ni₂P/C-40%, (F) commercial PtRu/

(H) CV curves of the prepared eatalysts measured in 0.5 mol·L¹

(1) specific activity and el cells employing (E) PtRu-Ni₂P/C-40%, (F) commercial PtRu/

(H) CV curves of the prepared eatalysts measured in 0.5 mol·L⁴

(I) specific activity and mass activity at the peak potential for

catalyst system have hig (H) CV curves of the prepared catalysts measured in 0.5 mol·L⁻¹
(I) specific activity and mass activity at the peak potential for
catalyst system have high catalytic activity and the
anti-poisoning ability for methanol (I) specific activity and mass activity at the peak potential for
catalyst system have high catalytic activity and the
anti-poisoning ability for methanol electro-oxidation
compared with a controlled Pt/C catalyst (Figure

different PtRu catalysts in 0.5 mol·L⁻¹ H₂SO₄/1 mol·L⁻¹ CH₃OH solution at 0.6 V for 3600 s; (F) CO_{^{ak}} stripping voltammograms</sub> of PtRu@FeP 1:1, PtRu/C-H and PtRu/C-JM catalysts in 0.5 mol \cdot L⁻¹ H₂SO₄ solution^[20]. (color on line)

EVALUATION CONSULTERT CONSULTERT CONSULTERT CONSULTERT (FOLD VICENCIS CONSULTERT ARE CONSULTERT (FOLD VICENCIS CONSULTERT (FOLD VICENCIS CONSULTERT (FOLD VICENCIS CONSULTERT). This core-stollation of the particle of the PERICE CONSERVANTS AND EXECUTE CONSERVANTS AND EXECUTE CONSERVANTS (CONSERVANTS) CONSERVANTS (CONSERVANTS) AND THE CONSERVANTS (CONSERVANTS) (D) The electrocatalysis potential and the catalysts for methanol occurrence of E

E $\frac{1}{4s^2}$
 $\frac{1}{4s^2}$
 $\frac{1}{4s^2}$
 $\frac{1}{s^2}$
 $\frac{1}{s^2}$
 $\frac{1}{s^2}$
 $\frac{1}{s^2}$
 $\frac{1}{s^2}$
 Figure 2 (A-B) TEM images of P-Fe-P sample, (C) cyclic volummorganus of P-Fe-P and PtC catalysts for methan **Example 1.1** The complete of the benchmark commentation of the benchmark commentation of the set of the benchmark commentation $\frac{1}{2}$ of the benchmark commentation $\frac{1}{2}$ of the cat-
 Figure 2 (A-H) IT-M images o **Figure 2** (A-B) TEM images of Pt-Fe_P sample, (C) cyclic voltammograms of Pt-FeP and PrC catalysts for methanol oxidation¹⁷¹,
(D)The electrocentalytic performance of different PiRu catalysts for methanol electro-oxida **Figure 2** (A-H) TEM images of PE-ley maple, (C) gotic volument
params of PE-ley and PEC catalysis for methanol existence in the catalysis for methanol existence of different PRu catalysis in 0.5 mol - L¹ ERO/1 mol - L (1)) The electrocealytic performance of different FePu catalytis for methanol electron-existance; (1): Chonomappeometric curves of of Hirdual directi PRG calalysis in 0.5 msi - L' 14,50*x* msi - L' CH(OH solution at 0.6 V for 500 s; (1) CO_{sa} stripping volummorgnums

of PRG(C catalyst and PRG(C-JM eatilysts in 0.5 mol -1.⁴ HSO, solution²⁸; (color on line)
 or risingurer 1.1, riskies An and riskies Society can be a riskie of the manifold of the adsorption of intermediates, thus, it has received by (Figure 2(D)). The largely improved cata and desorption of intermediates, thus lyst stability compared to the PRWC reference cata-

large attention for water splitting reaction

systs was observed by chronoamperometric test for

characters make it be a suitable platform

3600 s (Figure 2(E)). The CO lysts was observed by chronoamperometric test for

characters make it be a suitable pl

3600 s (Figure 2(E)). The CO stripping voltammograms

the Pt based catalysts for methan

showed that the prepared PRu@FeP catalyst ha

PtRuC catalyst and home-made PtRuC catalyst, re-

modest binding energy is beneficial to the adsorption

specetively (frigure 2(D)). The largely improved cata-

and desorption of intermediates, thus, it has received

lyst PRWC catalyst and home-made PRWC catalyst, re-
spectrively (Figure 2(D)). The Largely improved cata-
slag and descoption of intermediates, thus, it has received pyer state-
if yets stability exampled to the PRWC reference spectively (Figure 2(D)). The largely improved eata-

and desorption of intermediates, thus, it has received

lyst stability compared to the PRIuC reference can-

lyst savis observed by chronomperometric test for

charact 00 s (Figure 2(E)). The CO stripping voltammograms the Pt based catalysts for methanol oxidation, and it he mean a variable the heyeard PRRu@Fe teatly at has a variable for the as a variable for the sample in the predicti showed that the prepared PRRu@FeP catalyst had ex-

cellent tolerance to CO poisoning effect with the For example, CoP supported on graphitized carbon

epeak potential and the onset potential of CO oxida-

fair-incated by **Example 18**

The Based catalysts for methanol oxidation^[27], and \overline{R} \overline{R} has a variety of stoichiometry such as CoP and Co2P. For $\frac{F_0^{0.00}}{2000 \times 2000 \times 3000}$
 $\frac{F_0^{0.00}}{40.15}$ Fabrication
 $\overline{f}_{(8)}^{2,100}$
 $\overline{f}_{(8)}^{2,100}$
 $\overline{f}_{(8)}^{2,100}$

oggrams of Pt-Fe₂P and Pt/C catalysts for methanol oxidation¹²⁷.

Internation electro-oxidation; (E) Chronoamperometric curves of

ution at 0.6 **Example 1** and Pt/C catalysts for methanol oxidation¹²⁷.
 Ans $\frac{1}{250}$ and Pt/C catalysts for methanol oxidation¹²⁷.

northanol electro-oxidation; (E) Chronoamperometric curves of

ution at 0.6 V for 3600 s; (F) $\frac{260}{200}$ $\frac{260}{3600}$ $\frac{350}{3500}$ $\frac{30}{3500}$ $\frac{60}{3500}$ $\frac{60}{3500}$ $\frac{60}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ $\frac{100}{3500}$ nograms of Pt-Fe-P and Pt/C catalysts for methanol oxidation^[27].
nethanol electro-oxidation; (E) Chronoamperometric curves of
ution at 0.6 V for 3600 s; (F) CO₄₆ stripping voltammograms
H₂SO₄ solution^[20], (col tograms of Pt-Fe₃P and Pt/C catalysts for methanol oxidation¹²⁷¹.

Interhanol electro-oxidation; (E) Chronoamperometric curves of

ution at 0.6 V for 3600 s; (F) CO_{as} stripping voltammograms

H₂SO₄ solution¹²⁹¹ nethanol electro-oxidation; (E) Chronoamperometric curves of
ution at 0.6 V for 3600 s; (F) CO_{48} stripping voltammograms
H₂SO₄ solution^[29]. (color on line)
modest binding energy is beneficial to the adsorption
a ution at 0.0 V for 5000 s; (**r**) CO_{as} suppoing votaminograms
H₂SO₄ solution^[09]. (color on line)
modest binding energy is beneficial to the adsorption
and desorption of intermediates, thus, it has received
large modest binding energy is beneficial to the adsorption
and desorption of intermediates, thus, it has received
large attention for water splitting reaction^[46, 41]. Such
characters make it be a suitable platform for assis modest binding energy is beneficial to the adsorption
and desorption of intermediates, thus, it has received
large attention for water splitting reaction^[46, 41]. Such
characters make it be a suitable platform for assis modest binding energy is beneficial to the adsorption
and desorption of intermediates, thus, it has received
large attention for water splitting reaction^[40, 41]. Such
characters make it be a suitable platform for assis and desorption of intermediates, thus, it has received
large attention for water splitting reaction^[40, 41]. Such
characters make it be a suitable platform for assisting
the Pt based catalysts for methanol oxidation, an large attention for water splitting reaction^[40, 41]. Such
characters make it be a suitable platform for assisting
the Pt based catalysts for methanol oxidation, and it
has a variety of stoichiometry such as CoP and Co characters make it be a suitable platform for assisting
the Pt based catalysts for methanol oxidation, and it
has a variety of stoichiometry such as CoP and Co₂P.
For example, Co₂P supported on graphitized carbon
fabr the Pt based catalysts for methanol oxidation, and it
has a variety of stoichiometry such as CoP and Co₂P.
For example, Co₂P supported on graphitized carbon
fabricated by an ion-exchange method was employed
to anchor has a variety of stoichiometry such as CoP and Co₂P.
For example, Co₂P supported on graphitized carbon
fabricated by an ion-exchange method was employed
to anchor the Pt nanoparticles^[42]; compared to the
commercial

of PtRu-CoP/C-40 % catalyst exposed to 0.5 mol \cdot L⁻¹ methanol oxidation to final CO₂ products (Figure 3)

