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A Beginners’ Guide to Modelling of Electric Double Layer under
Equilibrium, Nonequilibrium and AC Conditions

Lu-Lu Zhang", Chen-Kun Li*, Jun Huang™
(1. School of Chemistry and Materials Science, University of Science and Technology of China,
Hefei 230026, Anhui, People’s Republic of China; 2. College of Chemisiry and Chemical Engineering,
Central South University, Changsha 410083, Hunan, People’s Republic of China;
3. Institute of Theoretical Chemistry,Ulm University, 89069 Ulm Germany)

Abstract: In electrochemistry, perhaps also in other time-honored scientific disciplines, knowledge labelled classical usually at-
tracts less attention from beginners, especially those pressured or tempted to quickly jam into research fronts that are labelled, not
always aptly, modern. In fact, it is a normal reaction to the burden of history and the stress of today. Against this context, accessible
tutorials on classical knowledge are useful, should some realize that taking a step back could be the best way forward. This is the
driving force of this article themed at physicochemical modelling of the electric (electrochemical) double layer (EDL). We begin the
exposition with a rudimentary introduction to key concepts of the EDL, followed by a brief introduction to its history. We then elu-
cidate how to model the EDL under equilibrium, using firstly the orthodox Gouy-Chapman-Stern model, then the symmetric Biker-
man model, and finally the asymmetric Bikerman model. Afterwards, we exemplify how to derive a set of equations governing the
EDL dynamics under nonequilibrium conditions using a unifying grand-potential approach. In the end, we expound on the defini-
tion and mathematical foundation of electrochemical impedance spectroscopy (EIS), and present a detailed derivation of an EIS
model for a simple EDL. We try to avoid the omission of supposedly ‘trivial’ information in the derivation of models, hoping that it

can ease the access to the wonderful garden of physical electrochemistry.

Key words: electric double layer; equilibrium; nonequilibrium; electrochemical impedance spectroscopy

1 Introduction
1.1 What is An Electric Double Layer?

An electrochemical cell has two electrodes separated by an electrolyte solution, as schematically shown in
Figure 1. The electric potential difference between the two electrodes, denoted V., can be modulated with a po-
tentiostat at one’s disposal. By varying V., one gets a handle on controlling the difference in the electrochemi-
cal potential of electrons between the two electrodes. Electrons flow from the electrode with the higher electro-
chemical potential (lower electric potential), via the potentiostat, to the other side. Let us consider for the moment
ideally polarizable electrodes. The resultant electron flow cannot cross the electrode-electrolyte interface (EEI)
regardless of V.. Therefore, excess or deficient electrons, corresponding to a net negative or positive surface
charge, are distributed over a skin layer of several angstroms (A) thick on the electrode surface, which is a conse-

quence of quantum-mechanical behaviors of electrons. Counterions are attracted to and coions are repelled from
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the electrode surface via electrostatic interactions, as illustrated in Figure 1. In addition, the solvent molecules
adjust their orientation according to the strong electric field generated by the net surface charge. These coupled
phenomena occur in a non-electroneutral region of a few nanometer (nm) thick, which is termed as the electric
double layer (EDL).

In most cases, the electron flow can cross the EEI, resulting in oxidation or reduction of solution species near
the electrode. The electron transfer rate depends on the distributions of the electric potential, the concentrations
of reactant and product, and the dielectric polarization of the solvation environment. Therefore, the structure
and properties of the EDL are important factors influencing interfacial electron transfer reactions.

1.2 Key Properties of the EDL

The distributions of the electric potential, the ion concentrations, and the solvent orientation in the EDL are
dictated by the excess surface charge density, denoted o. In an electrochemical cell, the two electrodes have oy
of the same magnitude but opposite signs, because the full cell must be electroneutral. o can be varied as a
function of V., or as long as a single electrode is considered, o is a function of the electric potential, ¢y, of the
considered electrode. The relation between o and ¢y, is called surface charging relation. Determining the oy -
¢y relation is an essential task in modelling the EDL and electrochemical reactions therein.

A schematic illustration of the surface charging relation of the EDL is given in Figure 2. The electric potential
in the bulk solution, d¢s, is taken as the reference. The electric potential in the electrode bulk, ¢y, can be adjust-
ed at will. There is a potential drop, X, on the electrode surface, which is caused by electron spillover from the
solid electrode into the electrolyte solution!. X is related to the electron density of the solid electrode, therefore,
its value depends on how many electrons are included in the calculation. More specifically, X is much higher if
more electrons of the metal are considered explicitly. For a given metal, X varies slightly with ¢y, and we as-
sume that X is a constant in the subsequent analysis.

