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Abstract: In electrochemistry, perhaps also in other time-honored scientific disciplines, knowledge labelled classical usually at-

tracts less attention from beginners, especially those pressured or tempted to quickly jam into research fronts that are labelled, not

always aptly, modern. In fact, it is a normal reaction to the burden of history and the stress of today. Against this context, accessible

tutorials on classical knowledge are useful, should some realize that taking a step back could be the best way forward. This is the

driving force of this article themed at physicochemical modelling of the electric (electrochemical) double layer (EDL). We begin the

exposition with a rudimentary introduction to key concepts of the EDL, followed by a brief introduction to its history. We then elu-

cidate how to model the EDL under equilibrium, using firstly the orthodox Gouy-Chapman-Stern model, then the symmetric Biker-

man model, and finally the asymmetric Bikerman model. Afterwards, we exemplify how to derive a set of equations governing the

EDL dynamics under nonequilibrium conditions using a unifying grand-potential approach. In the end, we expound on the defini-

tion and mathematical foundation of electrochemical impedance spectroscopy (EIS), and present a detailed derivation of an EIS

model for a simple EDL. We try to avoid the omission of supposedly 耶trivial爷 information in the derivation of models, hoping that it
can ease the access to the wonderful garden of physical electrochemistry.
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1 Introduction
1.1 What is An Electric Double Layer?
An electrochemical cell has two electrodes separated by an electrolyte solution, as schematically shown in

Figure 1. The electric potential difference between the two electrodes, denoted V cell, can be modulated with a po-

tentiostat at one爷s disposal. By varying V cell , one gets a handle on controlling the difference in the electrochemi-

cal potential of electrons between the two electrodes. Electrons flow from the electrode with the higher electro-

chemical potential (lower electric potential), via the potentiostat, to the other side. Let us consider for the moment

ideally polarizable electrodes. The resultant electron flow cannot cross the electrode-electrolyte interface (EEI)

regardless of V cell. Therefore, excess or deficient electrons, corresponding to a net negative or positive surface

charge, are distributed over a skin layer of several angstroms (魡) thick on the electrode surface, which is a conse-
quence of quantum-mechanical behaviors of electrons. Counterions are attracted to and coions are repelled from



the electrode surface via electrostatic interactions, as illustrated in Figure 1. In addition, the solvent molecules

adjust their orientation according to the strong electric field generated by the net surface charge. These coupled

phenomena occur in a non-electroneutral region of a few nanometer (nm) thick, which is termed as the electric

double layer (EDL).

In most cases, the electron flow can cross the EEI, resulting in oxidation or reduction of solution species near

the electrode. The electron transfer rate depends on the distributions of the electric potential, the concentrations

of reactant and product, and the dielectric polarization of the solvation environment. Therefore, the structure

and properties of the EDL are important factors influencing interfacial electron transfer reactions.

1.2 Key Properties of the EDL
The distributions of the electric potential, the ion concentrations, and the solvent orientation in the EDL are

dictated by the excess surface charge density, denoted 滓M. In an electrochemical cell, the two electrodes have 滓M

of the same magnitude but opposite signs, because the full cell must be electroneutral. 滓M can be varied as a

function of V cell, or as long as a single electrode is considered, 滓M is a function of the electric potential, 准M, of the

considered electrode. The relation between 滓M and 准M is called surface charging relation. Determining the 滓M -

准M relation is an essential task in modelling the EDL and electrochemical reactions therein.

A schematic illustration of the surface charging relation of the EDL is given in Figure 2. The electric potential

in the bulk solution, 准S, is taken as the reference. The electric potential in the electrode bulk, 准M, can be adjust-

ed at will. There is a potential drop, 字, on the electrode surface, which is caused by electron spillover from the

solid electrode into the electrolyte solution[1]. 字 is related to the electron density of the solid electrode, therefore,
its value depends on how many electrons are included in the calculation. More specifically, 字 is much higher if
more electrons of the metal are considered explicitly. For a given metal, 字 varies slightly with 准M, and we as-

sume that 字 is a constant in the subsequent analysis.
Consider first the case of 准M - 准S< 字, as shown in Figure 2(A). The electric potential in the electrolyte solu-

tion near the electrode surface is lower than 准S. Therefore, cations are accumulated in the EDL because they

have a lower energy there. Contrarily, anions are depleted. Hence, a positive net charge is stored in the EDL,

which is accompanied by excess electrons on the metal surface and 滓M < 0. If 准M is increased, the electric po-

tential in the EDL becomes more positive because we assume a constant 字 for the electrode. This means that less
cations are accumulated and less anions are repelled in the EDL. Therefore, 滓M becomes less negative and shifts

Figure 1 An electrochemical cell with two charged electrode/electrolyte interfaces. (color on line)
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Figure 2 Surface charging relation: (A) 准M - 准S < 字, (B) 准M - 准S = 字, (C) 准M - 准S > 字, and (D) with an additional potential drop 驻字

at the surface due to chemisorption-induced surface dipole. In the presence of chemisorption, 滓M contains not only the excess charge

on the electrode surface, but also the net charged carried on the charged adsorbates. (color on line)

towards more positive values.

For the case of 准M - 准S = 字, as illustrated in Figure 2(B), the electric potential in whole electrolyte solution
is zero as we have set the potential reference in the bulk solution. There is no excess charge in the EDL or on

the electrode surface, i.e., 滓M= 0. This particular value of 准M is the potential of zero charge (pzc)[2]. For the case of
准M - 准S > 字, shown in Figure 2(C), anions are accumulated and cations are depleted in the EDL, i.e., 滓M > 0.

Overall, the 滓M - 准M relation shows a monotonically increasing trend for ordinary EDLs. From this relation, we

obtain the differential double鄄layer capacitance Cdl,

Cdl =
鄣滓M

鄣准M

(1)

For EDLs with chemisorption, the surface charging relation can be nonmonotonic. In Figure 2, we give such

an example, where chemisorption occurs in the high potential range. The chemisorbates are usually partially

charged due to the partial charge transfer[3]. The charged chemisorbates, together with the compensating charge

located on metal surface atoms, give rise to a surface dipole moment, which is termed the chemisorption-in-

duced surface dipole moment, 滋chem. 滋chem introduces an additional contribution to the potential drop on the elec-

trode surface, 驻字. Even at a high potential 准M - 准S > 字, the electrode surface with chemisorbates could be nega-
tively charged due to the additional negative potential drop 驻字. Consequently, the surface charging relation

could be nonmonotonic with a second pzc in the high potential region for electrocatalytic interfaces[4, 5]. Accord-
ing to its definition, Cdl is negative in the nonmonotonic region of the 滓M - 准M relation. Note that in the presence

of chemisorbates, the definition of 滓M should be varied accordingly, which contains not only the excess charge

on the electrode surface, but also the net charged carried on the charged adsorbates. In this regard, it is better to

be denoted 滓free.

1.3 Purpose and Structure of This Paper
We wish to provide a tutorial for physical modelling of the EDL under both equilibrium and nonequilibrium

conditions. Both time-domain and frequency-domain responses are modelled under nonequilibrium conditions.

The latter is in fact the electrochemical impedance response. As a tutorial, this paper includes a systematic expo-

sition of relevant models with mathematical details provided. We also provide simulation scripts of these models
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in the supporting information.

The remaining parts of this paper are organized as follows. We first provide a brief history of the EDL theory.

Then, we introduce EDL models under equilibrium conditions, including the Gouy-Chapman-Stern model, then

the Bikerman model that takes ion size effects into account, and finally a modified Bikerman model that considers

asymmetric ion size effects. Next, we derive nonequilibrium EDL models from a grand potential of the EDL.

Afterwards, we present the basics of EIS, and demonstrate how to derive an EIS model from the nonequilibrium

EDL models.

2 A Brief History of the EDL Theory
A quantitative determination of the 滓M = f(准M) relation requires a physicochemical model for the EDL. Figure

3 summarizes milestones in the evolution of EDL modelling and simulations. Helmholtz (1879) viewed the

EDL as a planar plate capacitor with a constant double-layer capacitance (Cdl) and a linear potential distribution in

the space between two plates[6]. Different from Helmholtz who assumed a rigid lining up of counterions, Gouy

and Chapman considered the diffuse nature of counterions in the electrolyte solution in 1910[7, 8], ten years before

Debye and H俟ckel. In the Gouy-Chapman model, the electrolyte solution is viewed as a cloud of point ions em-
bedded in a dielectric continuum. The distributions of the electric potential and ion concentrations are governed

by the Poisson-Boltzmann equation. The Gouy-Chapman model is limited to very dilute solutions at slightly

charged interfaces due to its foundation on the point charge assumption. At highly charged interfaces or when

准M is shifted far away from the pzc, the Gouy-Chapman model results in an unphysically high concentration of

counterions near the electrode surface. Under such scenarios, the gap between the electrode surface and the

midplane of the diffuse layer, denoted d0, becomes very small, leading to the phenomenon of capacity catastro-
phe, namely, Cdl grows toward infinity.

Stern removed this limitation by constraining the closest approach of counterions to the Helmholtz plane (HP)[9].

This way, regardless of the magnitude of surface charge density on the electrode, d0 has a lower limit, thus turn-
ing the catastrophic growth of Cdl when 准M is shifted away from the pzc into a leveling off region. Bikerman

furthered the consideration of ion size effects using a lattice-gas model[10]. There is a delicate difference regarding

the consideration of ion size in Stern爷s and Bikerman爷s treatments. Although d0 is constrained in the Stern mod-
el, the Poisson-Boltzmann equation is inherited. This means that the ion concentration at the HP and in the dif-

fuse layer can be infinite in the Stern model. In contrast, in the Bikerman model, the ion concentration at the HP

and in the diffuse layer has a finite upper limit determined by the lattice size. Consequently, in the Bikerman

model, d0 first narrows down due to counterion crowding and then expands due to counterion overcrowding,

when 准M is shifted away from the pzc. Consequently, a camel-shaped double-layer capacitance profile is usual-

ly obtained. In highly concentrated solutions, a bell-shaped double-layer capacitance profile is obtained, as d0 al-
ways increases when 准M is shifted away from the pzc.