THE CONSERVANT CONSERVATION (Color and PtRu-CoP/C-40% eatalyst and showed catalysts and significant and the PtRu based catalysts at 50 mV is in additional performance care of Co.P.C, commercial PHC, PHCfree, and PtCo-P/ **Example 11.1**
 Example 11.1 Example 12.1 Consumer the first 2 Consumer the first 2 Consumer the first 2 The first 2 The first 2 The first 2 Consumer the first 2 The first 2 The first 2 Consumer the EXECUTE:
 AN ARGO THE CONSTRANT CONSTRANT CONSTRANT TO THE CONSTRANT CONSTRANT TO THE CONSTRANT CONSTRANT TO THE CONSTRANT CONSTRANT CONSTRANT TO THE CONSTRANT CONSTRANT TO THE CONSTRANT CONSTRANT CONSTRANT CONSTRANT C Wavenumber (fcm¹)
 Wavenumber (fcm¹)
 Figure 3 (A) Cyclic volume
 Figure 3 (A) Cyclic evaluations of Co, P/C, commercial Pt/, Pc/Crefo^s and (C) discharge curves at 8 noV (s0^{-c}) for fu-

electiopics¹⁰. (B) **Eigure 3** (A) Cyclis voltammetric curves of Co₂PC, commercial PeC, PeCfree, and Pr-Co₂PC catalysts at 50 mV·s⁺ in acidic
electrolytes⁵²: (0) Power-density eurose for the lectle semploying PHtu-Co²PC-40% commerc electrolytes⁽¹⁹; (B) Power-density curves for fuel cells employing PIRu-CoP/C-40% and (C) discharge curves at 0.3 V (50 °C) for fu-
election-genetical CoPC-40%, commercial PREW-C-M and PRu-CoP/C-40% and the media catalys al cells employing PHxa-CaP/C-40% commercial PRkuC-JM and PRkuC-H as anode estalysts¹⁰¹. The multi-step attennessed infarred backgrotion spectroscopic curves of D) the PtC-OF/C decreased particle and increase of Dark Cflectance surface-enhanced infrared absorption spectroscopic curves on (D) the PtC-JM and (F) the PtCOPC electrodes, and dis-
charge curves (F) at 0.3 V (70 °C) for fletal si employing different catalysts¹⁹³. (color on charge curves (F) at 0.3 V (70 °C) for fuel cells employing different catalysts¹⁹¹. (color on line)
performance was even higher than the power density that the presence of CoP mitigated the losses of Pt
offered by the s performance was even higher than the power density
offered by the state-of-the-art commercial PR&u/C and Ru during the fitel cells operation compared to
catalyst at 70 °C (63.1 mW · cm⁻³). The stability of the the PR&u/ performance was even higher than the power density
of the the presence of CoP mitigated the losses of Pt
offered by the state-of-the-art commencial PRuCC and Ru during the fiel elects operation compared to
catalyst at 70 offered by the state-of-the-art commercial PRu/C and Ru during the fuel cells operation compared to catalyst at 70°C (63.1 mW·cm³). This tsubiti y of the PRR/C catalyst; the Coclement was not found in eat
alyst at 70°C eatalyst at 70 °C (63.1 mW·cm⁻). The stability of the **PRRuC** catalyst; the Co element was not found in
catalyst was evaluated when discharged at 0.3 V for the cyled methanol solution with the detection limit
12 h at 50 caulayst was evaluated when discharged at 0.3 V for

Le byckle methanol solution with the detection limit

12 h at 50 "C by comparing it to the PRRu based cata-

by this first first confirmed the cocelent

tysts (Figure 3 12 h at 50 °C by comparing it to the PtRu based cata-

of 0.001 ppb. This further confirmed the excellent

type of PRu-CoP/C-40% catalysts decreased significantly gerat application prospects in DMFC. The largely im-

in t lysls (Figure 3(C)). It was found that the power densi-
stability of PIRu-CoP/C-40% eatalyst and showed
on the FRu based catalysts decreased significantly great application prospects in DMFC. The largely im-
in the first b The cycle of Columbia and the cycle of Columbia and the cycle of the PRI and Ru during the full colls operation compared to
the cycle cycle methanol solution with the detection of the CM and CO discharge curves at 0.3 V (of 0.001 ppb. This further confirmed the excellent Figure 1.180

For r (cm⁻¹)³

Figure 1.180

For r (cm⁻¹)³

Figure 1.180

Public and Pt-Co₂P/C catalysts at 50 mV·s⁻¹ in acidic

u-CoP/C-40% and (C) discharge curves at 0.3 V (50 °C) for fu-

ERU/C-H as anod Fraction 1.489

Fraction 1.489

Experimental application process in Distribution 1.290

Time r (Cm¹¹)⁸

Prospects and Pt-Co₂P/C catalysts at 50 mV·s⁻¹ in acidic

Ru/C-H as anode catalysts^(s). The multi-step at **Proved anti-CO** proved anti-COP/C catalyst and provided by $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ and $\frac{1}{2$ $\frac{2}{100}$ $\frac{1}{100}$ $\frac{2}{100}$ $\frac{2}{100}$ $\frac{2}{3}$ $\frac{1}{100}$ $\frac{2}{100}$ $\frac{1}{100}$ $\frac{1}{1$ er /(cm⁻¹) Time /(h)

Time /(h)

²VC, Pt/Cfree, and Pt-Co₂P/C catalysts at 50 mV·s⁻¹ in acidic

u-CoP/C-40% and (C) discharge curves at 0.3 V (50 ^vC) for fu-

Ru/C-H as anode catalysts¹⁵⁹. The multi-step atten PtC, PtCfree, and Pt-Co₂P/C catalysts at 50 mV · s¹ in acidic
u-CoP/C-40% and (C) discharge curves at 0.3 V (50 °C) for fu-Ru/C-H as anode catalysts^[50]. The multi-step attenuated total re-
on (D) the PtC-JM and (E) u-CoP/C-40% and (C) discharge curves at 0.3 V (50 °C) for fu-Ru/C-H as anode catalysts^[35]. The multi-step attenuated total re-
on (D) the Pt/C-JM and (E) the Pt-CoP/C electrodes, and dis-
atalysts^[35]. (color on line Ru/C-H as anode catalysts^[61]. The multi-step attenuated total re-
on (D) the Pt/C-JM and (E) the Pt-CoP/C electrodes, and dis-
atalysts^[63]. (color on line)
that the presence of CoP mitigated the losses of Pt
and Ru on (D) the PtC-JM and (E) the Pt-CoP/C electrodes, and dis-
atalysts^[05]. (color on line)
that the presence of CoP mitigated the losses of Pt
and Ru during the fuel cells operation compared to
the PtRu/C catalyst; the C atalysts¹⁸³. (color on line)
that the presence of CoP mitigated the losses of Pt
and Ru during the fuel cells operation compared to
the PtRu/C catalyst; the Co element was not found in
the cycled methanol solution with that the presence of CoP mitigated the losses of Pt
and Ru during the fuel cells operation compared to
the PtRu/C catalyst; the Co element was not found in
the cycled methanol solution with the detection limit
of 0.001 pp that the presence of CoP mitigated the losses of Pt
and Ru during the fuel cells operation compared to
the PtRu/C catalyst; the Co element was not found in
the cycled methanol solution with the detection limit
of 0.001 pp and Ru during the fuel cells operation compared to
the PtRu/C catalyst; the Co element was not found in
the cycled methanol solution with the detection limit
of 0.001 ppb. This further confirmed the excellent
stability of the PtRu/C catalyst; the Co element was not found in
the cycled methanol solution with the detection limit
of 0.001 ppb. This further confirmed the excellent
stability of PtRu-CoP/C-40% catalyst and showed
great applicati the cycled methanol solution with the detection limit
of 0.001 ppb. This further confirmed the excellent
stability of PtRu-CoP/C-40% catalyst and showed
great application prospects in DMFC. The largely im-
proved anti-CO of 0.001 ppb. This further confirmed the excellent
stability of PtRu-CoP/C-40% catalyst and showed
great application prospects in DMFC. The largely im-
proved anti-CO poisoning ability with the presence of
CoP in the Pt-C stability of PtRu-CoP/C-40% catalyst and showed
great application prospects in DMFC. The largely im-
proved anti-CO poisoning ability with the presence of
CoP in the Pt-CoP/C catalyst was previously ob-
served by *in-situ*

 $\# \# \langle J. \text{Electrochem.} \rangle$ 2022, 28(1), 2106211 (8 of 12)

nanoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow the Pt nanopar-

tic $\oplus \mathbb{R}^{\#}(L \text{ }Electrochem.)$ 2022, 28(1), 2106211 (8 of 12)

nanoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow the Pt nanoparthe \mathcal{H}_k *Electrochem.*) 2022, 28(1), 2106211 (8 of 12)
 nanoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow the Pt na WE# $(T$ *Electrochem.*) 2022, 28(1), 2106211 (8 of 12)

manoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow the Pt nanoparticl ^{ELECT}(*LECTOCHER*) 2022, 28(1), 2106211 (8 of 12)
 ELECTOCHERECT
 ELECTOCHERECT
 ELECT CONDITE CONDITE CONDITE CONDITION
 ELECT CONDITE CONDITS
 ELECT CONDITS
 ELECT CONDITS
 ELECT CONDITS
 ELECT CONDITS Besides the above-mentioned TMPs promoters, \pm \mathbb{R}^2 (*L Electrochem.*) 2022, 28(1), 2106211 (8 of 12)
 anaoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow th \pm *Cherinochem.*) 2022, 28(1), 2106211 (8 of 12)

manoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow the Pt nanopar-

tha \pm 12% and the model of the model of the model of the model or the model of tile $\mathcal{L}^{\#}(L)$ Electrochemical costally is chiral controllation indicates
and further used as a support to grow the Pt nanopar-
that Pt-MoP had neither strong nor weak methanol
ticles^{[41}], and the high catalytic ac **EVALUATION THE CONSECT (Externe also provide the magnetic control and the properties over carbon nanotathes were fabricated catalytic ability. The theoretical calculation indicates and further used as a support to grow t Example 12**
 Example 12 $4E^2Z(L \text{ *Electrocheben*), 2022, 28(1), 2106211 (8 of 12)$

manoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

and further used as a support to grow the Pt nanopar-

that $4 \times 4 \times 4$ Electrolehem, 2022, 28(1), 2106211 (8 of 12)

nanoparticles over carbon nanotubes were fabricated carbot in The Denomination indicentes

and further used as a support to gow the Pranopar-

the Prissipality and **EVALUAT EXECT (Exertackangelarm**) 2022, 28(1), 2106211 (8 of 12)

manoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates

dicties¹⁴¹, and the high catalytic activit manoparticles over carbon nanotubes were fabricated catalytic ebility. The theoretical calculation indicates
and further used as a support to grow the Pt nanopar-
that Pt-MoP had neither strong nor weak methanol
ticles⁽⁴ manoparticles over carbon nanotubes were fabricated catalytic ability. The theoretical calculation indicates
and tirtles used as a support to gove the Pt nanopar-
that Pt-MoP had neither strong nor weak methanol
ticles^{ta} and further used as a support to grow the Pt nanopar-

titles¹⁴¹. and the high catalytic activity and stability and stability and stability and the high catalyte activity and the high CO of Fig. 101 and the parameter an 28(1), 2106211 (8 of 12)

catalytic ability. The theoretical calculation indicates

that Pt-MoP had neither strong nor weak methanol

adsorption energy, which facilitated the charge trans-

fer and electrooxidation of meth 28(1), 2106211 (8 of 12)