Consider first the case of ¢y — ¢s<X, as shown in Figure 2(A). The electric potential in the electrolyte solu-
tion near the electrode surface is lower than ¢s. Therefore, cations are accumulated in the EDL because they
have a lower energy there. Contrarily, anions are depleted. Hence, a positive net charge is stored in the EDL,
which is accompanied by excess electrons on the metal surface and o < 0. If ¢y is increased, the electric po-
tential in the EDL becomes more positive because we assume a constant y for the electrode. This means that less
cations are accumulated and less anions are repelled in the EDL. Therefore, o becomes less negative and shifts
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Figure 1 An electrochemical cell with two charged electrode/electrolyte interfaces. (color on line)
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towards more positive values.

For the case of ¢y — ¢s =y, as illustrated in Figure 2(B), the electric potential in whole electrolyte solution
is zero as we have set the potential reference in the bulk solution. There is no excess charge in the EDL or on
the electrode surface, i.e., oy = 0. This particular value of ¢y is the potential of zero charge (pzc)?. For the case of
¢v — ¢bs > x, shown in Figure 2(C), anions are accumulated and cations are depleted in the EDL, i.e., oy > 0.
Overall, the oy — ¢y relation shows a monotonically increasing trend for ordinary EDLs. From this relation, we

obtain the differential double-layer capacitance Cy,

_ doy
Ca= G0 M

For EDLs with chemisorption, the surface charging relation can be nonmonotonic. In Figure 2, we give such

an example, where chemisorption occurs in the high potential range. The chemisorbates are usually partially
charged due to the partial charge transfer™™. The charged chemisorbates, together with the compensating charge
located on metal surface atoms, give rise to a surface dipole moment, which is termed the chemisorption-in-
duced surface dipole moment, fhuem Meem introduces an additional contribution to the potential drop on the elec-
trode surface, Ay. Even at a high potential ¢y, — ¢s >y, the electrode surface with chemisorbates could be nega-
tively charged due to the additional negative potential drop Ay. Consequently, the surface charging relation
could be nonmonotonic with a second pzc in the high potential region for electrocatalytic interfaces™*. Accord-
ing to its definition, Cy4 is negative in the nonmonotonic region of the o — ¢y relation. Note that in the presence
of chemisorbates, the definition of o should be varied accordingly, which contains not only the excess charge
on the electrode surface, but also the net charged carried on the charged adsorbates. In this regard, it is better to
be denoted T .
1.3 Purpose and Structure of This Paper

We wish to provide a tutorial for physical modelling of the EDL under both equilibrium and nonequilibrium
conditions. Both time-domain and frequency-domain responses are modelled under nonequilibrium conditions.
The latter is in fact the electrochemical impedance response. As a tutorial, this paper includes a systematic expo-
sition of relevant models with mathematical details provided. We also provide simulation scripts of these models
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Figure 2 Surface charging relation: (A) ¢y — ¢s <X> (B) du— ¢s =x, (C) by — s > x, and (D) with an additional potential drop Ay
at the surface due to chemisorption-induced surface dipole. In the presence of chemisorption, oy contains not only the excess charge

on the electrode surface, but also the net charged carried on the charged adsorbates. (color on line)
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in the supporting information.

The remaining parts of this paper are organized as follows. We first provide a brief history of the EDL theory.
Then, we introduce EDL models under equilibrium conditions, including the Gouy-Chapman-Stern model, then
the Bikerman model that takes ion size effects into account, and finally a modified Bikerman model that considers
asymmetric ion size effects. Next, we derive nonequilibrium EDL models from a grand potential of the EDL.
Afterwards, we present the basics of EIS, and demonstrate how to derive an EIS model from the nonequilibrium
EDL models.

2 A Brief History of the EDL Theory

A quantitative determination of the o = f{(¢y) relation requires a physicochemical model for the EDL. Figure
3 summarizes milestones in the evolution of EDL modelling and simulations. Helmholtz (1879) viewed the
EDL as a planar plate capacitor with a constant double-layer capacitance (C4) and a linear potential distribution in
the space between two plates®. Different from Helmholtz who assumed a rigid lining up of counterions, Gouy
and Chapman considered the diffuse nature of counterions in the electrolyte solution in 1910™®, ten years before
Debye and Hiickel. In the Gouy-Chapman model, the electrolyte solution is viewed as a cloud of point ions em-
bedded in a dielectric continuum. The distributions of the electric potential and ion concentrations are governed
by the Poisson-Boltzmann equation. The Gouy-Chapman model is limited to very dilute solutions at slightly
charged interfaces due to its foundation on the point charge assumption. At highly charged interfaces or when
¢ is shifted far away from the pzc, the Gouy-Chapman model results in an unphysically high concentration of
counterions near the electrode surface. Under such scenarios, the gap between the electrode surface and the
midplane of the diffuse layer, denoted d,, becomes very small, leading to the phenomenon of capacity catastro-
phe, namely, C, grows toward infinity.