Grahame extended Stern爷s idea in the presence of specific adsorption of ions[11]. He divided the HP into an in-
ner HP (IHP) where specifically adsorbed ions reside and an outer HP (OHP) where solvated counterions reside.

It was implicitly assumed that the specifically adsorbed ions retain the charge they have in the bulk solution,

which was later corrected by the concept of partial charge transfer by Lorenz and Salie in 1961[12]. Moreover, as a

first approximation, the potential distribution in the inner layer is considered to be linear. The potential differ-

ence across the inner layer is composed of two contributions. One is caused by the net surface charge on the

electrode surface, denoted 滓M. The other is caused by the charge carried by the specifically adsorbed ions. Gra-

hame calculated the differential capacitance of the inner layer (CIHP) as a function of 滓M
[13]. CIHP is asymmetric and

humped with a maximum at positive 滓M. Grahame爷s results aroused wide interests among theorists, suggesting
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two new lines of EDL modelling, namely, description of water dipoles at the IHP and description of metal elec-

trons, which are detailed below.

Grahame spent his sabbatical year in 1958/59 in Britain and had a fruitful collaboration with Roger Parsons.

This British visit disseminated his experimental findings among physicists at Cambridge. Watts-Tobin and Mott

tried to interpret the rise of CIHP for anodic polarizations and the hump of CIHP at a 准M slightly positive to the

pzc [14] . The former phenomenon had been controversial, plausible causes including adsorption of mercury ions,

specifically adsorbed hydroxyl ions, potential varying distance between the OHP and the metal surface, among

others[15]. The latter phenomenon is ascribed to the orientational polarization of interfacial water molecules, which

was initially suggested by Grahame and latter modelled by Watts-Tobin[16]. Watts-Tobin assumed that interfacial

water molecules may occupy two states (H-down or O-down). The basic idea is that interfacial water molecules

are more polarized at more charged surface, resulting in a decreased permittivity and lower CIHP. Consequently,

the hump of CIHP is located at the pzc where the permittivity of water molecules is maximum. The deviation of

the hump from the pzc observed in experiments is caused by the 耶natural field爷 on the metal surface, namely, met-
al electronic effects, which became a hot topic in 1980s[17]. The Watts-Tobin model had been refined in several

rounds by considering more states of water and the hydrogen-bond network, see a review by Guidelli and

Schmickler[18].

Together with Grahame爷s data of CIHP that gave the first hint of the importance of metal electronic effects,

Trasatti爷s correlation between CIHP of simple sp metals taken at the pzc and the metal electron density drove

theorists to explicitly consider the metal electronic effects[19]. In 1980s, Schmickler, Badiali, Kornyshev and

their associates introduced the jellium model that had been widely used in the theory of metal surfaces to the

EDL theory[20-22]. In the jellium model, the metal is treated as an inhomogeneous electron gas situated against a

positive background charge corresponding to metal cationic cores. The electron gas was described using local

density approximations, such as the Thomas-Fermi-von Weizs覿cker theory[23]. The positive background charge
was later replaced with pseudopotentials to consider metal specific behaviors. The jellium model is able to ra-

tionalize the metal and surface-charge dependence of CIHP
[17].

The next milestone in the EDL modelling is the work of Price and Halley in 1995[24]. They adopted the Car-Pa-

rrinello method of combining molecular dynamics and density functional theory (DFT) to simulate the EDL

formed at a copper slab and water molecules. This work opened up a new direction in atomistic modelling of

the EDL. Since then, the field has been shifted to extensive computer simulations with the Kohn-Sham DFT at the

core.MostDFT-based first-principles simulations have been conducted for electroneutral interfaces. In 2006, Otani

and Sugino developed a method to simulate charged interfaces[25]. They employed the Poisson-Boltzmann equation

for the electrolyte solution to screen excess charge on the metal slabs. This so-called implicit solvation method

was subsequently advanced by several groups of authors, including Arias et al. [26-28], Jinnouchi and Anderson[29],

Hennig et al.[30, 31], Nishihara and Otani[32], Marzari et al.[33, 34], and Melander et al.[35] Recent ab initio molecular
dynamics (AIMD) simulations were able to handle the charged solid electrodes by introducing ions into the sol-

vent layers [36-39]. This provides a means to properly treat the electrode potential which is calculated from the work

function of the system referenced to a (computational) standard hydrogen electrode (SHE).

Recently, Huang and coworkers developed a hybrid density-potential functional theory (DPFT) for the EDL,

combining quantum mechanical treatment of many electrons and classical statistical treatment of charged parti-

cles in the solution phase[1, 40,41]. The DPFT avoids the calculation of Kohn-Sham orbitals which is computationally

expensive. Instead, the DPFT is based on so-called orbital-free DFT[42-44]. This feature distinguishes the DPFT

model from other DFT-based first principles models, such as the joint DFT model for the EDL developed by

Arias et al[27,28]. In Refs.[1,41], the orbital-free DFT for metal electrodes consists of the Thomas-Fermi-vonWeizs覿cker
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theory for the electronic kinetic energy, a rudimentary kinetic energy density functional (KEDF), and the Dirac-

Wigner theory for the exchange-correlation functional, a rudimentary local density approximation. As for the

electrolyte solution, Huang developed a statistical field theory considering asymmetric steric effects, solvent po-

larization, and ion-specific interactions with the metal[41]. Combined, a hybrid density-potential functional for the

grand potential functional of the EDL is obtained. Variational analysis of this functional yields a grand-canoni-

cal EDL model described by two Euler-Lagrange equations in terms of the electron density and the electric po-

tential.

3 Equilibrium Models
3.1 Gouy鄄Chapman鄄Stern Model
The Gouy-Chapman-Stern (GCS) model is a classical toy model of the EDL. The electric potential distributes

linearly from the electrode to the HP, and is described by Poisson-Boltzmann (PB) equation in the diffuse layer

and the diffusion layer as shown in the third subfigure in Figure 3. The distance from the electrode to the HP is

usually taken as the radius of a hydrated ion.

The PB equation describes the distributions of the electric potential and the ion concentrations in the elec-

trolyte solution. Poisson equation reads,

塄(缀s塄准)= -
i
移zi Fci (2)

where 缀s is the dielectric permittivity of the bulk solution, 准 the electric potential referenced to the electric po-

tential in the bulk solution, 准S, zi the charge number of ion i, F the Faraday爷s constant, ci the concentration of
ion i. Boltzmann equation further connects ci and 准,

ci = cibexp - z
i
F

RT 准蓸 蔀 (3)

where ci b is the concentration of ion i in the bulk solution, R the gas constant, T the absolute temperature. For a

monovalent electrolyte solution in a one-dimensional space, the PB equation is rewritten as,

鄣2准
鄣x2 = - Fc

b

缀s
exp - F准

RT蓸 蔀 -exp F准
RT蓸 蔀蓸 蔀 (4)

where cb the concentration of total anions (cations) in the bulk solution. The dimensionless form of the PB equa-

tion is written as,

Figure 3 Key milestones of EDL modelling (color on line)
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鄣2U
鄣X2 = sinh(U) (5)

with the dimensionless quantities, U = F准/RT, X = x/姿D, and the Debye length 姿D = RT缀s/2F2cb姨 . Note that the

dielectric permittivity depends on the local density of solvent molecules and the local electric field. In an aque-

ous electrolyte solution, the dielectric permittivity is a multiple of 缀0 inside the HP, and increases to 78.5缀0 in the
bulk solution. Therefore, different values of the dielectric permittivity are used on the two sides of the HP.

The boundary conditions to close Eq.(5), a second-order differential equation, are,

U(X = 0) = UHP (6)

U(X =肄) = 0 (7)

where X = 0 represents the left boundary at the HP, and X = 肄 is the right boundary in the bulk solution. 准HP
[4]

(dimensional quantity of UHP) can be calculated from the electrode side by,

准HP = 准M - 准pzc +
鄣准
鄣x蓸 蔀

x = 0
+

缀s
缀HP

啄HP (8)

where 准HP is the electric potential at the HP, 准M the electrode potential, 准pzc the potential of zero charge (note

that this is not the absolute potential drop at the electrode surface, but the one relative to that of a reference elec-

trode which is a constant), 缀HP and 啄HP are the dielectric permittivity and the thickness of the space between the

Figure 4 Typical results of the GCS model, including the spatial distributions of (A) the electric potential and (B) the cation concen-

tration, and the relationships between (C) the surface charge density and (D) the differential double-layer capacitance with the elec-

trode potential. The inset in (A) illustrates the electric potential distribution within 2 nm near the electrode. The parameters for cal-

culation are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)
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electrode and the HP, respectively. The coefficient 缀s/缀HP is resultant from the following equality in terms of sur-

face charge density on the electrode surface,

滓赚 = - 缀s
鄣准
鄣x蓸 蔀

x = 0
+

= - 缀HP
鄣准
鄣x蓸 蔀

x = 0
-

(9)

Solving Eq. (5) in the following steps,

2 鄣
2U
鄣X2

鄣U
鄣X = 2sinh(U) 鄣U鄣X (10)

d 鄣U
鄣X蓸 蔀 2 = d(2coshU) (11)

鄣U
鄣X蓸 蔀

X = 0
+

2 = 2sinh
UHP

2
蓸 蔀蓸 蔀 2 (12)

we obtain the relationship between the surface charge density and the electric potential at the HP,

滓M = - 乙 (c+ - c-)Fdx = - 缀s
鄣准
鄣x蓸 蔀

x = 0
+

=
2缀sRT
F姿D

sinh
F准HP

2RT蓸 蔀 (13)

Bvp4c is a convenient built-in tool in Matlab for solving boundary value problems described as ordinary differ-

ential equations. In accord with the syntax of this tool, Eq. (5) is rewritten as,

鄣U
鄣X = Y (14)

鄣Y
鄣X = sinh(U) (15)

where Y =
F姿D

RT
鄣准
鄣x is the dimensionless electric field strength.