catalytic ability. The theoretical calculation indicates

that Pt-MoP had neither strong nor weak methanol

adsorption energy, which facilitated the charge trans-

fer and electrooxidation of meth $28(1)$, 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of met $(28(1), 2106211 \ (8 \text{ of } 12))$
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of met 28(1), 2106211 (8 of 12)

catalytic ability. The theoretical calculation indicates

that Pt-MoP had neither strong nor weak methanol

adsorption energy, which facilitated the charge trans-

fer and electrooxidation of met 28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methano 28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methano $28(1)$, 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of met 28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methano .28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methan .28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methan 28(1), 2106211 (8 of 12)

catalytic ability. The theoretical calculation indicates

that Pt-MoP had neither strong nor weak methanol

adsorption energy, which facilitated the charge trans-

fer and electrooxidation of met 28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methano . 28(1), 2106211 (8 of 12)

catalytic ability. The theoretical calculation indicates

that Pt-MoP had neither strong nor weak methanol

adsorption energy, which facilitated the charge trans-

fer and electrooxidation of m . 28(1), 2106211 (8 of 12)
catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
alsorption energy, which facilitated the charge trans-
fer and electrooxidation of metha catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methanol. Meanwhile,
molybdenum catalytic ability. The theoretical calculation indicates
that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methanol. Meanwhile,
molybdenum that Pt-MoP had neither strong nor weak methanol
adsorption energy, which facilitated the charge trans-
fer and electrooxidation of methanol. Meanwhile,
molybdenum phosphide/multi-walled carbon nano-
tubes supported Pt na **complete Promoters** molybdenum phosphide/multi-walled carbon nano-

e-mentioned TMPs promoters, tubes supported Pt nanoparticles showed high eatalytis assing MoP, WP, Cu_bP as co-

ic activity due to the interaction bet e above-mentioned TMPs promoters, tubes supported Pt nanoparticles showed high catalyties activity

reproves using MoP, WP, Cu_BP as co-

i catrivity dat the interaction between Pt and MoP,

inprove the catalytic activit some reports using MoP, WP, Cu_BP as co-

to actuvity due to the interaction between Pt and MoP,

to improve the catalytic activity of Pt in and the uniform dispersion of Pt nanoparticles^{[69}. Mo-

to improve the actalyt 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (8 of 12)
tubes were fabricated catalytic ability. The theoretical calculation indicates
grow the Pt nanopartiant Pt-MoP had neither strong nor weak methanol
activity and stabi

 $\# \# \# (L \: \text{Electrochem.})$ 2022, 28(1), 2106211 (9 of 12)
were uniformly dispersed over the support, which eff-
iciently increased the Pt active site utilization, and
the support of Pt active phase over their
the lowest onset p $\text{t}E\#(J. Electron.)$
 $\text{t}E\#(J. Electron.)$ 2022, 28(1), 2106211 (9 of 12)

were uniformly dispersed over the support, which eff-

iciently increased the Pt active site utilization, and

the deposition of Pt active phase over their
 the lettrochem.) 2022, 28(1), 2106211 (9 of 12)
were uniformly dispersed over the support, which eff-
iciently increased the Pt active site utilization, and
the lowest onset potential was observed both in meth-
surface; a **19/2*** (*J. Electrochem.*) 2022, 28(1), 2106211 (9 of 12)
were uniformly dispersed over the support, which eff-
iciently increased the Pt active site utilization, and
TMPs and the deposition of Pt active phase over their **EVALUATE 19**
 EVALUATE 1 $\pm \frac{\text{Re}}{\text{E}}(I, \text{Electrochem.}) 2022, 28(1), 2106211 (9 of 12)$
were uniformly dispersed over the support, which eff-
incently increased the Pt active site utilization, and the amost of Pt active phase over their
the lowest onset $\mathbb{E}/\mathbb{E}/(L\ker\{m\}$
were uniformly dispersed over the support, which eff-
on two separated steps, namely the fabrication of the
iciently increased the Pt active site utilization, and TMPs and the deposition of Pt acti

From the total control of the simulation and the stationary intersectives

in conclusion, the largely improved eatalyie per-

for the halvic process, and the catalytic meteorations are for nethanol oxidation by adding TMP In conclusion, the largely improved catalytic per-

in conclusion by adding TMPs in catalytic process, and the catalytic mechanisms might

the Pr eatalyts was evidenced by the examples aum-

the Pr eatalytic ability conduc Iomance for methanol oxidation by adding IMPs ni

the Predatyles was evidenced by the examples sum-

the Predatyles was evidenced by the examples sum-

the Predatyles ters end more than the profession for the surface endi the Pr catation approach by the example source and the branching the prediction by precisely and measurements. Furthermore, the hybrid catalytic system showed much better entalytic activity and an-
marized in Table 1. All methodology. En showed much better catalytic activity and an-

Co poisoning ability compared to the catalytis system can dimorphology would be helpful to maxi-

The current report and the results and the current report and the current tr-OD possoming ability compared to the catalytisty-still continue there are the external to the content of the terms of the presence of TMPs. The roles of the ^T model catalysts should be tested in the real fuel cells.
T Em without the presence of IMPs and he design-
the exact propose of IMPs in the catalysts system can be described in

TMPs in the catalysts system can be described in

TMPs in the catalysts system can be described in

The TMPs in the catalysts system can be essented in the column the extension of the strength catalysts were tested in the ford external terms of the electronic structure modification of the commercial state-of-the-art catalytis, some ef-
sites growth and dispersion, the water activation in-
sites growth and dispersion, the water activation in-
tions in sta active Pt centers, the absorbing sites for Pt active
sites growth and dispersion, the water activation in-
sites growth and dispersion, the water activation in-
the fuel cells. Therefore, therefore, therefore, complementat

steel growth and daspersion, the water activation in-
the is still required towards the membrane electrode
deaced by the exypthic property as well as the bifunc-
tional catalytic mechanisms synergistically catalyzing
fore, duced by the exyphilic property as well as the brithme-
the catalyst layer optimization, etc. There-
the reaction. To increase the synergistic interaction
the reaction. To increase the synergistic interaction
destanding of tronal catalytic mechanisms sypergratically catalytical productional contents. Sure a term of the current of the mechanism of catalytic mechanism with novel lective to the mechanism of the section of the properties of the the reacton. To merease the synegotic interesting of catalytic mechanism with novel tech-
between the TMPs promoter and Pt hased active
sites, some fabrication approaches by increasing the
ristics, some fabrication approac

High catalytic performance was observed for PicC-Cu₃P

The system, on the system of the signal defection of the incircular increased the Pt active site utilization **EVALUATION CONTIVE EXAMORET (EXAMORET AND SOLUTE AT ALT ACTES CONDUCT THE CONDUCT THE CONDUCT THE CO EVALUATION**

Were uniformly dispersed over the support, which eff-

on two separated steps, namely the fabrication of the

cicienty increased the Pt active site utilization, and TMPs and the deposition of Pt active phase $#R# (J. Electrochem.) 2022, 28(1), 2106211 (9 of 12)$ were uniformly dispersed over the support, which eff-
on two separated steps, namely the fabricaticiently increased the Pt active site utilization, and TMPs and the deposition of Pt **EVALUATION**
 EVALUATION In conclusion, the largely improved catalytic perthe the method of the method of the conduction by dispersed over the support, which eff-
on two separated steps, namely the fabrication of the
iciently increased the Pt active site utilization, and
TMPs and the deposition $+0.2\%$

were uniformly dispersed over the support, which eff-

icrient/incrussed the Pt active site unitarity increased the Pt active site and the deposition of the

icriticaly increased to the the catalystic unitarial, were uniformly dispersed over the support, which eff-

iciently increased the P1 active site utilization, and

TMPs and the deposition of P1 active phase over their

the holvest onset potential was observed both in meth-
 we unmining using the activity interactions of the mathematic steps, hardward with the presence of TMPs and the catalytic system can be conductivity and dispersion.

Here the the two states of the catalytic activity and t EVERTON TREAT THE WAT CONDIGITED TO THE THE COLOR TO THE THE CONDIGITED THE THE THE CONDIGITED THE THE COLOR COLOR OF THE COLOR COLOR THE COL the above the mode of the methanological with the content with the content of the called since the extremely same that the content of the interaction and contentius and order of Pt for methanol oxidation¹³⁸. He amount a and when the catalytic methanol oxidation in the comparison of the comparison of the catalytic system showed in the catalytic system of the composite catalytic system control and not fully make use of the promotion offer t Fremshes, to easy was several as an exercise of the material and vectoric of the form the model of the electronic control and vector of the form the electronic electronic control and the electronic electronic control of t From the three measures of TMPs. The absorber and the search with the effect of TMPs,
the center of the composite catalysts was probed and the fully make use of the promotion effect of TMPs.
high catalytic performance was or equivate Causty was phonosized in the conservation in the proposition reaction. The meta-
endotropic conservation of the endotropic and the meta-
site disperse activate to the ideal composition ratio and Ture construct measure promundule was voncedured to the case
of the theories of the theories of the deteroio effect, and bifunctional mechanism in-
tive sites and TMPs promoters. Moreover, to elean-
duced between Cu_pP and Pt.
To **Conc** by eating the three than comparation ratio and the best
be electronic effect, and bifunctional mechanism increases and TMPs promoters. Moreover, to clear
dueed between Cu_FP and Pt.