Stern removed this limitation by constraining the closest approach of counterions to the Helmholtz plane (HP).
This way, regardless of the magnitude of surface charge density on the electrode, d, has a lower limit, thus turn-
ing the catastrophic growth of Cy when ¢y is shifted away from the pzc into a leveling off region. Bikerman
furthered the consideration of ion size effects using a lattice-gas model™. There is a delicate difference regarding
the consideration of ion size in Stern’s and Bikerman’s treatments. Although d, is constrained in the Stern mod-
el, the Poisson-Boltzmann equation is inherited. This means that the ion concentration at the HP and in the dif-
fuse layer can be infinite in the Stern model. In contrast, in the Bikerman model, the ion concentration at the HP
and in the diffuse layer has a finite upper limit determined by the lattice size. Consequently, in the Bikerman
model, d, first narrows down due to counterion crowding and then expands due to counterion overcrowding,
when ¢y, is shifted away from the pzc. Consequently, a camel-shaped double-layer capacitance profile is usual-
ly obtained. In highly concentrated solutions, a bell-shaped double-layer capacitance profile is obtained, as d, al-
ways increases when ¢y, is shifted away from the pzc.

Grahame extended Stern’s idea in the presence of specific adsorption of ions!"". He divided the HP into an in-
ner HP (IHP) where specifically adsorbed ions reside and an outer HP (OHP) where solvated counterions reside.
It was implicitly assumed that the specifically adsorbed ions retain the charge they have in the bulk solution,
which was later corrected by the concept of partial charge transfer by Lorenz and Salie in 1961"%. Moreover, as a
first approximation, the potential distribution in the inner layer is considered to be linear. The potential differ-
ence across the inner layer is composed of two contributions. One is caused by the net surface charge on the
electrode surface, denoted 0. The other is caused by the charge carried by the specifically adsorbed ions. Gra-
hame calculated the differential capacitance of the inner layer (Cyp) as a function of oY Cyyp is asymmetric and

humped with a maximum at positive oy. Grahame’s results aroused wide interests among theorists, suggesting
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two new lines of EDL modelling, namely, description of water dipoles at the IHP and description of metal elec-
trons, which are detailed below.

Grahame spent his sabbatical year in 1958/59 in Britain and had a fruitful collaboration with Roger Parsons.
This British visit disseminated his experimental findings among physicists at Cambridge. Watts-Tobin and Mott
tried to interpret the rise of Cyyp for anodic polarizations and the hump of Cyp at a ¢y slightly positive to the
pzct. The former phenomenon had been controversial, plausible causes including adsorption of mercury ions,
specifically adsorbed hydroxyl ions, potential varying distance between the OHP and the metal surface, among
others!"™”. The latter phenomenon is ascribed to the orientational polarization of interfacial water molecules, which
was initially suggested by Grahame and latter modelled by Watts-Tobin!"®. Watts-Tobin assumed that interfacial
water molecules may occupy two states (H-down or O-down). The basic idea is that interfacial water molecules
are more polarized at more charged surface, resulting in a decreased permittivity and lower Cyp. Consequently,
the hump of Cyp is located at the pzc where the permittivity of water molecules is maximum. The deviation of
the hump from the pzc observed in experiments is caused by the ‘natural field’ on the metal surface, namely, met-
al electronic effects, which became a hot topic in 1980s!'"”.. The Watts-Tobin model had been refined in several
rounds by considering more states of water and the hydrogen-bond network, see a review by Guidelli and
Schmickler™™,

Together with Grahame’s data of Cyp that gave the first hint of the importance of metal electronic effects,
Trasatti’s correlation between Cyp of simple sp metals taken at the pzc and the metal electron density drove
theorists to explicitly consider the metal electronic effects!™. In 1980s, Schmickler, Badiali, Kornyshev and
their associates introduced the jellium model that had been widely used in the theory of metal surfaces to the
EDL theory™ . In the jellium model, the metal is treated as an inhomogeneous electron gas situated against a
positive background charge corresponding to metal cationic cores. The electron gas was described using local

2 The positive background charge

density approximations, such as the Thomas-Fermi-von Weizsicker theory
was later replaced with pseudopotentials to consider metal specific behaviors. The jellium model is able to ra-
tionalize the metal and surface-charge dependence of Cypt'".