Figure 4 shows the typical results of the GCS model (the Matlab script is provided in the supporting infor-

mation of this article), including the spatial distributions of the electric potential, 准, and the cation concentra-
tion, c+, at a series of 准M in (A) and (B), and the relationships between the surface charge density, 滓M, and the dif-

ferential double-layer capacitance, Cdl, with 准M, in (C) and (D). The spatial range for calculation is 150 nm from

the HP. When 准M - 准pzc > 0, we find 准HP > 0, 滓M > 0, and cations are repelled. When 准M- 准pzc= 0, we obtain 准HP

= 0, 滓M= 0.When 准M- 准pzc < 0, we get 准HP < 0, 滓M < 0, and cations are attracted. As defined in Eq.(1), Cdl has the

Figure 5 Schematic illustration of the comparison between the GCS model and the BPB model. For the GCS model, the number

density of particles at the HP and in the diffuse layer can be infinite for the point charge assumption. Correspondingly, we depict

ions with dotted lines in the GCS model, c.f. solid lines for ions of finite size in the BPB model. (color on line)
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minimum at 准pzc.

A simple calculation can illustrate the failure of the GCS model in extreme cases. According to Eq.(3), ci = cib

exp (-ziF准/RT), we obtain ci = 8.18 伊 1016 mol窑m-3, when 准 = -1 V, zi = 1, cib = 1 mol窑m-3 and T = 298 K.

Consequently, each cation occupies a volume of 2.03 伊 10-35 cm3. However, even for the smallest bare cation,

H+, the volume is approximately, d
H

+
3抑(0.56 魡)3 = 1.76 伊 10-25 cm3 [45]. Thus, it is necessary to consider the finite

size of ions in the diffuse layer.

3.2 Symmetric Bikerman Model
In 1942, Bikerman realized the limitations of neglecting ion size in the GCS model and developed a newmod-

el, called Bikerman-Poisson-Boltzmann (BPB) model, as shown in Figure 5[10, 46]. In contrast with the GCS model,

the BPB model presents a consistent treatment of the finite size of ions both at the HP and in the diffuse layer.

The BPB model treats the electrolyte solution using the lattice-gas approach. Each ion occupies a volume of

dt3, where dt is the lattice size. The maximum particle number density is nt = dt-3. The electrochemical potential
for ion i reads,

滋軈i = 滋i
0 + zie0 准 + kB Tln dt3ni

1-dt3移i ni
(16)

where 滋i
0 is the chemical potential under standard conditions, e0 the elementary charge, 准 the electric potential

referenced to that in the bulk solution, 准S, kB the Boltzmann constant, ni the number density of ion i, (1-dt3移i ni)/

dt3 the number density of solvent molecules. For a monovalent electrolyte solution, we have n+0 = n-0 = nb, with
nb the number density of total anions (cations) in the bulk solution. Under equilibrium conditions, the electro-

chemical potential for ion i is uniform in the whole EDL,

滋軈i = 滋i
0 + zie0准 + kBTln

dt3ni

1-dt3移i ni
= 滋i

0 + kBTln
dt3nb

1-2dt3nb
(17)

The number density of ion i is obtained as,

ni =
nbexp(-zi e0准/kBT)

1 + 2vsinh2(zi e0准/2kBT)
(18)

where the bulk volume fraction of solvated ions is v = 2dt3nb. The GCS model assumes v = 0.
Combining Eq. (2) and Eq. (18), the BPB model is described as,

塄(缀s塄准) = 2nbzi e0sinh(zi e0准/kBT)
1 + 2vsinh2(zi e0准/2kBT)

(19)

In a one dimensional case, the dimensionless form is,

鄣2U
鄣X2 = sinhU

1 + 2vsinh2(U/2) (20)

The surface charge density can be calculated as,

滓M = - 乙 (n+- n-)e0 dx = - 缀s
鄣准
鄣x蓸 蔀

x = 0
+

(21)

The 耶bvp4c爷 function in Matlab is employed to solve Eq. (20) closed with the boundary conditions ex-

pressed in Eqs. (6) and (7). Figure 6 shows the typical results of the BPB model, including the spatial distribu-

tions of 准 and the anion concentration, c-, at a series of 准M in (A) and (B), as well as the relationships between 滓M

and Cdl with 准M in (C) and (D). For the purpose of comparison, the results of the GCS model at 准M - 准pzc = 0.7

V are shown in the black solid lines. The distributions of 准 and c - calculated using the GCS model are steeper

than those calculated using the BPB model. In Figure 6(B), a plateau forms when 准M- 准pzc逸 0.3 V, signifying the

natural formation of the Stern layer due to the overcrowding of counterions. Figures 6(C) and 6(D) display how

滓M and Cdl change with 准M at three values of v. A larger v means either larger ions or higher concentrations or
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Figure 6 Typical results of the BPB model, including the spatial distributions of the electric potential and the anion concentration

at a series of electrode potential in (A) and (B), and the relationships between (C) the surface charge density (D) the differential dou-

ble-layer capacitance with the electrode potential. For the purpose of comparison, the results of the GCS model are shown in the

black solid lines. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the supporting infor-

mation. (color on line)

both. At larger v, the relationship between 滓M and 准M is less steep, indicating smaller values of Cdl. Interestingly,

the shape of Cdl changes from a camel shape with the minimum at 准pzc to a bell shape with the maximum at 准pzc.

Kornyshev gives a critical value of v = 1/3 for the camel-to-bell transition[47].
3.3 Asymmetric Size Effect
With the asymmetric size effect, the electrochemical potential, Eq. (16), is rewritten as,

滋軈i = 滋i
0 + zie0准 + kBTln

dt3ni

1-dt3移i 酌i ni
(22)

where 酌i is the size coefficient,

酌i =
di

dt蓸 蔀 3 (23)

with di being the length of the cubic cell occupied by particle i, and dt the reference size, usually taken as that of
solvent molecules.

The number density for a monovalent electrolyte solution reads[48],
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Figure 7 Typical results of the BPB model with the asymmetric size effect, including the relationships between (A) the surface

charge density and (B) the differential double-layer capacitance with the electrode potential. The results of the symmetric BPB mod-

el are shown in the blue circles, as 酌+ = 酌- = 1. The results at 酌+ = 1 and 酌- = 3 are shown in the red solid lines, while the results at 酌+
=3 and 酌- = 1 are shown in the yellow solid lines. The grey circles represent the results at 酌+ = 酌- = 3. The parameters for calculation
are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)

n依 =
nbe芎U

1+ v
2
(酌+e-U + 酌- eU - 酌+ - 酌-)

(24)

To obtain Eq.(24), 酌+ and 酌- in the exponent are approximated as 1. Combining Eq.(2), the dimensionless form

of the BPB equation in a one-dimensional case is,

鄣2U
鄣X2 = sinhU

1+ v
2
(酌+e-U + 酌- eU - 酌+ - 酌-)

(25)

Typical results of the asymmetric BPB model are presented in Figure 7, showing how 滓M and Cdl change with

准M for the cases of different size coefficients. We set v = 0.05, and the size coefficient of cations, 酌+, or that of

anions, 酌- , is equal to 1 or 3. At larger 酌i, the relationship between 滓M and 准M is less steep, indicating smaller

values of Cdl. 酌+ has bigger impact than 酌- as 准M - 准pzc< 0 because the concentration of cations dominates in this

region due to the electrostatic interaction. 酌- plays an important role as 准M - 准pzc > 0.

4 Nonequilibrium Models
In this part we consider dynamics of the EDL brought out of equilibrium. We build nonequilibrium models by

using a grand potential approach, considering the size asymmetry effects. The solvent polarization which leads

to a field-dependent dielectric permittivity is considered in ref. [49], but is neglected in the following. Being

grand-can-onical, the EDL exchanges electrons freely with the electrode and exchanges ions and solvent

molecules freely with the bulk solution. Note that the EDL described here is not limited to a multiple of the De-

bye length, but could be extended to the bulk solution, because the diffuse layer and the diffusion layer are de-

scribed by the same set of equations.

Under the conditions of constant electrochemical potential 滋軈i , constant T and a fixed volume V , the grand po-
tential 赘 of the EDL is written as,

赘 = U - TS - 乙 dV
i
移滋軈i ni (26)
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where U is the internal energy, S the entropy, 滋軈i the electrochemical potential of particle i, ni the number density

of particle i, dV the volume unit.

There are multiple ions and solvent molecules in the electrolyte solution in general. Ions, denoted with a sub-

script 琢, have a charge number z琢 and a number density n琢. There is a population of ions at (near) the transition

state of the ion hopping process[50], denoted with a superscript 屹. Solvent molecules are denoted with a sub-

script s. These charged particles, namely, ions and solvent molecules at both ground and excited states, interact

via coulombic forces among others. According to field theoretic studies of the coulombic fluid[51, 52], the internal

energy U is expressed as,

U = 乙 dV - 1
2
缀s渊塄准冤

2
+ e0准移渊z琢n琢 + z琢屹n琢屹冤+移(n琢H琢 + n琢屹(H琢 + Ea,琢屹))蓸 蔀 (27)

The first two terms represent the electrostatic interactions, including the self-energy correction of the electric

field, - 1
2
缀s(塄准)2, and the electrostatic free energies of the ions, e0准移z琢n琢, and that of the transition-state ions,

e0准移z琢屹n琢屹. The last term accounts for many-body interactions other than the electrostatic interactions, with H琢

being the internal energy except the electrostatic contribution, Ea,琢屹 the activation energy of ion hopping.