In conclusions **and Perspectives** sym the cuclum orientation of the decoration of the syntem of the syntem of the syntem of the syntem syntem (syntem syntem). To **Conclusions and Perspectives** system, some in situ spectoscopic studies might be the ln conclusio **EXECUTE THE SET THE RECORDING THE SET THE SE** $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $28(1)$, 2106211 (9 of 12)
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivi $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $(28(1), 2106211)$ (9 of 12)

on two separated steps, namely the fabrication of the

TMPs and the deposition of Pt active phase over their

surface; and the carbon support was mixed with the

TMPs by increasing the conduct $28(1)$, 2106211 (9 of 12)
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivi $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $28(1)$, 2106211 (9 of 12)
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivi . 28(1), 2106211 (9 of 12)

on two separated steps, namely the fabrication of the

TMPs and the deposition of Pt active phase over their

surface; and the carbon support was mixed with the

TMPs by increasing the conducti $\frac{1}{28(1)}$, $\frac{2106211}{9612}$ of 12)
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an $(28(1), 2106211 (9 of 12))$
on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity an **Example 18**

In two separated steps, namely the fabrication of the

TMPs and the deposition of Pt active phase over their

surface; and the carbon support was mixed with the

TMPs by increasing the conductivity and disper on two separated steps, namely the fabrication of the
TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity and dispersion.
Therefore, TMPs and the deposition of Pt active phase over their
surface; and the carbon support was mixed with the
TMPs by increasing the conductivity and dispersion.
Therefore, the interaction and electronic effect of Pt
active sit surface; and the carbon support was mixed with the
TMPs by increasing the conductivity and dispersion.
Therefore, the interaction and electronic effect of Pt
active sites and TMPs will be reduced, which might
not fully mak TMPs by increasing the conductivity and dispersion.
Therefore, the interaction and electronic effect of Pt
active sites and TMPs will be reduced, which might
not fully make use of the promotion effect of TMPs.
Attention th Therefore, the interaction and electronic effect of Pt
active sites and TMPs will be reduced, which might
not fully make use of the promotion effect of TMPs.
Attention thus might be directed to the microstruc-
ture constru active sites and TMPs will be reduced, which might
not fully make use of the promotion effect of TMPs.
Attention thus might be directed to the microstruc-
ture construction with the efficient interfaces of Pt
active sites not fully make use of the promotion effect of TMPs.
Attention thus might be directed to the microstruc-
ture construction with the efficient interfaces of Pt
active sites and TMPs promoters. Moreover, to clear-
ly understa Attention thus might be directed to the microstruc-
ture construction with the efficient interfaces of Pt
active sites and TMPs promoters. Moreover, to clear-
ly understand the promotion effect of TMPs in the
system, some ture construction with the efficient interfaces of Pt
active sites and TMPs promoters. Moreover, to clear-
ly understand the promotion effect of TMPs in the
system, some in situ spectroscopic studies might be
helpful to pr active sites and TMPs promoters. Moreover, to clear-
ly understand the promotion effect of TMPs in the
system, some in situ spectroscopic studies might be
helpful to probe the catalytic intermediates during the
catalytic p ly understand the promotion effect of TMPs in the
system, some in situ spectroscopic studies might be
helpful to probe the catalytic intermediates during the
catalytic process, and the catalytic mechanisms might
be further system, some in situ spectroscopic studies might be helpful to probe the catalytic intermediates during the catalytic process, and the catalytic mechanisms might be further understood with the help of electrochemical measu helpful to probe the catalytic intermediates during the catalytic process, and the catalytic mechanisms might be further understood with the help of electrochemical measurements. Furthermore, the hybrid catalyst rational d catalytic process, and the catalytic mechanisms might
be further understood with the help of electrochemi-
cal measurements. Furthermore, the hybrid catalyst
rational design and fabrication by precisely tuning the
structur cal measurements. Furthermore, the hybrid catalyst
rational design and fabrication by precisely tuning the
structure and morphology would be helpful to maxi-
mize the catalytic ability. Finally, the newly devel-
oped catal ional design and fabrication by precisely tuning the
ucture and morphology would be helpful to maxi-
ze the catalytic ability. Finally, the newly devel-
ed catalysts should be tested in the real fuel cells.
ough some catal structure and morphology would be helpful to maxi-
mize the catalytic ability. Finally, the newly devel-
oped catalysts should be tested in the real fuel cells.
Though some catalysts were tested in the fuel cell de-
vices mize the catalytic ability. Finally, the newly devel-
oped catalysts should be tested in the real fuel cells.
Though some catalysts were tested in the fuel cell de-
vices with excellent catalytic performance compared
to th oped catalysts should be tested in the real fuel cells.
Though some catalysts were tested in the fuel cell de-
vices with excellent catalytic performance compared
to the commercial state-of-the-art catalysts, some ef-
fort is with excellent catalytic performance compared
the commercial state-of-the-art catalysts, some ef-
t is still required towards the membrane electrode
prication, catalyst layer optimization, etc. There-
e, future attentio to the commercial state-of-the-art catalysts, some ef-
fort is still required towards the membrane electrode
fabrication, catalyst layer optimization, etc. There-
fore, future attention can be directly paid to the un-
ders fort is still required towards the membrane electrode
fabrication, catalyst layer optimization, etc. There-
fore, future attention can be directly paid to the un-
derstanding of catalytic mechanism with novel tech-
niques, fabrication, catalyst layer optimization, etc. There-
fore, future attention can be directly paid to the un-
derstanding of catalytic mechanism with novel tech-
niques, and precise catalyst structure design and fab-
ricati anding of catalytic mechanism with novel tech-
s, and precise catalyst structure design and fab-
on, as well as their application in the real fuel
evices.
aration of Competing Interest:
e authors declare that they have no 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (9 of 12)
he support, which eff-
on two separated steps, namely the fabrication of the
site utilization, and TMPs and the deposition of Pt active phase over their
bserved both

Note:

Acknowledgements:

References:

- 1104.
- $\begin{tabular}{l|l|} \multicolumn{1}{l}{ \begin{tabular}{l} \multicolumn{1}{l}{ \begin{tabular}{l} \multicolumn{1}{l}{ \begin{tabular}{l} \multicolumn{1}{l}{ \begin{tabular}{l} \multicolumn{1}{l}{ \begin{tabular}{l} \multicolumn{1}{l}{ \multicolumn{1}{$ (*b H*(*k Piethochem.*) 2022, 28(1), 2106211 (10 of 12)

ence Foundation of China (21972124, 21603041) [11] Wang M, Chen M, Yang X P, Wang Y T, Wang Y R, Liu

the Priority Academic Program Development of

enchange Sp $\text{the Priored method (C11121214, 21603041)} \begin{tabular}{|l|l|} \hline \textbf{218} & \textbf{222} & \textbf{28}(1), 210(2,11)(10 of 12) \\ \hline \textbf{218} & \textbf{228}(1), 210(2,11)(10 of 12) \\ \hline \end{tabular} \end{tabular} \begin{tabular}{|l|l|} \hline \textbf{218} & \textbf{218} & \textbf{218} & \textbf{218} & \textbf{218} & \textbf{218} \\ \hline \textbf{2$ $\text{H2}(\mathcal{H}, \mathcal{E}) = \text{H2}(\mathcal{H}, \mathcal{E}) = \text{H2}(\mathcal{H$ $\text{#Lé}^{\#}(L \text{ *Electrochem*.) } 2022, 28(1), 2106211 (10 of 12) \text{.}$ **2008.** Therefore From The Conduction of China (21972124, 21603041) [11] Wang M, Chen M, Yang Z Y, Wang the Priority Academic Program Development of G C, Lee $\text{H2} \times \text{H2} \times \text$ Fig (*Eig. Election of China (21972124, 21603041)* (11/1 Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

the Priority Academic Program Development of G. Lee J K, Wang X D. A study on fiel additive of

ggsu Higher Edu ence Foundation of China (219/17): Leta and the space is a set of China (219/212124, 21603041) [11] Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang W, Liu

the Priority Academic Program Development of G C, Lee J K, Wang X D. ence Foundation of China (21972124, 21603041) [11] Wang M, Chen M, Yang Z

the Priority Academic Program Development of G.C, Lee J K, Wang X E

ggsu Higher Education Institution.

flucture of the C, Lee J K, Wang X E

flu and the Priority Academic Program Development of

Usingsu Higher Education Institution.

Illangsu Higher Education Institution.

II Rose C. Los U. Next Super States and the content institution of the method for the method Experimental for room temperature direct methanol for clear than a Signal Higher Education Institution.

Signal Higher Education Institution.

(12) Bai G1, Lu C, Gao Z, Lu B Y, Tong X L, Gao Z, 12, 18-

(Munigvare S S, Tho care in the scheme of the mean of the Cour 2, the STP (1913) and C and C and V, Torget X L, Gov X V,
 EFFENCES:

View St, Mallick R K. Approaches to

View St V, Neumie curben layers sapported Pt maneparti-

overcome fits **EFFIENCES:**

[12] Bai G L, Liu C, Gao Z, L

Munjeewar S S, Thombre S B, Mallick R K. Approaches to

overcome the barrier issues of passive direct methanol fuel

ences for minimized CO

cell-Review[J]. Renew. Sust. Energ. **EVELOCES (FIFTERCESS)**

[1) Unuyears S5, Thombte SB, Mallick R K. Approaches to

overcome the barrier issues of passive direct mechannel fiel

overcome the barrier issues of passive direct mechannel field

called the rel cell-Review[J], Renew. Sust. Energ, Rev., 2017, 67: 1087-

113] Ramili Z A C, Kamarudin S K. Platinum-

1104.

Nigshy M A, Zhou W P, Lewera A, Duong H T, Bagus P on various carbon supports and conduction

Rigshy M A, Zhou 1104

21 Rigsby M A, Zhou W.P, Lewera A, Duong H.T, Bagas P

22) Rigsby M A, Zhou W.P, Lewera A, Duong H.T, Bagas P

3. Asegormaan W, Hunger R, Wieckowski A, experiment

3. Asegormaan W, Hunger R, Wieckowski A, experiment

- [3] Cai Z C, Kamiko M, Yamada I, Yagi S. PtCo3 nanoparti-
-
-
-
- 104048.
- Example, and enalysies of Microsoftate Cale (11). Fraction Sci. 2008, 1(4): 454466.

The power of Numeric Science of Recent

in Z. X. Zhang X. M, Sun H, Wang 5. I, Sun G Q. Recent

dia Z. X. Zhang X. M, Sun H, Wang 5. I,
-
-
- E(*Electrochem.*) 2022, 28(1), 2106211 (10 of 12)

Science Foundation of China (21972124, 21603041) [11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

and the Priority Academic Program Development of G C, Lee J K, Wa the Priority Academic Program Development of

and the Priority Academic Program Development of

and the Priority Academic Program Development of

Finagsu Higher Education Institution.