The next milestone in the EDL modelling is the work of Price and Halley in 199524, They adopted the Car-Pa-
rrinello method of combining molecular dynamics and density functional theory (DFT) to simulate the EDL
formed at a copper slab and water molecules. This work opened up a new direction in atomistic modelling of
the EDL. Since then, the field has been shifted to extensive computer simulations with the Kohn-Sham DFT at the
core. Most DFT-based first-principles simulations have been conducted for electroneutral interfaces. In 2006, Otani
and Sugino developed a method to simulate charged interfaces®™. They employed the Poisson-Boltzmann equation
for the electrolyte solution to screen excess charge on the metal slabs. This so-called implicit solvation method
was subsequently advanced by several groups of authors, including Arias et al.?**, Jinnouchi and Anderson?,
Hennig et al.’**" Nishihara and Otani®, Marzari et al.’**, and Melander et al.?™ Recent ab initio molecular
dynamics (AIMD) simulations were able to handle the charged solid electrodes by introducing ions into the sol-
vent layers P, This provides a means to properly treat the electrode potential which is calculated from the work
function of the system referenced to a (computational) standard hydrogen electrode (SHE).

Recently, Huang and coworkers developed a hybrid density-potential functional theory (DPFT) for the EDL,
combining quantum mechanical treatment of many electrons and classical statistical treatment of charged parti-
cles in the solution phase!***!, The DPFT avoids the calculation of Kohn-Sham orbitals which is computationally
expensive. Instead, the DPFT is based on so-called orbital-free DFT™*!, This feature distinguishes the DPFT
model from other DFT-based first principles models, such as the joint DFT model for the EDL developed by
Arias et al?*®, In Refs.'*, the orbital-free DFT for metal electrodes consists of the Thomas-Fermi-von Weizsicker



HLAL2 (). Electrochem.) 2022, 28(2), 2108471 (6 of 30)

theory for the electronic kinetic energy, a rudimentary kinetic energy density functional (KEDF), and the Dirac-
Wigner theory for the exchange-correlation functional, a rudimentary local density approximation. As for the
electrolyte solution, Huang developed a statistical field theory considering asymmetric steric effects, solvent po-
larization, and ion-specific interactions with the metal®’. Combined, a hybrid density-potential functional for the
grand potential functional of the EDL is obtained. Variational analysis of this functional yields a grand-canoni-
cal EDL model described by two Euler-Lagrange equations in terms of the electron density and the electric po-

tential.

3 Equilibrium Models

3.1 Gouy-Chapman-Stern Model

The Gouy-Chapman-Stern (GCS) model is a classical toy model of the EDL. The electric potential distributes
linearly from the electrode to the HP, and is described by Poisson-Boltzmann (PB) equation in the diffuse layer
and the diffusion layer as shown in the third subfigure in Figure 3. The distance from the electrode to the HP is
usually taken as the radius of a hydrated ion.

The PB equation describes the distributions of the electric potential and the ion concentrations in the elec-

trolyte solution. Poisson equation reads,

V(e V)~ Dz Fe, 2

where € is the dielectric permittivity of the bulk solution, ¢ the electric potential referenced to the electric po-
tential in the bulk solution, ¢s, z; the charge number of ion i, F the Faraday’s constant, ¢; the concentration of

ion i. Boltzmann equation further connects ¢; and ¢,
o [ z F
¢, =clexp|~pd | 3

where ¢, is the concentration of ion i in the bulk solution, R the gas constant, 7' the absolute temperature. For a

monovalent electrolyte solution in a one-dimensional space, the PB equation is rewritten as,

P =B exp| Rl |ew || 4)

where ¢® the concentration of total anions (cations) in the bulk solution. The dimensionless form of the PB equa-

tion is written as,
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Figure 3 Key milestones of EDL modelling (color on line)
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U _ .
e = sinh(U) &)

with the dimensionless quantities, U = F¢/RT, X =x/Ap, and the Debye length Ap = \V/RTe/2F%" . Note that the
dielectric permittivity depends on the local density of solvent molecules and the local electric field. In an aque-
ous electrolyte solution, the dielectric permittivity is a multiple of €, inside the HP, and increases to 78.5¢, in the
bulk solution. Therefore, different values of the dielectric permittivity are used on the two sides of the HP.
The boundary conditions to close Eq.(5), a second-order differential equation, are,