The total entropy S is calculated from the lattice-gas model[48],

S =移kBlnP (28)

where P is the number of ways arranging all the particles in the volume unit dV ,

P = Nt !
仪N琢 !篆s !仪N琢屹!

(29)

where N琢= n琢 dV , Ns = ns dV , and N琢屹 = n琢屹 dV are the particle numbers, and Nt = nt dV is the total number of lattice

cells in the volume unit, with nt the number density.
The lattice cells are fully occupied without any vacancy, thus Ns is given by,

Ns =
Nt

酌s
-移 N琢酌琢

酌s
蓸 蔀 -移 N琢屹酌琢屹

酌s
蓸 蔀 (30)

Note that there are several methods to treat size asymmetry in the lattice-gas model, as recently compared by

Zhang and Huang[48]. What we have used in Eqs. (29) and (30) is Huang爷s treatment[53]. The basic idea is to
effectively expand the number of total sites. However, the size asymmetry is not considered in the calculation of

P expressed in Eq. (29). As shown by Zhang and Huang, this approach captures major phenomena of the

asymmetric steric effects and avoids the artificial sequence effects[48].

Using the Stirling formula and taking the continuous limit (transforming the summation to a volume integration),

we reformulate Eq. (28) as,

S = - 乙 dVkB 移n琢ln
n琢

nt
+ ns lnnsnt

+移n琢屹 ln
n琢屹

nt
+ nt -移n琢 - ns -移n琢屹蓸 蔀 (31)

Combining Eqs. (26), (27), and (31), we rewrite the grand potential as a volume integration of a volumetric

grand potential,

赘 = 乙 fdV (32)

with the volumetric grand potential f given by,

f = - 1
2
缀s (塄准)2 + e0准移(z琢n琢 + z琢屹n琢屹) +移(n琢H琢 + n琢屹(H琢 + Ea,琢屹)) +

1
茁 移n琢ln

n琢

nt
+ nslnnsnt

+移n琢屹ln n琢屹

nt
+ nt -移n琢 - ns -移n琢屹蓸 蔀 - 移滋軈琢n琢 + 滋軈sns +移滋軈琢屹n琢屹蓸 蔀 (33)
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Using the Euler-Lagrange equation,

鄣f
鄣X -塄 鄣f

鄣(塄X)蓸 蔀 = 0 (34)

in terms of X = 准, we obtain the Poisson equation,

鄣
鄣x

缀s 鄣准鄣x蓸 蔀 = -e0移(z琢n琢 + z琢屹n琢屹) (35)

When applying the Euler-Lagrange equation in terms of X = n琢, we must take notice of the relation that ns =
nt/酌s -移n琢酌琢/酌s -移n琢屹酌琢屹/酌s is also a function of n琢. Therefore, adding an ion 琢 will simultaneously reduce 酌琢/酌s

solvent molecules. The consideration leads to,

z琢e0准 + H琢 +
1
茁

ln n琢

nt
- 酌琢

酌s

lnnsnt蓸 蔀 - 滋軈琢 + 酌琢

酌s

滋軈s = 0 (36)

from which we define the electrochemical potential of the ion-solvent pair,

滋軈琢-s = 滋軈琢 - 酌琢

酌s
滋軈S (37)

with the electrochemical potential of solvent molecules expressed as,

滋軈s = 1
茁 ln

ns
nt

(38)

and the electrochemical potential of ions 琢 as,

滋軈琢 = H琢 + z琢 e0准 + 1
茁 ln n琢

nt
(39)

When the fictitious lattice cells are occupied exclusively by ions 琢, namely, nt = n琢, the chemical potential turns

to the standard chemical potential of ions 琢, denoted as 滋琢
0,

滋琢
0 = H琢 (40)

Applying the Euler-Lagrange equation in terms of X = n琢屹 , we obtain the standard chemical potential of

transition-state ions 琢屹,

滋琢屹
0 = H琢 + Ea,琢屹 (41)

Although the transition-state ions are explicitly included in the grand-canonical potential, we will make the

approximate that n琢屹垲n琢 in the following.

According to the Fick爷s second law, the continuity equation for particle 琢 in the ith cubic cell is written as,
鄣n琢

i

鄣t = - 鄣J琢
i

鄣x (42)

where J琢i is the flow flux of particle 琢 cross the ith cubic cell, the interface between the ith cubic cell and the (i+1)th

cubic cell,

J琢i = J琢i→i+1 - J琢i+1→i = 1
dt2

k琢
i→i+1 n琢

i

nt
nsi+1
nt

- k琢
i+1→i n琢

i+1

nt
nsi
nt蓸 蔀 (43)

Eq.(43) means that the ion transport process is pictured as an ion-solvent exchange reaction, which has been

proposed earlier to describe ion transport in solid and concentrated electrolytes[50, 54], where k琢
i→i+1 and k琢

i+1→i repre-

sent the forward and backward rates of ion hopping from the ith to (i+1)th cubic cell, respectively. According to
transition-state theory and using the Br覬nsted-Evans-Polanyi (BEP) relationship to associate the activation barrier
and the Gibbs free energy change, we write k琢

i→i+1 as,

k琢
i→i+1 = k琢

0exp - 茁
2
(滋軈琢-si+1 - 滋軈琢-si)蓸 蔀 = k琢

0exp - 茁
2
塄滋軈琢-sdt蓸 蔀 (44)

and k琢
i+1→i as,

k琢
i+1→i = k琢

0 exp - 茁
2
(滋軈琢-si - 滋軈琢-si+1)蓸 蔀 = k琢

0 exp 茁
2
塄滋軈琢-sdt蓸 蔀 (45)
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where the standard rate constant k琢
0 is expressed as,

k琢
0 = 1

2子琢,0
exp(- 茁(滋琢屹

0 - 滋琢
0)) = 1

2子琢,0
exp(- 茁Ea,琢屹) (46)

with 子琢,0 being the time constant of the hopping process. The 1/2 here indicates that ions at the transition state
are equally likely to go forward to the new state and backward to the original state.

Substituting Eqs. (44), (45) and (46) into (43), we rewrite the flux as,

J琢 = - 2D琢

dt4
sinh 茁

2
塄滋軈琢-sdt蓸 蔀 n琢

nt
ns
nt

(47)

where D琢 is the diffusion coefficient,

D琢 =
dt2
2子琢,0

exp(- 茁Ea,琢屹) (48)

In the near-equilibrium regime, sinh(茁dt塄滋軈琢-s/2)抑茁dt塄滋軈琢-s/2, Eq. (47) can be approximated to,

J琢 = -D琢茁
n琢ns
nt

塄滋軈琢-s (49)

where塄 滋軈琢-s is expanded as,

塄滋軈琢-s = 1
茁n琢

鄣n琢

鄣x + 1
茁ns

酌琢

酌s i 屹 s
移酌i

酌s

鄣ni

鄣x + z琢e0 鄣准鄣x (50)

Combining Eqs. (42), (49) and (50), we obtain a modified Nernst-Planck equation,

鄣n琢

鄣t = 鄣
鄣x D琢

ns
nt

鄣n琢

鄣x + D琢
n琢

nt
酌琢

酌s i 屹 s
移 酌i

酌s

鄣ni

鄣x + D琢 茁
n琢ns

nt
z琢e0 鄣准鄣x蓸 蔀 (51)

The modified Poisson-Nernst-Planck (PNP) equations in Eq. (35) and Eq. (51) constitute the continuum model

for multicomponent mass transport in electrolyte solution, which is derived from the grand potential being a

functional of the electric potential and the particle number densities.

The boundary conditions and the initial conditions are necessary for solving the PNP equation, a set of partial

differential equations. The boundary conditions are commonly divided into three types, Dirichlet, Neumann and

Robin. Dirichlet boundary conditions specify the variable value on the boundary, for example, y = y0 at x = x0.

Neumann boundary conditions specify the derivative of the variable, for example, 鄣y鄣x = 琢 at x = x0. Robin

boundary conditions are a combination of Dirichlet and Neumann boundary conditions, for example, y- 鄣y鄣x = 0

at x = x0.
The reaction plane, designated as the coordinate origin, x = 0, is the left boundary of which conditions are,

J琢 = m琢
j

me0
(52)

准(0, t) = 准M - 准pzc +
鄣准
鄣x (0, t)啄HP

缀s
缀HP

(53)

where j represents the current density of the overall reaction, m is the number of transferred electrons in the

overall reaction, m琢 is the stoichiometric number of the particle 琢 in the overall reaction. If particle 琢 does not

participate in the reaction, we use m琢 = 0. Eq. (53) shows the electric potential at the HP calculated from the ele-

ctrode side, which is the same as Eq. (8). Eq. (52) is a Neumann boundary condition, while Eq. (53) is a Robin

boundary condition.

The bulk solution is the right boundary, x = xr, with the following natural boundary conditions,
n琢(xr ,t) = n琢

b (54)

电化学渊J. Electrochem.冤 2022, 28(2), 2108471 (14 of 30)



准(xr ,t) = 0 (55)

which are the Dirichlet boundary conditions, where n琢
b is the number density of particle 琢 in the bulk solution.