Figure 2 is a start of the manufactu *E* (*Lectrochem.) 2022, 28(1), 2106211 (10 of 12)

Science Foundation of China (21972124, 21603041) [11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang

and the Priority Academic Program Development of G C, Lee J K, Wang X D.* (1) Munjewar S S, Thombre S B, Mallick R K. Approaches to the Marian Capital Consumer State (2) (2) Music and the Priority Academic Program Development of G C, Lee J K, Wang Z Y, Wang Y T, Wang Y R, Liu and the Priority (*B)*²² (*Klectrochem.*) 2022, 28(1), 2106211 (10 of 12)

ence Foundation of China (21972124, 21603041) [11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

the Priority Academic Program Development of G. Lee J K, Wa (*Leviewhem.*) 2022, 28(1), 2106211 (10 of 12)
 computed From Example 10 (1972124, 21603041) [11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

the Priority Academic Program Development of $\begin{array}{c} G$. Lee J K, Wang 28(1), 2106211 (10 of 12)

[11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage. (a), 2106211 (10 of 12)

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage., 2018, methanol for room temperature direct methanol for commonly and the relation of rection of methanol for room temperature direct methanol fuel cells [J]. Energy Convers. Manage., 2018, 168: 270-275. Bai G L, Liu C, Gao Z, Lu (2008), 2106211 (10 of 12)

(2008) Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Mana 28(1), 2106211 (10 of 12)

[11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage. Yang N Y. Atomic carbon layers supported Pt nanoparti-), 2106211 (10 of 12)
Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu
G C, Lee J K, Wang X D. A study on fuel additive of
methanol for room temperature direct methanol fuel cells
[J]. Energy Convers. Manage., 2018, 168:), 2106211 (10 of 12)
Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu
G C, Lee J K, Wang X D. A study on fuel additive of
methanol for room temperature direct methanol fuel cells
[J]. Energy Convers. Manage., 2018, 168: 28(1), 2106211 (10 of 12)

[11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage), 2106211 (10 of 12)

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fiel cells

[J]. Energy Convers. Manage., 2018,), 2106211 (10 of 12)

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage., 2018, 1), 2106211 (10 of 12)
Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu
G C, Lee J K, Wang X D. A study on fuel additive of
nethanol for room temperature direct methanol fuel cells
[J]. Energy Convers. Manage., 2018, 168: 28(1), 2106211 (10 of 12)

[11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage), 2106211 (10 of 12)
Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu
G C, Lee J K, Wang X D. A study on fuel additive of
methanol for room temperature direct methanol fuel cells
[J]. Energy Convers. Manage., 2018, 168: (100 11), 2106211 (10 of 12)

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Mangae, 2), 2106211 (10 of 12)

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Mange., 2018, 1 28(1), 2106211 (10 of 12)

[11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage 1, 2100211 (10 01 12)

Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

G C, Lee J K, Wang X D. A study on fuel additive of

methanol for room temperature direct methanol fuel cells

[J]. Energy Convers. Manage., 2018, Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu
G C, Lee J K, Wang X D. A study on fuel additive of
methanol for room temperature direct methanol fuel cells
[J]. Energy Convers. Manage., 2018, 168: 270-275.
Bai G L, Liu 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (10 of 12)

21972124, 21603041) [11] Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu

gram Development of G C, Lee J K, Wang X D. A study on fuel additive of

tution. [J]. En
	-
	-
	- G C, Lee J K, Wang X D. A study on fiel additive of

	G C, Lee J K, Wang X D. A study on fiel additive of

	methanol for room temperature direct methanol fuel cells

	[J]. Energy Convers. Manage., 2018, 168: 270-275.

	Bai G L methanol for room temperature direct methanol fuel cells

	[J]. Energy Convers. Manage., 2018, 168: 270-275.

	[12] Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y,

	Yang N Y. Atomic carbon layers supported Pt nanoparti-

	e [J]. Energy Convers. Manage., 2018, 168: 270-275.

	Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y,

	Yang N Y. Atomic carbon layers supported Pt nanoparticles

	for minimized CO Poisoning and maximized

	methanol oxidation[Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y,
Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y,
Yang N Y. Atomic carbon layers supported Pt nanoparti-
cles for minimized CO Poisoning and maximized
methanol oxidation[J
	-
	-
	- Munijowar S 3, Thombres B B, Mullick R Approvaches to clear finitimized CO Poisoning and maximized
Investores the barrier issues of passive direct methanol crossing Equals (201) and 12019. ISBN 1968951.

	1131 Ramil Z A C, overome the burlier issues of passive direct methanol field methanol oxidation[J]. Small, 2019, 15(38): 1902951.

	104. Cell-Review[J]. Renew. Sust. Energ. Rev., 2017, 67: 1687-

	1164. Cell-Review[H]. Renew. Sust. Energ. Re Righty M A, Zhous W P, Lewenn A, Dung II T, Bagas P

	Scale Res. Lett., 2018, 13(1):410.

	Scale Res. Lett., 2018, 13(1):410.

	and theory of fuel cell catalysis: methanol and formic acid

	and theory of fuel cell catalysis: m Yang N Y. Atomic carbon layers supported Pt nanoparticles for minimized CO Poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951.
Ramli Z A C, Kamarudin S K. Platinum-based catalysts on various carbon Example 10. The matrix of Constrainer and Transmission of the methanol oxidation[J]. Small, 2019, 15(38): 1902951.

	[13] Ramli Z A C, Kamarudin S K. Platinum-based catalysts

	on various carbon supports and conducting polym methanol oxidation[J]. Small, 2019, 15(38): 1902951.
Ramli Z A C, Kamarudin S K. Platinum-based catalysts
on various carbon supports and conducting polymers for
direct methanol fuel cell applications: a review[J]. Nano-
sc Ramli Z A C, Kamarudin S K. Platinum-based catalysts
on various carbon supports and conducting polymers for
direct methanol fuel cell applications: a review[J]. Nano-
scale Res. Lett., 2018, 13(1): 410.
Luo F, Zhang Q, Qu on various carbon supports and conducting polymers for
direct methanol fuel cell applications: a review[J]. Nano-
scale Res. Lett., 2018, 13(1): 410.
Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W
W, Cheng H S. Decorat direct methanol fuel cell applications: a review[J]. Nano-
scale Res. Lett., 2018, 13(1): 410.
Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W
W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methano
- 5, laegremann w, Hunger R, Wiedcowski A. cryceiment

and theory of the cell catalysis: meltinand and formix axid [14] Lus F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Gui W

decomposition on anatopaticle Pt/RuJJ]. J. Phys. Ch and theory of fuel cell catalysis: methanol and formic acid [14] Lao F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, C

decomposition numeraritic PURoif) J. Phys. Chem. C, we Chem HS. Decorated PRIst Decorates

2008, 112(39): 15 decorrollarion on anonoparticle HrNa(1).1. Phys. Chem, C;

Intel direct melhand fiel clefs[15]. Chem, C19, Forey, 2019,

[27] Cia Z C, Kamiko M, Yumudu I, Yugi S. PCo₁ nanoparticle and the clefs considerated anonon more 2008, 112(39): 1895-1569-1660.

2018 ZC, Karmiko M, Yamada I, Yegi S. PtCo, anoparti-

1144): 1238-1243, Pass, Li H X, Li FJ. Tumable hallow

cie-encapsulated carbon nanothes as serive catalysts for

1144): 1238-1243, Pass Cit ZC, Kumido M, Yumada I, Yugi S. PiCo, amonquise

Cit ZC, Kumido M, Yumada I, Yugi S. PiCo, among-methanol osidation per selection and the cells and selection of the cells and selection of the cells and selection of th material and its vocated and the continuously A, A (χ Csecut) A (χ Csecut) And the state and the continuously and the continuously F, A Csecution F, A Localy 2014, χ Csecution F, A Csecution experimental in the state 42. 1443-103-1644. Contained Scatter methanological ACS Appl. Mate. Interfaces,

42. Expl. Mate. Interfaces,

T. Alawathi H, Youse I B A, Oaki A G. Tuel cells for

T. Alawathi H, Youse I B A, Oaki A G. Tuel cells for

T. A Abdellarence MA, Ionah MA, Nayed E. T, Wilher Kree

T. Alawaulhi H, Yousef B A A, Olahi A G. Fuel cells for $[16]$ SuN, $14(2)(2)(240 + 2448)$

carbon capture applications [J]. Sci. Total Environ, 2021,

The C. Phason-indust T, Altowabi H, Youse Fit A, Olahi A G, Fuel cells for P . The U.S. Leading 10, Humannia H, The H, Touch (173) Leading Content in the Cangle X, You C, Fuel methanol for entering any the cand in Section 11. Section of meth carbon capture applications [J]. Sci. Total Environ., 2021,

2016. Casalagno A, Bresciani F, Zago M, Marchesi R. Experimente the considerior (IT) Duan Y Q, Sun Y, Bar St, 2017, 399: 403-

metals investigation of methanol c 76. 1942 EST (1913) To the process of emailed mathematic methanol of the state of the case of the cas Casalogo A, Heresian ir, Zago M, Manchels R. Evperis.

Casalogo A, Branchels and Thesis of the simulation of methanol treesover evolution dur-

ID Dusar Y O, San Y, Pan S Y, Dai Y, Hao 1, Zou J1, 2504

ing direct methanol mential investigation of methanol provises and the selection of methanology and μ a ing direct medianol that Clickspadiation tests(1). J. Power

For the calusced centative activity and durability for

For Europa activity and durability for

For Europa activity and durability for

For the calendo centro-vi Yan D F, Wang S Y. Enriched nucleation sites for Pt debong C J, Luo J, Njoki P N, Mott D, Wanjala B, Loukra-

position on Ultrathin Case (Figure S, Nang E N, Fang B, Nang L, Thang B, Nang L, Thang S, Wang L, Thang S, Wang L, Thang S, Thang S, Thang S, Thang S, Thang S L, Sun nanosheets with unique interpan R, Lim S, Wang R, N, ang N, N, ang IV, Y, ang H, N, ong H, N, ang IV, Y, ang H, N, ang IV, Y, ang IV, Spang N, Spang IV, Spang IV, Spang IV, Spang IV, Spang IV, Spang scale Res. Lett., 2018, 13(1): 410.

[14] Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W

W, Cheng H S. Decorated PRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019,

11(4): 1238-1243 Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W
W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019,
11(4): 1238-1243.
Bai X X, Geng J R, Zhao S, Li H X, Li F J W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019, 11(4): 1238-1243.
Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow
Pt@Ru dodecahedra via galvanic rep trated direct methanol fuel cells[J]. ChemCatChem, 2019,
11(4): 1238-1243.
Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow
Pt@Ru dodecahedra via galvanic replacement for effi-
cient methanol oxidation[J]. ACS App 11(4): 1238-1243.

Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow

Pt@Ru dodecahedra via galvanic replacement for effi-

cient methanol oxidation[J]. ACS Appl. Mater. Interfaces,

2020, 12(20): 23046-23050.

Su Heal X. Geng J R, Zhao S, Li H X, Li F J. Tunable hollow
Hi@Ru dodecahedra via galvanic replacement for effi-
cient methanol oxidation[J]. ACS Appl. Mater. Interfaces,
2020, 12(20): 23046-23050.
Su N, Hu X L, Zhang J B, H Prigoslaphed at a galvanic replacement for efficient methanol oxidation [J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23046-23050.

[16] Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C, Ge C. Plasma-induced synthes icent methanol oxidation[J]. ACS Appl. Mater. Interfaces,
2020, 12(20): 23046-23050.
Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C,
Ge C. Plasma-induced synthesis of Pt nanoparticles sup-
ported on TiO₂ nanotubes 2020, 12(20): 23046-22050.

Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C,

Ge C. Plasma-induced synthesis of Pt nanoparticles sup-

ported on TiO₂ nanotubes for enhanced methanol electro-oxidation[J]. Appl. Sur **EVALUAT CONTITUTE SET ANTITLE CONTINUATE CONTINUATE CONTINUATE CONTINUATE CONTO THE CONTINUATE CONTINUATE AND CONTI** Ge C. Plasma-induced synthesis of Pt nanoparticles sup-
ported on TiO₂ nanotubes for enhanced methanol electro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.
Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-
st ported on TiO₂ nanotubes for enhanced methanol electro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.

[17] Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-

stable WP/C support with excellent cocatalytic func tro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.

tro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.

Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-

stable WP/C support with excellent cocatalytic funct Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-
stable WP/C support with excellent cocatalytic function-
stable WP/C support with excellent cocatalytic function-
ality for Pt: enhanced catalytic activity and durabil stable WP/C support with excellent cocatalytic function-
stable WP/C support with excellent cocatalytic function-
ality for Pt: enhanced catalytic activity and durability for
methanol electro-oxidation[J]. ACS Appl. Mater. and the state of the state of the state of the SA (210) CM Assemble lectro-oxidation
[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33572-33582.

[18] Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao Y, Dong M, Wang J methanol electro-oxidation[J]. ACS Appl. Mater. Interfaces,
2016, 8(49): 33572-33582.
Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao
Y, Dong M, Wang J C, Fan W B. Design of 3D hollow
porous heterogeneous nickel-cobal 2016, 8(49): 33572-33582.

Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao

Y, Dong M, Wang J C, Fan W B. Design of 3D hollow

porous heterogeneous nickel-cobalt phosphides for syner-

gistically enhancing catalytic p Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao Y, Dong M, Wang J C, Fan W B. Design of 3D hollow

Y, Dong M, Wang J C, Fan W B. Design of 3D hollow

porous heterogeneous nickel-cobalt phosphides for syner-

gisticall Y, Dong M, Wang J C, Fan W B. Design of 3D hollow
porous heterogeneous nickel-cobalt phosphides for syner-
gistically enhancing catalytic performance for electrooxi-
dation of methanol[J]. ACS Appl. Mater. Interfaces, 2020
	-
	-
	-
	-

 $# \&L \#(J. \n Electrochem.) 2022, 28(1), 2106211 (11 of 12)$ Shi J L. SnO₂ nanocrystal-decorated mesoporous ZSM-5 spectroscopic study of electro-

as a precious metal-free electrode catalyst for methanol oxidation[J]. Energ Environ S

- the the the the context of the theorem and the the the the theorem and the the the space of the the space of the the context of methanol and adsorbed CO at **E** {*K*²²² (*J. Electrochem.*) 2022, 28(1), 2106211 (11 of 12)

Shi J L. SnO₂ nanocrystal-decorated mesoporous ZSM-5

as a precious metal-free electrode catalyst for methanol

oxidation[J]. Energ Environ Sci., 2015 $\frac{\text{#}\{E\#(J. Electrochem.)}\ 2022, 28(1), 2106211\ (11 of 12)}{\text{Shi J L. SnO}_2\ n\text{anocrystal-decorated mesoporous ZSM-5}}\n\frac{\text{the}\{E\#(J. Electrochem.)}\ 2022, 28(1), 2106211\ (11 of 12)}{\text{spectroscopic study of electro-oxidation of methanol and adsoched CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, oxidation[J]. Energy Enviv, Wang X B, Shen L M, Wu Q, Wang Y N, Ma [33] Norsko J K. Chemistry-formation on metal surfaces[J]. Rep. Pro$ HE (E $\frac{m}{2}$ (*L* Electrochem.) 2022, 28(1), 2106211 (11 of 12)

Shi J L. SnO₂ nanocrystal-decorated mesoporous ZSM-5

as a precious metal-free electrode catalyst for methanol

as a precious metal-free electrode catal 19. (Electrochem, 2002, 28(1), 2106211 (11 of 12)

Shi J L. SnO₃ nanocrystal-decorated mesoporous ZSM-5

supported carbon necessales for methanol and

assolution of methanol nano-

avalorisal nitrogen-doped carbon nano-(h) *C*actrosside manners for methanol electrooxidation [J]. Chin. J. Catal., and B. Stephen and Stephen and a state for methanol and as a precious metal-free electrode catalyst for methanol assoched CO at Pt-Ru alloy[J]. 4 (*k* \neq *k* (*k k* = *k* (*k* + *k* (*k* = *k* (*k* + *k*
- (a) $\frac{1}{24}$ Two Lets are the specific studies that the specific study of electro-oxidation of methanol as a precious metal-free electrode catalyst for methanol as descended CO at Pr-Ru alloy[J]. J. Phys. Chem. B, 2004 $E_1/E_1^{\text{in}}(L) \cdot E_2^{\text{in}}(L) \cdot E_3^{\text{in}}(L) \cdot E_4^{\text{in}}(L) \cdot E_5^{\text{in}}(L) \cdot E_6^{\text{in}}(L) \cdot E_7^{\text{in}}(L) \cdot E_7^{\text$ **EVALUATION**
 THENCY (*Electrochem*). 2022, 28(1), 2106211 (11 of 12)

Shi J L. SnO, nunocrystal-decorated mesoporous ZSM-5

spectroscopic study of electro-osidation of methanol

covidation [J]. Forge Euriors 6:1, 2015, nanosheets and the enhanced catalytic activity of Pd-MoS2 5769. Shi J L. SnO₃ nanocrystal-decorated mesoporous ZSM-5

spectroscopic study of electras

as a precious metal-free electrode catalyst for methanol

oxidation[J]. Energ Environ Sci., 2015, 8(4): 1261-1266.

J(8): 2654-2659.
 Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q,

Su S, W., P-CoP/C as an alternative Ptis

Su S, W., Neng L, H. Gromenla synth W., Went L, Neare, Ch

of onbele metal (Au, Ag, Pd, Pi) annorystal modified MoS,

and (47):
-
- 226754.
-
- for methanol oxidation[1]. Nanoscale, 2014, 6(11): 5762. Connelles B. P. Frammedos S. PS, Higgen M, Petrovykih Cheme 3 PS, Higgen M, Petrovykih Cheme 3 PS, Formic Theorem is active to the antivorykine are the analyst for 3769.
 BY DY V, Dumi-Bottowski R E, Korlet Machinesit R (Scher Machinesit R (Scher)

Unterface engineering in anostroteroxidation [J]. ACS

Interface engineering in anostroteroxidation[J]. ACS

In direct methanol fiel 193-204. hances the activity and durability of the Pt anode catalyst

indicate call and stable water oxidation[7]. ACS

7(5): 1628.

7(5): 1628.

7(5): 1628.

7(5): 1628.

7(5): 1628.

179 D'Chang J F, Feng L G, Liao CP, Xing W. Ni M, Wang J, Fan W. Design of 3D hollow porous hetero-(18): 1628.

[37] Chang 17, Frong L G. One-stop

Lieation of the PRIN candibity membersheet methemselection

Efficiently coupling ultramfine Pt-Ni₁P manoparticles as reverse and find celled[A]. ChemistrasChan, 2015, 8(1 Liu H. Yung D W, Bao Y F, Yu X, Feng L G. One-stop

illeation of the felke/Bluetty coupling ubtract methods are

efficiently exponding to Hold For Nation (138) Cao J M, Chen IIL, Zhang X L, Zhang Y F, Liu X W. Gra-

in fu efficiently coupling ultraine Pt-Ni₃P nunoparticles as ro-

und incl ellis[J]. Chem Natholand ellis continued about continued about Chem Natholand ellis reaction[J]. J. Power Sources, 2019, 434:

in fitel cells reaction in fit cells reaction [J]. J. Power Sources, 2019, 434:

[27] Vom F L, Fang B, Yu X, Feng L G. Coupling ultrafine

[27] Vom F L, Fang B, Yu X, Feng L G. Coupling ultrafine

Pt mnocrystals over the Feg surface us a robust c 226754,

226754,

Winny II, Furme I, Furm B, Yu X, Furm E, Particle as a robust catalyst

Pt namocrystals over the Fe-P surface as a robust catalyst

Pt namocrystals over the Fe-P surface as a robust catalyst

for alcohol Wang F 1, Fang B, Yu X, Feng I. G. Coupling ultrafine

2010 Wang Y J, Du C Y, Sun Y R, Fia an Schot State St for alcolof fitel electro-oxidation[J]. ACS Appl. Mater. Inc. To Concerne of Determinese of Determinese (2016). 11(P): 9449-590. Inm any proportion is Prancose of Determinesian (2018). IF RX, Ma 2 CZ, 236ng F, Mong M, Bao terfaces, 2019, 11(9): 4496-9503.

Li RX, Mos Z Z analy approach are supported on FeP manshere for superior cotalytic

Li RX, Mos Z Z analytic Cup^p-C: hypind supported

2017, 254: 36-43.