At t = 0, the initial conditions are shown as,
n琢(x,0) = n琢

b (56)

准(x,0) = 0 (57)

We consider a proton-coupled electron transfer reaction, A + H+ + e- 圮 B, occurring at the HP, with A and B

being neutral species. The current density of the reaction, j, is described by the Frumkin-Butler-Volmer (FBV)
equation[55],

j = e0nM k00
cB,HP
cB0

exp 琢e0浊
kBT蓸 蔀 - cA,HP

cA0
cH+,HP

cH+
0 exp - (1-琢)e0浊

kBT蓸 蔀蓸 蔀 (58)

where nM is the areal number density of the electrode. For example, nMis calculated by ( 3姨 aM2)-1 forM(111) with

the lattice constant aM. The pre-exponential factor k00 is equal to
kBT
h exp - 驻Ga

00

kBT蓸 蔀 , with h being the Planck

constant, 驻Ga
00 the activation energy of the reaction at standard equilibrium state. 琢 is the charge transfer

coefficient, taken as 0.5. cB,HP, cA,HP and cH+,HP are the concentrations of B, A and H+ at the HP, respectively. cB0, cA0

and cH+
0 are the concentrations of B, A and H+ under standard conditions, respectively. 浊 is the overpotential,

defined as,

浊 = 准M - 准HP - E00 (59)

where E00 is the equilibrium potential of the reaction under standard conditions, calculated by E00 = -驻G0/e0,
with 驻G0 being the Gibbs free energy under standard conditions.

We numerically solve the model using the built-in partial differential equations solver, pdepe function, in

Matlab, with the parameters listed in Table 1. Matlab script of this model is provided in the supporting

information.

The typical results of the PNP equation are shown in Figure 8, including the steady current density, j, as a
function with 准M, and the distributions of the concentration of A, cA, at 0.1 s, 1 s and 5 s at 0.4 VSHE. The spatial

range of the EDL is 100 滋m, and the time duration is 5 s. The steady current density is taken at 5 s. As 准M > E00,

the oxidation reaction occurs and B is consumed. The current density increases near exponentially in the low

overpotential region and transitions to the diffusion limiting region when 准M > 0.7 VSHE, caused by the low

concentration of B at the HP. When 准M < E00, the reduction reaction occurs. As the electric potential decreases,

the current density increases and reaches the diffusion limiting current, which is limited by the low concentration

of A at the HP. From Figure 8(B), we see as the reduction reaction occurs, the concentration of A at the HP is

lower than that in the bulk solution, and decreases as the reaction continues. At 5 s, cA becomes almost linear
and reaches almost zero at the HP, signifying diffusion limiting effects.

Then we apply some approximations to reduce the modified PNP equation back to the classical PNP

equation. Firstly, under the assumption n琢屹垲n琢 , Eq. (35) is simplified as,

鄣
鄣x

缀s 鄣准鄣x蓸 蔀 = - e0移z琢 n琢 (60)

As for the modified Nernst-Planck equation, neglect of the asymmetric steric effects, that is, 酌i = 1, simplifies

Eq. (51) to,

鄣n琢

鄣t = 鄣
鄣x D琢

ns
nt

鄣n琢

鄣x + D琢
n琢

nt i 屹 s
移鄣ni

鄣x + D琢茁 n琢ns
nt

z琢e0 鄣准鄣x蓸 蔀 (61)

Furthermore, if the electrolyte is sufficiently dilute, that is, n琢垲nt, and nt抑ns, the expression is returned back to
the classical Nernst-Planck equation,

鄣n琢

鄣t = 鄣
鄣x

D琢
鄣n琢

鄣x + D琢茁n琢z琢e0 鄣准鄣x蓸 蔀 (62)
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At equilibrium state, that is J琢 = 0, Eq. (62) turns into Eq. (3), the Boltzmann equation. Similarly, when J琢 = 0,
Eq. (61) turns into Eq. (18), the equation adopted in the symmetric BPB model. Eq. (51) turns into Eq. (24), the

equation used in the asymmetric BPB model.

5 AC Impedance Models
Electrochemical impedance spectroscopy (EIS) is an in-situ, non-invasive characterization tool that can sepa-

rate multiple physicochemical processes spanning a wide frequency range. In most cases, the EIS of an EDL is

analyzed using the electrical circuit model (ECM) as shown in Figure 9. In fact, as to be discussed in the next

paragraph, the ECM has a very clear physical meaning. However, it is not rigorous, theoretically. Instead, it is

based on several assumptions which may become invalid in some cases. Therefore, it is of general importance to

derive the impedance response of the EDL that is described using the PNP theory要the 耶first-principles爷 of con-
tinuum modelling of the EDL. We recommend the readers to follow the derivation with paper and pencil. This

way, you will grasp the process of building a physical impedance model, acquire the basic mathematical tools,

Note

Ref [56]

Estimated

Estimated

Estimated

Estimated

Physical significance

Boltzmann constant

Absolute temperature

Planck constant

Elementary charge

Avogadro constant

Vacuum permittivity

Faraday constant

Gas constant

Dielectric permittivity of the space between the electrode and
the HP

Bulk dielectric permittivity of the water solvent medium

Distance from the electrode to the HP, calculated by 1.5 dH2O

with the diameter of water dH2O
= 0.275 nm.

Diffusion coefficient

Concentration of total cations (anions) in the bulk solution

Concentrations of B, A and H+ under standard conditions

Potential of zero charge

Lattice constant of the electrode

Areal number density of M(111), calculated by ( 3姨 aM2)-1

Equilibrium potential of the reaction at standard state

Activation energy of the reaction at standard equilibrium state

Symbol (unit) Value

Constants

kB(J窑K-1) 1.381 伊 员园-圆猿

T(K) 298.15

h(J窑s) 6.626 伊 员园-34

e0(C) 1.602 伊 员园-19

NA(mol-1) 6.022 伊 员园23

缀0(F窑m-1) 8.854 伊 员园-12

F(C窑mol-1) 96485

R(J窑K-1窑mol-1) 8.314

Solution properties

缀HP(F窑m-1) 6缀0

缀s(F窑m-1) 78.5缀0

啄HP(nm) 0.4125

D(m2窑s-1) 1 伊 员园-9

cb(mol窑m-3) 1

cA0,cB0,cH+0(mol窑m-3) 1

Electrode properties

准pzc(VSHE) 0.3

aM(魡) 3.5

nM(m-2) 4.713 伊 员园18

Reaction properties

E00(VSHE) 0.6

驻Ga
00(eV) 0.4

Table 1 List of the Model Parameters
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Figure 9 ECM in the electrochemical system. Cdl is an inter-

facial capacitance, associated with the double-layer charging

process, Rct is a resistance, associated with the charge transfer

reactions process, W describes the diffusion of species involved

in the charge transfer reactions, Rs is the electrolyte solution re-

sistance, associated with the migration process in the bulk so-

lution.

Figure 8 Typical results of the PNP theory, including the current density varying with the electrode potential, and the distributions

of the concentration of A at 0.1 s, 1 s and 5 s at 0.4 VSHE. The spatial range for calculation is 100 滋m from the HP, and the time dura-

tion for calculation is 5 s. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the support-

ing information.

and appreciate the beauty of physicochemical modell-

ing.

There are usually three physicochemical processes

in the EDL: double-layer charging, charge transfer

reactions, and diffusion. The double-layer charging

involves redistribution of ions in the EDL, namely,

change of the net charge stored in the EDL, under the

control of the electric potential. As the EDL is usually

only a few nanometers thick, ion transport in the EDL

is often considered to be completed immediately.

Therefore, charging the EDL is equivalent to charging

an interfacial capacitance Cdl. As for the charge

transfer reactions, it takes less than 1 ps for an

electron to transfer between the electrode and the reactant in solution phase. Consequently, we can safely

assume that the reaction current flows immediately when a potential difference is imposed. In other words, the

current-electric potential relation of the charge transfer reaction is equivalent to that of a resistance Rct. These

two processes are in parallel because they are controlled by the same potential difference, and the total current is

the sum of the double-layer charging part and the charge transfer reaction part. That is why the Cdl and Rct are in

parallel in Figure 9.

The W element in Figure 9 represents the diffusion of species involved in the charge transfer reactions in the

electrolyte solution. The elements W and Rct are in series because the transport process precedes/succeeds the

charge transfer reactions. Conscious readers may have noticed a logic flaw: did not we consider ion transport in

the EDL twice (one time in Cdl, and the other time in W )? There is another puzzle related to it. Given the fact

that ion transport in the EDL and that in the diffusion layer are the same physical process, why do we need two

elements? Why are Cdl and W located in different branches in the ECM? The way to resolve these puzzles has to

be found via rigorous physicochemical modelling.

Before entering into physics-based impedance modelling, the definition of EIS and the fundamental
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mathematical tool要Fourier transform要will be introduced. Then, we will work on calculating the impedance

response of a basic ECM to express the working mechanism of Fourier transform. Readers may find that EIS is

more than a specific kind of classical electrochemical techniques. It provides a powerful mathematical physics

approach to solve the electrochemical problems and represents a different look at electrochemical problems.

5.1 Basics of EIS
In this section, we introduce concisely the basics of EIS, including the Fourier transform and the example of a

simple electrical circuit.

5.1.1 Fourier transform

The Fourier transform of a function f(t) is,

F(棕) = ( f(t))=
∞

-∞乙 f(t)exp(-j棕t)dt (63)

which transforms a time-domain signal f(t) into a frequency-domain signal F(棕). The inverse Fourier transform is,

f(t) = -1(F(棕)) = 1
2仔

∞

-∞乙 F(棕)exp(j棕t)d棕 (64)

derived from Eq.(63) as follows,

F(棕) =
∞

-∞乙 f(t)exp(-j棕t)dt = 1
2仔

∞

-∞乙
∞

-∞乙 F(棕忆)exp(j棕忆t)d棕exp(-j棕t)dt =

1
2仔

∞

-∞乙 F(棕忆)
∞

-∞乙 exp(-j渊棕-棕忆冤t冤dt蓸 蔀 d棕 =
∞

-∞乙 F(棕忆)啄渊棕-棕忆冤d棕 = F(棕) (65)

where we have used the Dirac爷s delta function 啄(棕-棕忆) = 1
2仔

∞

-∞乙 exp(-j渊棕-棕忆冤t冤dt.