Strategy to importe the origina 13 R X, Ma Z Z, Zhang K, Meng H J, Wang M, Haao X Q,

activity toward methanol oxidation[1]. Historicalism: Acta,

Tang H, Wang X X, Pand Estro-conditionfield electrocealativis paper and formic

formance ovariate cheme. S
- 34971-34979. Tang B, Wang X G, Facile Cu_BP-C hybrid supported

strategy to improve PH ranoporticle electrochem. (460) Cus IS, LiZ R, Kiev V, Xiao F, Wang HI, Wang X Y, Pan

formance toward methanol, elemental given and terminal Cole strategy to improve P1 nanoparticle electrocatallytic perception (460 IGo HS, I.i.Z PA, Xieo Y, Xiao F, Wamg HT, Wang X X, Pano

seid electro-oxidation(1), Electrochim. Acta, 2016, 220:

from as efficient bifunctional cat
- 8567.
-
-

the metal fiest (*J. Electrochem.*) 2022, 28(1), 2106211 (11 of 12)

nanocrystal-decorated mesoporous ZSM-5 spectroscopic study of electro-oxidation of methanol and

metal-free electrode catalyst for methanol adsorbed CO 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 $28(1)$, 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): $2654-2659$.
[33] Norsko J K. Chemisorption on metal surfaces[J]. Rep. P 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 电化学(*J. Electrochem.*) 2022, 28(1), 2106211 (11 of 12)

orated mesoporous ZSM-5 spectroscopic study of electro-oxidation of methanol and

code catalyst for methanol adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,

-
-
- 28(1), 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
[33] Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Ph 2006211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 28(1), 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
[33] Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
P 2006211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5
- **ELE-22** (*k*, *Electronohem*,) 2022, 28(1), 2106211 (11 of 12)

Shi 11. Shf), nanocystal-decorated metoporous ZSM-5

as a precisios metal-free electrode catalyst for methanol

and
solved CO at P+Ru alloy[J]. J. Phys. Ch **EVALUATION 1998**
 EVALUATION Shi J L. SnO. nunocrystal-decorated mesoporous ZSM-5
 EVALUATION 1999
 EVALUATION SC, 2015, 8(4): 1206-211(11 of 12)
 EVALUATION or methanol and adsorbed CO at PeRu alloy[J]. J. Phys. $\frac{15}{26}\left(\frac{1}{2}\left(\frac{2}{3}\right)\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left$ **in direct methanol methanol methanol methanol fuel cells [J].** μ Here is the precision of the Palamachystal decorated metaporomas ZSM-5

space methanol and advoted cells and producted cells and producted contributed c Shi J L SnO. nanocystal-decorated mesoporous ZSM-5
spectroscopic study of electro-oxidation of methanol and
oxidation (J). Energ Environ Sci., 2015, 8(4): 1261-1266.
108): 263-42659.

229 Jiang E.R. Wang X B, Shi J261-126 as a precious metal-free electrode catalyst for methanol

and conted CO at P+Ru alloy[1]. I. Phys. Chem. H, 2004,

covidation[J], Energ Eori): Sefter, 1008, 129 in 2012 News 2012 News 2012 News 2012 News 2012 News 2012 New osidation[J]. Funcy Environ Sci., 2015, 8(4): 1261-1266.

Umgy Y. K, Wang Y. K, Wang V. R, Non (18). Now Q. Wang Y. N, Wang Y. T, Wang Y. K, Wang Y. R, Hin *L*, High-performance Pt catalysts For methanol electrocoxidation Ilang X F, Wang X H, Shen I. M, Wu Q, Wang Y N, Mu

Y TWs, 1990, S3(10): 1253-1295.

Y W, Wang Y N, Mu

represention on metal surfaces(IJ]. Representing on the cells reaction of the cells reactions in the properties of me suppored on hierarchical nitrogen-doped carbon nano-

sai, 1991. Naskov 1K. Electronic factors in catulysis[J]. Prog. Surf.

2016. 37(7): 1149-1155.

2016. 37(7): 1149-1155.

2016. 37(7): 1149-1155.

2017 Wang L. H. Greens eage for methanol electrowidation [1]. Chin. J. Catal, [93] (Shape J.F., 1991, 1982): 103-144.

2016, 370): 1149-1155. [35] (Shape J.F., Forg B.G., 1991, F. F. American Surface P. F. American Surface P. F. American Surfac 2016, 37(7): 1149-1155.

Ywwen L II, Gu F. Nie (2, For EU, Tomg K, Bu For Alcohol F. Nie (2, Gui W, B, Lin C

Su S. Weng L IX, Hubang W, Wang L II. General synthesis

or S. Weng L IX, Hubang W, Wang L II. General synthesi Su S, Weng L. X, Huang W, Wang L. H. General symbosis for direct medianol fiel cells[J]. J. Mater. Chem. A, 2016,

of anoshe meanl (Au, Ag, Pd P) amonogystia medianol field Mos2,

anosheds and the enhanced estably of Pd-Mo of noble metal (Au, Ag, Pd, Pb) nanocrystal modified MoS₂ 467 : E8607-18613.

International continuous condults are the enducated in the customer of the customer in the customer of the customer in the customer of the C nanosheets and the enhanced cantylic activity of Pd:MoS₃ (36) X11 y, Wei X K, Cosm 113, Lado 11, Ocense-Haird Ry

for methanol oxidation[J]. Nanoscale, 2014, 6(11): 5762-

Chang J F, Frag W, Hurin-Horkowski R F, Kowin K 2106211 (11 of 12)

2106211 (11 of 12)

spectroscopic study of electro-oxidation of methanol and

adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,

10(8): 2654-2659.

Norsko J K. Chemisorption on metal surfaces[J]. R 28(1), 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
[33] Norsko J K. Chemisoption on metal surfaces[J]. Rep. Prog.
Phy 2006211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 5 2106211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at P-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 53 2006211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at P-Ru alloy[J]. J. Phys. Chem. B, 2004,
Norsko J.K. Chemisorption on metal surfaces[J]. Rep. Prog.
Norsko J.K. Chemisorption on meta 2006211 (11 of 12)
spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko JK. Chemisorption on metal surfaces[J]. Rep. Prog.
Norsko JK. Chem **Example 127**
 Example 127 Subsets and the P-Ru alloy [J]. J. Phys. Chem. B, 2004,

10(8): 2654-2659.

[33] Norsko J K. Chemisoption on metal surfaces [J]. Rep. Prog.

Phys., 1990, 53(10): 1253-1295.

[34] Norsko J K. El spectroscopic study of electro-oxidation of methanol and
adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004,
10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 53(10): 1253-1295.
S adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, 10(8): 2654-2659.
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog.
Phys., 1990, 53(10): 1253-1295.
Norsko J K. Electroníc factors in catalysis[J]. Prog. Surf 10(8): 2654-2659.

[33] Norsko J K. Chemisoption on metal surfaces[J]. Rep. Prog.

Phys., 1990, 53(10): 1253-1295.

[34] Norskov J K. Electronic factors in catalysis[J]. Prog. Surf.

Sci., 1991, 38(2): 103-144.

[35] Chang Norsko J K. Chemisorption on metal surfaces[J], Rep. Prog.
Phys., 1990, 53(10): 1253-1295.
Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf.
Sci., 1991, 38(2): 103-144.
P, Xing W. Pt-CoP^{JC} as an alternative PR Phys., 1990, 53(10): 1253-1295.

Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf.

Sci., 1991, 38(2): 103-144.

Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C

P, Xing W. Pt-CoP/C as an alternative PRRu/ Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf.
Sci., 1991, 38(2): 103-144.
Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C
P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst
for direct methanof Inel Sci., 1991, 38(2): 103-144.

[35] Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C

P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst

for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016,

4447): 18607-1861 Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C
P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst
for direct methanol fiuel cells[J]. J. Mater. Chem. A, 2016,
4(47): 18607-18613.
Xu J Y, Wei X K, Costa J D, Lado P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst
for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016,
4(47): 18607-18613.
Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B,
Goncalves L P L, Fernandes S P S, H for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016, 4(47): 18607-18613.

Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B, Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh D Y, Dunin-Borkowski R E, Kovnir K 4(47): 18607-18613.

Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B,

Sioncalves L P L, Fernandes S P S, Heggen M, Petrovykh

D Y, Dunin-Borkowski R E, Kovnir K, Kolen'ko Y V.

Interface engineering in nanostructured [36] Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B,

Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh

D Y, Dunin-Borkowski R E, Kovnir K, Kolen'ko Y V.

Interface engineering in nanostructured nickel phosphide
 Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh
D Y, Dunin-Borkowski R E, Kovnir K, Kolen 'ko Y V.
Interface engineering in nanostructured nickel phosphide
catalyst for efficient and stable water oxidation[J]. ACS
Ca
	-
	-
	- D Y, Dunin-Borkowski R E, Kovnir K, Kolen'ko Y V.
Interface engineering in nanostructured nickel phosphide
catalyst for efficient and stable water oxidation[J]. ACS
Catal., 2017, 7(8): 5450-5455.
Chang J F, Feng L G, Liu C Interface engineering in nanostructured nickel phosphide
catalyst for efficient and stable water oxidation[J]. ACS
Catal., 2017, 7(8): 5450-5455.
Chang J F, Feng L G, Liu C P, Xing W. Ni₂P makes app-
lication of the PtRu catalyst for efficient and stable water oxidation[J]. ACS

	Catal., 2017, 7(8): 5450-5455.

	[37] Chang J F, Feng L G, Liu C P, Xing W. Ni₃P makes app-

	lication of the PRIu etalyst much stronger in direct meth-

	anol fuel Catal., 2017, 7(8): 5450-5455.
Chang J F, Feng L G, Liu C P, Xing W. Ni₃P makes application of the PtRu catalyst much stronger in direct meth-
anol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347.
Cao J M, Chen H L, Z Chang J F, Feng L G, Liu C P, Xing W. Ni₂P makes application of the PtRu catalyst much stronger in direct meth-
anol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347.
Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. G anol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347.

	[38] Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. Gra-

	phene-supported patition(in which cel phosphide electrocata-

	lyst with improved activity and stability Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. Gra-
phene-supported platinum/nickel phosphide electrocata-
byt with improved activity and stability for methanol oxi-
dation[JJ. RSC Adv., 2018, 8(15): 8228-8232.
Wang Y J phene-supported platinum/nickel phosphide electrocata-
lyst with improved activity and stability for methanol oxi-
dation[J]. RSC Adv., 2018, 8(15): 8228-8232.
Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G
P, Gao Y Z lyst with improved activity and stability for methanol oxidation[J]. RSC Adv., 2018, 8(15): 8228-8232.
Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G
P, Gao Y Z, Song Y. The enhanced CO tolerance of plat-
inum support dation[J]. RSC Adv., 2018, 8(15): 8228-8232.

	[39] Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G

	P, Gao Y Z, Song Y. The enhanced CO tolerance of plat-

	inum supported on FeP nanosheet for superior catalytic

	activi Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G

	P, Gao Y Z, Song Y. The enhanced CO tolerance of plat-

	inum supported on FeP nanosheet for superior catalytic

	activity toward methanol oxidation[J]. Electrochim. Acta, P, Gao Y Z, Song Y. The enhanced CO tolerance of plat-
inum supported on FeP nanosheet for superior catalytic
activity toward methanol oxidation[J]. Electrochim. Acta,
2017, 254: 36-43.
Cao H S, Li Z B, Xie Y, Xiao F, Wang
	-
	- 419.
	-
	- inum supported on FeP nanosheet for superior catalytic
activity toward methanol oxidation[J]. Electrochim. Acta,
2017, 254: 36-43.
Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan
K, Cabot A. Hierarchical CoP nanost activity toward methanol oxidation[J]. Electrochim. Acta,

	2017, 254: 36-43.

	(40] Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan

	K, Cabot A. Hierarchical CoP manostructures on nickel

	foam as efficient bifunctio 2017, 254: 36-43.
Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan
K, Cabot A. Hierarchical CoP nanostructures on nickel
foam as efficient bifunctional catalysts for water splitting
[J]. ChemSusChem, 2021, 14(4): 10 Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan
K, Cabot A. Hierarchical CoP nanostructures on nickel
foam as efficient bifunctional catalysts for water splitting
[J]. ChemSusChem, 2021, 14(4): 1094-1102.
H iL, Wan
	-

- [45] Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, $# \{\&\cong (J. \n Electrochem.)\n 2022, 28(1), 2106211 (12 of 12)\n\n for *l* cells[*J*].\n Electrochem. 2015, 185: 178-183.\n
	\n- Vector-oxidation[*J*].
	\n- University of the *J* cells, 2020, 26(12): 6331-6340.
	\n\n\n- Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, [50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B, Pan S Y,$ erarchical (Electrochem, 1902, 28(1), 2106211 (12 of 12)

fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183. electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, [$#E\#(J. Electrochem.) 2022, 28(1), 2106211 (12 of 12)$ fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183. electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, [50] Duan Y Q, Sun $\text{#}\{E\# (J. Electrochem.)\ 2022, 28(1), 2106211 (12 of 12) \text{} \text{file cells}[\text{J}]\}. \text{Electric velocity, 2014, 2015, 185: 178-183.}\qquad \text{electro-oxidation}[\text{J}].\text{I}.\text{Inics, 2020, 26(12): 6331-6340.}\] \text{State V}[\text{J}]\text{Inics, 2020, 26(12): 6331-6340.}\] \text{Stilag L}, \text{ Bukhabov D}, \text{Chen B}, \text{R}, \$ 104445. $\label{eq:2020} \begin{minipage}[t]{0.9\textwidth} \begin{tabular}{0.9\textwidth} {\bf \emph{E}}&{\bf \emph{E}}&{\$
-
-
-
-

- tiel cells[J]. Electrochim. Acta, 2015, 185: 178-183.

fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183.

Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, [50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Sha (a) 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybdenum 28(1), 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

[50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated mol (a) 2006211 (12 of 12)

electro-oxidation [J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybdenum (a) 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybdenum supported (12 of 12).

Supported Pt catalysts (J. J. D. D. 2010, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybd 7674-7682. 电化学 (*J. Electrochem.*) 2022, 28(1), 2106211 (12 of 12)

2015, 185: 178-183. electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.
 ν D, Chen Z P, Zou Z Y, [50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Han
- [46] Jiao Y Q, Yan H J, Wang R H, Wang X W, Zhang X M, $\label{eq:20} \begin{array}{ll} \text{4.64.8--} & \text{4.64.8--} \\ \text{4.64.8--} & \text{4.64.8--} \\ \end{array} \begin{minipage}{0.9\textwidth} \begin{tabular}{ll} \text{4.6.8--} \\ \text{4.6.8--} \\ \text{4.6.8--} \\ \text{4.8.8--} \\ \text{4.8--} \\ \text{4.$ (help). Electrochim. Acta, 2015, 185: 178-183.

(help). Electrochim. Acta, 2015, 185: 178-183.

(sectro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Xiao W. P. Zhang L, Bukhvalov D, Chen Z. P. Zou Z. Y. [50] Duan Y. Q **EVolution Extraorel 19.1**
 Evolution electrochiem. Acta, 2015, 185: 178-183. electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Xiao W.P, Zhang L, Bakhvalov D, Chem Z.P, Zou Z.Y, [50] Duan Y.Q, Sun Y, Wang L, Dai $\text{#R#L}(\# \# \text{C} \# \text{C}$ $28(1)$, 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020 , $26(12)$: $6331-6340$.

[50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-pas), 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybdenum p), 2106211 (12 of 12)
electro-oxidation [J]. Ionics, 2020, 26(12): 6331-6340.
Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,
Zou J L. Enhanced methanol oxidation and CO tolerance
using oxygen-passivated molybdenum phos panded 11 (12 of 12)

panded graphite as effect to-oxidation [J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-pa (1962), 2106211 (12 of 12)

electro-oxidation [J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybd), 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation an 28(1), 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

[50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated mo
- the $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{$ $\begin{tabular}{ll} \textbf{4.84 P} (L. Electroche, 12022, 28(1), 2106211 (12 of 12) \\ \textbf{4.95} \end{tabular} \begin{tabular}{ll} \textbf{4.96} \end{tabular} \begin{tabular}{ll} \textbf{4.97} \end{tabular} \begin{tabular}{ll} \textbf{4.97} \end{tabular} \begin{tabular}{ll} \textbf{4.98} \end{tabular} \begin{tabular}{ll} \textbf{4.99} \end{tabular} \begin{tabular}{ll} \textbf{4.90} \end{tabular} \begin{tabular}{ll} \textbf{$ $\begin{tabular}{l|ll} $46/27, L16211 & L16211 &$ Factor (Electrochical 31.1 (Electrochical 322, 28(1), 2106211 (12 of 12)

Faci cells[4]. Electrochical methods (1), 100621, 2001, 2002, 2002, 2002, 2002, 2002, 2002, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, fuel cells/II). Electrochima Acta, 2015, 185: 178-183.

Nino W.P., Zhang L., Bukhvalov D., Chen Z.P., Zou Z.Y. [50] Duan Y.Q, Sun Y., Wang L, Dai Y., Chen B.B, Pan S.V, Nino K., 2020, 26(12): And B.B. Pan S. Nino K. Might The Uclis (II, Electrochic Acta, 2015, 185: 178: 185: 178: electro-coxidation [J]. Lonics, 2020, 26(12): 6331-6340.

Niao W.P. Zmay I., Polah Day I., Warry V.Q. Schon V.Q. Schon V.Q. (Sep 1, The Uclis Science Science is th (45) Xino W P, Zhong 1, Bukhvalov D, Cherz Z P, Zou Z Y, [50] Duan Y Q, San Y, Wang 1, Dia Y, Chen B B, Pan S Y, San M, Chen B S, Nam D Q, Han D, Y, Thang D, The San M L, Initianced methods oriented transformed to distern Shamg L, Yang X F, Yan D Q, Han F Y, Zhang T R. His Zou J L. Enhanced methanol oxidation and CO tolerance
encredical turbulnin unchendent methals methals methals on dependent on multi-subsection phosphiles entropy
and hyd erarchieal ultrathin earlyn encapsulating ransition metal

surge oveyen-passivated molybdenum phosphide/carbon

surge Mo^o electrocatalysts for efficient and pH-universal by the modification

subsets of the model of the doped MoP electrocatialysts for efficient and plI-univer-
size by γ_5 and γ_5 and γ_6 and γ_7 and γ_8 . Then II, War N, Then II, May Y, Then II, War N, Then II, War N, Then II, War N, Then II, War N, Then II X G. Nickel phosphide decorated Pt nanocatalyst with), 2106211 (12 of 12)
electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.
Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,
Zou J L. Enhanced methanol oxidation and CO tolerance
using oxygen-passivated molybdenum phosp), 2106211 (12 of 12)
electro-oxidation [J]. Ionics, 2020, 26(12): 6331-6340.
Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,
Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,
Duan J Q, Sun Y, Wang L, Dai Y, Chen B B,), 2106211 (12 of 12)

electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybdenum electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molybdenum phosphide/carbon

suppor electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.

[50] Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,

Zou J L. Enhanced methanol oxidation and CO tolerance

using oxygen-passivated molydenum phosphiele carbon

s Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y,
Zou J L. Enhanced methanol oxidation and CO tolerance
using oxygen-passivated molybdenum phosphide/carbon
supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20):
7674-7 Zou J L. Enhanced methanol oxidation and CO tolerance
using oxygen-passivated molybdenum phosphide/carbon
supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20):
7674-7682.
Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Ca using oxygen-passivated molybdenum phosphide/carbon
supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20):
7674-7682.
Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Cai Z,
Duan Y Q, Tang B, Zou J L. Carbon-thin-layer pro supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20):
7674-7682.
Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Cai Z,
Duan Y Q, Tang B, Zou J L. Carbon-thin-layer protected
WP with no passivation supported on acid-treat
	-

磷化物助力铂基催化剂甲醇电氧化的研究进展

李 萌,冯立纲*

(扬州大学化学化工学院 江苏 扬州 225002)

搞要: 过渡金属磷化物(TMP)作为一种理想的甲醇电氧化助催化剂,因其具有多功能活性位点、结构和组成可调、独特的物 理化学性质和高效的多组分问效应等优势而受到越来越多的关注。本文综述了过渡金属磷化物促进甲醇电氧化的研究进 展,包括催化剂的制备及其催化甲醇电氧化的性能评估。首先,介绍了 TMP 对催化甲醇氧化反应的促进作用,然后在正文中 讨论了基于不同金属中心的 TMP 催化剂体系的制备与性能研究。从电子效应和基于双功能催化机制的亲氧性来看,TMPs 对催化甲醇氧化有明显的促进作用。最后,我们讨论了在催化剂理性设计及其催化机理探索和燃料电池装置应用中应注意 的问题和挑战,希望对新型催化剂体系的设计和制备有一定的指导意义。

关键词: 过渡金属磷化物;甲醇氧化反应;促进剂;电催化