Electrochemical processes are usually described by ordinary or partial differential equations. Therefore, the

Fourier transform of the nth derivative of a function is useful,
dnf(t)
dtn蓸 蔀 = ( j棕)nF(棕) (66)

given that f (n-1)(t) = 0 at the initial state.
We prove for the case n = 1,
df(t)
dt蓸 蔀= ∞

-∞乙 f忆(t)exp(-j棕t)dt = f(t)exp(-j棕t)渣
肄

-肄+ j棕
∞

-∞乙 f(t)exp(-j棕t)dt = j棕F(棕) (67)

where we use the natural boundary conditions, f(肄) = f(-肄) = 0. The case of other orders can be proved by re-

peating the manipulation of Eq.(67).

Another often-used property of Fourier transform is the convolution theorem,

(f(t)*g(t)) = F(棕)G(棕) (68)

where the sign 野*冶 denotes the convolution operator defined as f(t)*g(t) =
∞

-∞乙 f(子)g(t - 子)d子, F(棕) and G (棕)

denote the Fourier transform of f(t) and g(t), respectively. Eq. (68) is proved as follows,

( f(t)*g(t)) =
∞

-∞乙
∞

-∞乙 f(子)g(t-子)d子exp(-j棕t)dt =
∞

-∞乙
∞

-∞乙 f(子)e-j棕tg(t-子)e-j棕(t-子)d子dt

( f(t)*g(t)) =
∞

-∞乙 f(子)e-j棕t
∞

-∞乙 g(t-子)e-j棕(t-子)dt蓸 蔀 d子 = F(棕)G(棕) (69)

5.1.2 Definition of Impedance

For any electrochemical system at stationary states, we apply an arbitrary current or electric potential excitation

of small magnitude to ensure the linearity requirement, and obtain corresponding electric potential or current

response. The electrochemical impedance is defined as the ratio of the Fourier transform of the potential to that

of the current, that is,
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Z(棕) = (V (t))
(i(t)) (70)

A simple ECM is shown in Figure 10(A), which consists of two resistors and one capacitor. The total electric

potential of this circuit is,

V tot(t) = V 1(t) + V 2(t) (71)

where

V 1(t) = R0i(t), i(t) =
V 2 (t)
R + C dV 2 (t)

dt (72)

Applying Fourier transform into Eqs. (71) and (72), we obtain,

(V tot(t)) = (V 1(t)) + (V 2(t)) (73)

(V 1(t)) = R0 (i(t)), (i(t)) = (V 2(t))
R + j棕C (V 2 (t)). (74)

Combining Eqs. (70) and (74), the electrochemical impedance reads,

Z = (V tot (t))
(i(t)) = R0 +

R
1+j棕RC (75)

The real part, Z忆(棕), and the imaginary part, Z义(棕), of Eq. (75) are,

Z忆(棕) = R0 + R 1
1+(棕子)2 (76)

Z义(棕) = -R 棕子
1+(棕子)2 (77)

where 子 = RC is the time constant of this circuit. The amplitude and phase angle of this impedance are,

|Z| = (Z忆)2+(Z义)2姨 = R0
2 + R2 + 2RR0

1+(棕子)2姨 (78)

渍 = arctanh Z义
Z忆蓸 蔀 = -arctanh R棕子

R + R0(1+(棕子)2)蓸 蔀 (79)

Figure 10(B) shows the EIS of the R0(R//C) circuit in the Nyquist plot, which is a perfect semi-circle. The
diameter of the semi-circle is equal to R and the high-frequency intercept on the horizontal axis is equal to R0.

We can also represent the EIS in the Bode plots in Figures 10(C) and 10(D). The relationship between the im-

pedance amplitude and the frequency is shown in Figure 10(C). At very low frequencies, the amplitude of im-

pedance is equal to R + R0. At very high frequencies, the amplitude of impedance approaches R0. Figure 10(D)

shows how the phase angle varies with frequency. There is only a characteristic frequency at 1/RC which

corresponds to the peak in the Nyquist plot. Notably, the peak frequency in the Bode plot deviates from 1/RC[57].

5.1.3 Perturbation Analysis

Considering a dilute, symmetrical and covalent electrolyte solution, we apply a potential perturbation to the

system,

UＭ = UM
0 + U軒Ｍej棕nd子 (80)

where UM is the dimensionless electrode potential, the superscript 野0冶 denotes the stationary electrode potential,
the sign 野~冶 denotes the magnitude of the perturbation potential and 棕nd is the dimensionless angular frequency

referenced to D/姿D
2. When the perturbation is sufficiently weak (准軒M < 25 mV, or U軒M < 1), the linear response

approximation is valid. Then, all system variables are decomposed into stationary parts and perturbation parts of

the same frequency, namely,

C+ = C+
0 + C軒+ej棕nd子 (81)

C- = C-
0 + C軒- ej棕nd子 (82)

U = U0 + U軒ej棕nd子 (83)
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Figure 10 (A) A simple RC electrical circuit; (B) The Nyquist plot; (C) The Bode plot of amplitude; (D) The Bode plot of phase

angle. The parameters used for calculation are as follows, R0 = R = 1 赘, C = 0.5 F, and the frequency range: 1 伊 10-4 Hz to 1 伊 104

Hz. Matlab script of this model is provided in the supporting information. (color on line)

Substituting Eqs. (81)-(83) into the PNP equation, and omitting the stationary and high-order parts, we obtain,

j棕ndC軒+ =
鄣2C軒+

鄣X2 + 鄣
鄣X C+

0 鄣U軒
鄣X + C軒+

鄣U0

鄣X蓸 蔀 (84)

j棕ndC軒- = 鄣2C軒-
鄣X2 - 鄣

鄣X C-
0 鄣U軒
鄣X + C軒-鄣U

0

鄣X蓸 蔀 (85)

鄣2U軒
鄣X2 = 1

2
(C軒- - C軒+ ). (86)

Usually, C+
0, C-

0 and U0 are X-varying, making it difficult to solve Eqs. (84)-(86) analytically. Nevertheless,

at the pzc, we have, C+
0 = C-

0 = 1 and U0 = 0. Therefore, Eqs. (84) and (85) are reduced to,

j棕nd C軒+ =
鄣2C軒+

鄣X2 + 鄣2U軒
鄣X2 (87)

j棕nd C軒- = 鄣2C軒-

鄣X2 - 鄣2U軒
鄣X2 (88)

Substituting Eq. (86) into Eqs (87) and (88) leads,

鄣2C軒+

鄣X2 = (j棕nd + 1
2
)C軒+ - 12 C軒- (89)

鄣2C軒-
鄣X2 = - 1

2
C軒+ + (j棕nd + 1

2
)C軒- (90)

Two equations above can be rewritten into a matrix form,

鄣2
鄣X2 x = Ax (91)

A =
专1 专2

专2 专1
蓘 蓡 (92)

x = [C軒+ ,C軒-]T (93)
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专1 = (j棕nd + 1
2
) (94)

专2 = -
1
2
. (95)

The eigenvalues, 姿1 and 姿2, and eigenvectors, V 1 and V 2, of matrix A are,

姿1 = 专1 - 专2 (96)

姿2 = 专1 + 专2 (97)

V 1 = [-1,1]T (98)

V 2 = [1,1]T. (99)

Introducing two matrixes P and H, and a vector y,

P =
-1 1

1 1蓘 蓡 (100)

H =
姿1 0

0 姿2
蓘 蓡 (101)

y = P-1x (102)

then we substitute the vector x with y and using the equality, P-1AP = H, transforming Eq. (91) into,
鄣2
鄣X2 y = Hy. (103)

Notice that H is a diagonal matrix, implying that the two elements of vector y, y1 and y2, can be solved

separately,

y1 = 琢1sinh( 姿1姨 X) + 琢2 cosh( 姿1姨 X) (104)

y2 = 茁1sinh( 姿2姨 X) + 茁2 cosh( 姿2姨 X) (105)

where coefficients 琢1, 琢2, 茁1, 茁2 are to be determined by the correspondingboundaryconditions.Afterwards, the two
elements of the vector x are obtained as,

C軒+ = -y1 + y2 (106)

C軒- = y1 + y2. (107)

The boundary conditions of Eqs. (106) and (107) are as follows. In the bulk solution, X = Xb, the electric potential

is regarded as the reference, namely, it does not change with the excitation. In addition, all ions have their bulk

concentrations which also do not change with the potential perturbation,

C軒+ = 0, C軒- = 0, U軒= 0. (108)

At the HP, X = 0, the boundary conditions are rephrased as,

鄣C軒+

鄣X + 鄣U軒
鄣X = - 姿D J軇de

Dc0
(109)

鄣C軒-
鄣X - 鄣U軒

鄣X = 0 (110)

U軒HP = U軒M +
缀s啄HP
缀HP姿D

鄣U軒
鄣X (111)

where J軇de is specifically deduced as follows. Firstly, we define,
F浊
RT = 装, 装 = 装0 + 装軗 (112)

where 装0 = UM
0 - UHP

0 - Ueq is the dimensionless stationary overpotential and 装軗= U軒M - U軒HP the dimensionless

perturbation of the potential difference between the electrode surface and the HP.
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We consider a reaction of metal ions deposition, M+ + e-圮M, occurring at the HP. The current density of the

reaction, jde, is described by the FBV equation,

jde = k0 exp 琢e0浊
kBT蓸 蔀 - c+,HPc+0

exp - (1-琢)e0浊kBT蓸 蔀蓸 蔀 (113)

where c+,HP is the concentration of M+ at the HP, c+0 is the concentrations of M+ in the bulk solution, and k0 is the
reaction rate constant.

SubstitutingEqs. (81) and (112) into the FBV theory, Eq. (113), gives,

jde = k0[exp(琢(装0 + 装軗)) - (C+
0 + C軒+)exp(-(1-琢)(装0 + 装軗))] (114)

Expanding Eq. (114) into a first-order Taylor series leads to,

jde = k0[exp(琢装0)(1 + 琢装軗) - (C+
0 + C軒+)exp(-(1-琢)装0)(1-(1-琢)装軗)] (115)

Removing the stationary parts and second-order parts, we obtain,

J軇de = k0[(琢exp(琢装0) + (1-琢)C+
0exp(-(1-琢)装0))装軗-exp(-(1-琢)装0)C軒+]. (116)

Defining two variables related to the reaction rate,

淄1 = k0(琢exp(琢装0) + (1-琢)C+
0exp(-(1-琢)装0)), 淄2 = k0exp(-(1-琢)装0) (117)

we can reformulate Eq. (116) as,

J軇de = 淄1(U軒M - U軒HP) - 淄2C軒+ . (118)

5.1.4 Impedance Expression

Substituting Eqs. (106)-(107) into the corresponding boundary conditions expressed in Eqs. (108)-(111), we can

solve for the four coefficients introduced in Eqs. (104)-(105),

琢1 = U軒M -淄1 +
2

rc + Xb

Dc0
姿D

+ 1
rc + Xb

淄2 tanh 姿2姨 Xb
蓸 蔀
姿2姨

+ 淄1Xb蓸 蔀蓸 蔀 /
- 姿1姨 - 1

姿1姨
+ 1

rc + Xb

rc
姿1姨

+
tanh 姿1姨 Xb

蓸 蔀
姿1

蓸 蔀蓸 蔀 2
姿D

Dc0
+ 1

姿2姨
淄2 tanh( 姿2姨 Xb )蓸 蔀 +

tanh 姿1姨 Xb
蓸 蔀 淄1

姿1

rc
rc + Xb

- 淄2蓸 蔀 - rcXb

rc + Xb

淄1
姿1姨

晌

尚

上
上
上
上
上
上
上
上
上
上
上
上
上
上
上

裳

捎

梢
梢
梢
梢
梢
梢
梢
梢
梢
梢
梢
梢
梢
梢
梢

(119)

琢2 = -琢1tanh( 姿1姨 Xb) (120)

茁1 = -
1
姿2姨

琢1 姿1姨 - 1
姿1姨

+ 1
rc + Xb

rc
姿1姨

+
tanh( 姿1姨 Xb )

姿1
蓸 蔀蓸 蔀+ 1

rc + Xb

U軒M蓸 蔀 (121)

茁2 =
1
姿2姨

琢1 姿1姨 - 1
姿1姨

+ 1
rc + Xb

rc
姿1姨

+
tanh( 姿1姨 Xb )

姿1
蓸 蔀蓸 蔀+ 1

rc + Xb

U軒M蓸 蔀 tanh( 姿2姨 Xb) (122)

where rc =
缀s 啄HP
缀HPHP姿D

is the ratio between the Gouy-Chapman capacitance CGC =
缀s
姿D

蓸 蔀 and the Helmholtz capacit-

ance CH =
缀HP
啄HP蓸 蔀 .

Then we obtain the explicit expression of J軇de expressed in Eq. (118) by substituting Eqs. (119)-(122) into Eqs.
(104) and (107). Besides the reaction current density jde, the EDL current density also needs to be calculated,

expressed as,

jdl = -
dqdl
dt = -

d(F
xb

0乙 (c+ - c-)dx)
dt (123)

where qdl is the total charges stored in EDL. The dimensionless form of jdl is,
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Jdl = -
d

Xb

0乙 (C+- C-)dX蓸 蔀
d子 (124)

Converting Eq. (124) into frequency domain gives,

J軇dl = -j棕
nd 锥b

0乙 (C軒+- C軒- )dX. (125)

The total current density is the sum of the double layer current density and the Faradic reaction current

density, namely,

J軇= J軇dl + 姿D

Dc0
J軇de . (126)

So far, we obtain the dimensionless impedance expression,

Znd =
U軒Ｍ
J軇

=

rc姿1 + Xb (姿1- 1) +
tanh( 姿1姨 Xb )

姿1姨
+移

1

dr

2j棕nd(1 - sech( 姿1姨 Xb )) +移
2

dr

(127)

where移
1

dr and移
2

dr represent the terms related to the coupling of charge transfer reaction and ion transport,

移
1

dr = - 12
姿D

Dc0
rc 淄1

tanh( 姿1姨 Xb )

姿1姨
- Xb蓸 蔀 +

1
2

姿D

Dc0
淄2 rc姿1 + Xb (姿1- 1)+

tanh( 姿1姨 Xb )

姿1姨蓸 蔀 tanh( 姿2姨 Xb )

姿2姨
+ (rc + Xb ) 姿1姨 tanh( 姿1姨 Xb )蓸 蔀 (128)

移
2

dr =
姿D

Dc0
( 姿2姨 v2 tanh( 姿2姨 Xb ) - v1 rc姿2 )(1-sech( 姿1姨 Xb )) + v1 rc姿1

姿D

Dc0
+

姿D

Dc0
v2 姿1姨 tanh( 姿1姨 Xb ) (129)

Based on previously defined dimensionless variables, we obtain the impedance reference, Z ref =
2姿D

2

DCGC

.

Notably, if there is no reaction at the HP, 淄1 = 淄2 = 0, we obtain移
1

dr = 移
2

dr = 0, and Eq. (127) is reduced to the

impedance of an ideal polarizable electrode that has been given in Ref.[58].

5.1.5 Simplifications

Although we have obtained the analytical solution expressed in Eq. (127), it is too complex. Therefore, we

need to simplify this expression under some reasonable assumptions. Firstly, in a real system, we have Xb 垌1抑
rc, then we obtain,

移
1

dp

j棕nd 抑 v1 rc
2

姿D

Dc0

Xb

j棕nd - 1
j棕nd 1 + j棕nd姨蓸 蔀 +

∑ dp
1

jω nd ≈
v2
2

姿D

Dc0
1

j棕nd 1+ j棕nd姨
tanh( j棕nd姨 Xb )

j棕nd姨
+Xb

1 + j棕nd姨
j棕nd +

tanh( j棕nd姨 Xb )

j棕nd姨
蓸 蔀蓸 蔀 (130)

移
2

dp

j棕nd 抑 姿D

Dc0
v2 tanh( j棕nd姨 Xb )

j棕nd姨
- v1rc蓸 蔀+ v1rc

姿D

Dc0
+ v1rc
j棕nd

姿D

Dc0
+
姿D

Dc0
v2 1 + j棕nd姨

j棕nd (131)

Substituting Eqs. (130) and (131) into Eq. (127) leads,

Znd =
Xb

2
+

rc
j棕nd + 1

j棕nd j棕nd + 1姨蓸 蔀+ 姿D

Dc0
1

j棕nd 1 + j棕nd姨
v2
2

tanh( j棕nd姨 Xb )

j棕nd姨
- v1 rc

2蓸 蔀
2 + v2

姿D

Dc0
tanh( j棕nd姨 Xb )

j棕nd姨
+ 1 + j棕nd姨

j棕nd蓸 蔀+ v1 rc
姿D

Dc0
1
j棕nd

. (132)

Usually, 棕nd = 棕 姿D
2

D 抑棕 伊 10-9垲 1, then we obtain,
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Znd =
Xb

2
+

rc
j棕nd +

1

j棕nd j棕nd + 1姨蓸 蔀+ 姿D

Dc0
1

j棕nd 1 + j棕nd姨
v2
2

tanh( j棕nd姨 Xb )

j棕nd姨
- v1 rc

2蓸 蔀
2 + v2

姿D

Dc0
tanh( j棕nd姨 Xb )

j棕nd姨
+ 1 + j棕nd姨

j棕nd蓸 蔀 + v1 rc
姿D

Dc0
1
j棕nd

抑 Xb

2 +

1+ rc
j棕nd + 姿D

Dc0
1
j棕nd

v2
2

tanh( j棕nd姨 Xb )

j棕nd姨
- v1 rc

2蓸 蔀
2 + v2

姿D

Dc0
tanh( j棕nd姨 Xb )

j棕nd姨
+

姿D

Dc0
1
j棕nd (v1 rc + v2 )

=
Xb

2
+ 1
2

1

j棕nd

1+ rc
+
j棕nd rc

1+ rc
姿D

Dc0
v2
2

tanh( j棕nd姨 Xb )

j棕nd姨
+
v2
2

姿D

Dc0
1
j棕nd + 1

1+rc
姿D

Dc0
v1 rc
2

+ 1
j棕nd

姿D

Dc0
v1 rc
2蓸 蔀

1+ rc+
姿D

Dc0
v2
2

tanh( j棕nd姨 Xb )

j棕nd姨
- v1 rc

2蓸 蔀
=

Xb

2
+ 1
2

1
j棕nd

1+ rc
+ 1

2
v2

Dc0
姿D

(1+ rc ) -
v1 rc
v2

+
tanh( j棕nd姨 Xb )

j棕nd姨

(133)

We notice that the final expression of Eq. (133) has a coefficient of 1
2
, which may look a little weird to readers.

Therefore, we redefine the impedance reference as
姿D

2

DCGC

, then Eq. (133) is reformulated as,

Znd = Xb +
1

j棕nd

1 + rc
+ 1

2
v2

Dc0
姿D

(1 + rc ) -
v1 rc
v2

+
tanh( j棕nd姨 Xb )

j棕nd姨

(134)

We define, Rs
nd = Xb the dimensionless solution resistance, Rct

nd = 2
v2

Dc0
姿D

(1 + rc ) -
v1 rc
v2

the dimensionless charge

transfer resistance and W nd =
tanh( j棕nd姨 Xb )

j棕nd姨
the dimensionless Warburg impedance. Eq.(134) embodies the

coupling relationships between charge transfer reaction and EDL charging. Specifically, both Rct
nd and Cdl

nd have

the capacitance ratio term, rc.
Then Eq. (133) is reformulated as,

Znd = Rs
nd + 1

j棕ndCdl
nd + 1

Rct
nd + W nd

(135)

From this simplified condition, we define the characteristic frequency of charge transfer reaction as, 棕ct
nd =

1
Rct

ndCdl
nd , and the characteristic frequency of diffusion as, 棕d =

D
xb2

, whose dimensionless form is 棕d
nd = 1

Xb
2 .

When 棕nd < 棕d
nd, Eq. (135) is simplified to,

Znd = Rs
nd +

tanh( j棕nd姨 Xb )

j棕nd姨
(136)

whose Nyquist plot is a 45o-line followed by a semi-circle, as shown in Figure 11(D), representing ion diffusion in

bulk solution.
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When 棕d
nd < 棕nd < 棕ct

nd, Eq. (136) is reduced to,

Znd = R s
nd + １

j棕ndCdl
nd + 1

Rct
nd

(137)

whose Nyquist plot is an ideal semi-circle, as shown in Figure 11(C), representing the charge transfer reaction.

Finally, when 棕nd > 棕ct
nd, Eq. (137) is reduced to,

Znd = Rs
nd + 1

j棕ndCdl
nd (138)

whose Nyquist plot is a straight line representing the EDL charging process, as shown in Figure 11(B).

5.2 Numerical Methods of Impedance Calculation
In this section, we introduce the methods of calculating the impedance from time-domain data, which can be

obtained from models and experiments. Firstly, the method of an analytical Fourier transform (AFT) is introduced[59].

Then it is used to calculate the impedance of the deposition reaction of metal ions. Lastly, the fast Fourier

transform (FFT), another often used numerical method, is introduced briefly.

5.2.1 Analytical Fourier transform

Applying linear interpolation to time-domain signal, we obtain

h赞 (t) = 滓(t) - 滓 t -
1

i = 1
移驻ti蓸 蔀蓸 蔀窑 h1 +

h2- h1
驻t1

t蓸 蔀 + ... + 滓 t-
n-2

i = 1
移驻ti蓸 蔀 -滓 t-

n-1

i = 1
移驻ti蓸 蔀蓸 蔀窑 hn-1 +

hn-hn-1

驻tn-1
t -

n-2

i = 1
移驻ti蓸 蔀蓸 蔀

(139)

where h(t) is the recorded time-domain signal, 滓(t) the normalized step function. Then applying Fourier transform
to Eq. (139) gives,

H赞 (棕) =
∞

0乙 h赞 (t)exp(-j棕t)dt

= 1
j棕 h1- hnexp -j棕

n-1

i = 1
移驻ti蓸 蔀蓸 蔀 - 1

棕2

h2- h1
驻t1

- hn- hn-1

驻tn-1
exp -j棕

n-1

i = 1
移驻ti蓸 蔀蓸 蔀

= - 1
棕2

n-2

k = 1
移 hk+2- hk+1

驻tk+1
- hk+1- hk

驻tk蓸 蔀 exp -j棕
k

i = 1
移驻ti蓸 蔀 (140)

where the specific derivations are detailed below. Integrating the last term of h赞 (t) gives,

H赞 n-1 (棕) =
∞

0乙 h赞 (t)exp(-j棕t)dt

=
∞

0乙 滓 t -
n-2

i = 1
移驻ti蓸 蔀 -滓 t-

n-1

i = 1
移驻ti蓸 蔀蓸 蔀窑 hn-1 +

hn- hn-1

驻tn-1
t -

n-2

i = 1
移驻ti蓸 蔀蓸 蔀 exp(-j棕t)dt

=

移i=1
n-1
驻ti

移i=1

n-2
驻ti

乙 hn-1 +
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n-2

i = 1
移驻ti蓸 蔀蓸 蔀 exp(-j棕t)dt

= hn-1
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n-1
驻ti
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n-2
驻ti

乙 exp(-j棕t)dt + hn-hn-1
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驻ti
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Figure 11 Nyquist plots of simplified impedance in different frequency ranges. (A) Full frequency range, 1伊106 Hz ~ 1伊10-4 Hz;

(B) 棕nd > 棕ct
nd, 1伊106 Hz ~ 1伊105 Hz; (C) 棕d

nd < 棕nd < 棕ct
nd, 1伊104 Hz ~ 10 Hz; (D) 棕nd < 棕d

nd, 1 Hz ~ 1伊10-4 Hz. Parameters are c0 =
100 mol窑m-3, k0 = 3伊10-4 mol窑m-2窑s-1, D = 1伊10-10 m2窑s-1. Matlab script of this model is provided in the supporting information.

(color on line)
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Similarly, we obtain the frequency-domain expression for each term of Eq. (139),

H赞 n-2 (棕) =
1
j棕 hn-2 exp -j棕

n-3

i = 1
移驻ti蓸 蔀+ 1

棕2
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噎噎

H赞 2 (棕) =
1
j棕 h2 exp -j棕

1

i = 1
移驻ti蓸 蔀+ 1
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h3- h2
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exp -j棕
2
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1
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1
j棕 h1 +

1
棕2

h2- h1
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exp -j棕
1

i = 1
移驻ti蓸 蔀 -1蓸 蔀蓸 蔀 - 1

j棕 h2 exp -j棕
1
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移驻ti蓸 蔀 (142)

Adding up all terms from H赞 1 (棕) to H赞 n-1(棕), we obtain Eq. (140).

5.2.2 Application of AFT

Figure 12 compares the AFT-calculated and the analytical impedance expressed in Eq. (127). Notice that the

results of AFT have some deviation in the entire frequency range. Especially, the deviation in the limiting

high-frequency region is more obvious. The main reason is that the AFT method accumulates error in the

numerical calculations. Due to the fact that the AFT calculation is a quite time-consuming task in a low

frequency range, current results only show a 45紫-line without a semi-circle that should occur in the low-frequency

region.

Except for the AFT method, another often-used Fourier transform method is the FFT, which is widely used

in signal processing[60]. However, FFT is a completely pure numerical method. Compared with AFT, it lacks

stability and has higher requirements for the signal-noise ratio of the time-domain signal.

6 Conclusions
This paper is designed as a tutorial tool on EDL modelling, including equilibrium models (the GCS model

and the BPB model), nonequilibrium models (PNP-like models), and models under AC conditions (the EIS

电化学渊J. Electrochem.冤 2022, 28(2), 2108471 (26 of 30)



models). Exposition of these models begins with

physical insights, followed by detailed mathematical

derivation, formal analysis, and then practical numeri-

cal implementation with the Matlab scripts provided

in the supporting information. A viable attempt to

craft a physical model for the specific system under

one爷s own investigation could start with following the
model development procedure presented here with

pencil and paper.
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平衡尧非平衡尧交流状态下电化学双电层
建模的初学者指南

张露露1#袁李琛坤2#袁黄 俊3*

渊1.中国科学技术大学化学与材料科学学院袁安徽合肥 230026袁中华人民共和国曰
2.中南大学化学化工学院袁湖南长沙 410083袁中华人民共和国曰 3.乌尔姆大学理论化学研究所袁乌尔姆 89069袁德国冤

摘要:本文定位在一篇电化学双电层渊EDL冤理论建模方面入门级文章遥我们首先简要介绍了 EDL的基本特征袁简
述了 EDL理论建模的发展历史袁特别是 D.C. Grahame之后近几十年的发展历史遥 然后袁我们依次介绍了平衡状
态和动态下不同复杂度的 EDL模型遥 作为一篇入门级文章袁我们尽可能详细地阐释理论模型的物理图像尧假设尧
数学推导尧形式分析尧数值分析袁并附上Matlab仿真代码遥 平衡状态下的模型包括 Gouy-Chapman-Stern渊GCS冤模
型袁Bikerman-Poisson-Boltzmann渊BPB冤模型袁和非对称离子尺寸模型遥 我们强调 GCS模型和 BPB模型在处理离

子有限尺寸上存在一个微妙的不同遥 GCS 模型通过人为引入 Helmholtz 平面来考虑离子有限尺寸袁 但在
Helmholtz平面内及弥散层内却依然采用没有考虑离子尺寸效应的 Poisson-Boltzmann理论袁 因而此处的离子浓
度可以无限大遥 与之不同袁BPB模型通过格子气体方法袁 能够自洽描述离子有限尺寸效应遥 不同以往直接采用
Poisson-Nernst-Planck方程描述 EDL动态行为袁我们从 EDL的巨势出发袁运用基本的泛函分析方法袁推导了一个
考虑离子有限尺寸的 EDL动态模型遥这一理论方法拓展性好遥读者可以根据研究对象的需要袁建立不同复杂度的
EDL动态模型遥最后袁我们基于 EDL动态模型袁推导了 EDL的电化学阻抗谱理论模型袁以试图向读者展示如何从
一个时域物理模型出发袁推导相应的阻抗谱物理模型遥 读者若想要踏进理论电化学这个美丽的花园袁根据我们自
己学习和研究的经验袁一个可行的方式是拿起纸和笔来开始推导本文所介绍的这些模型遥
关键词: 双电层曰平衡曰非平衡曰电化学阻抗谱曰物理建模
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