UX=0)=Up (6)
UX=%)=0 (7)
where X = 0 represents the left boundary at the HP, and X = o is the right boundary in the bulk solution. ¥
(dimensional quantity of Uyp) can be calculated from the electrode side by,

dw=du-d,+ [ 0] S, (8)

0x «=0 €mp

where ¢, is the electric potential at the HP, ¢y the electrode potential, ¢,,. the potential of zero charge (note

that this is not the absolute potential drop at the electrode surface, but the one relative to that of a reference elec-

trode which is a constant), e and 6y are the dielectric permittivity and the thickness of the space between the
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Figure 4 Typical results of the GCS model, including the spatial distributions of (A) the electric potential and (B) the cation concen-
tration, and the relationships between (C) the surface charge density and (D) the differential double-layer capacitance with the elec-
trode potential. The inset in (A) illustrates the electric potential distribution within 2 nm near the electrode. The parameters for cal-

culation are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)
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electrode and the HP, respectively. The coefficient e/eyp is resultant from the following equality in terms of sur-
face charge density on the electrode surface,

|| el i ©)

T =~ ox a HP( ox

Solving Eq. (5) in the following steps,

PU AU _ 5 oU.
ZaX2 oxX 2sinh(U) oX (10)
U
d(W)Ed(zcoshU) (11)
(9] 2= [2sin[ 2| )2 (12)

we obtain the relationship between the surface charge density and the electric potential at the HP,

oy =- [ (co—c)Fdx=- ES(%)x:o' = 2?){{[)71 sinh( gﬁ‘;’

Bvp4c is a convenient built-in tool in Matlab for solving boundary value problems described as ordinary differ-

(13)

ential equations. In accord with the syntax of this tool, Eq. (5) is rewritten as,

U _
W B 9
W = sinh(U) (15)

FA . . . .
where Y = R—T?gi is the dimensionless electric field strength.
X

Figure 4 shows the typical results of the GCS model (the Matlab script is provided in the supporting infor-
mation of this article), including the spatial distributions of the electric potential, ¢, and the cation concentra-
tion, c., at a series of ¢y in (A) and (B), and the relationships between the surface charge density, o, and the dif-
ferential double-layer capacitance, Cy, with ¢y, in (C) and (D). The spatial range for calculation is 150 nm from
the HP. When ¢y — ¢, > 0, we find ¢y > 0, oy > 0, and cations are repelled. When ¢y — .= 0, we obtain ¢y
=0,0n=0. When ¢y— ¢, <0, we get by < 0, o < 0, and cations are attracted. As defined in Eq.(1), C4 has the

GCS model Steric effects BPB model

/  solvated ions ..

Helmholtz plane (HP)  Diffuse layer Diffusion layer ~ Solution bulk Closest approacn Diffuse layer  Diffusion layer ~ Solution bulk

The finite size of ions is considered by introducing a HP, A consistent description of finite size of ions.
but is not considered in the adjacent diffuse layer.
Figure 5 Schematic illustration of the comparison between the GCS model and the BPB model. For the GCS model, the number
density of particles at the HP and in the diffuse layer can be infinite for the point charge assumption. Correspondingly, we depict

ions with dotted lines in the GCS model, c.f. solid lines for ions of finite size in the BPB model. (color on line)
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minimum at ¢,,.

A simple calculation can illustrate the failure of the GCS model in extreme cases. According to Eq.(3), ¢;=c?
exp (—zFP/RT), we obtain ¢; = 8.18 x 10" mol-m=, when ¢ = -1V, z,=1,¢°=1 mol-m= and T = 298 K.
Consequently, each cation occupies a volume of 2.03 x 107 ¢m?®. However, even for the smallest bare cation,

H', the volume is approximately, d,-*~(0.56 AY =1.76 x 10 cm*™, Thus, it is necessary to consider the finite
size of ions in the diffuse layer.
3.2 Symmetric Bikerman Model

In 1942, Bikerman realized the limitations of neglecting ion size in the GCS model and developed a new mod-
el, called Bikerman-Poisson-Boltzmann (BPB) model, as shown in Figure 5!, In contrast with the GCS model,
the BPB model presents a consistent treatment of the finite size of ions both at the HP and in the diffuse layer.

The BPB model treats the electrolyte solution using the lattice-gas approach. Each ion occupies a volume of
d?, where d, is the lattice size. The maximum particle number density is n, = d,~. The electrochemical potential
for ion ¢ reads,

3

TS (16)

where w is the chemical potential under standard conditions, e, the elementary charge, ¢ the electric potential

M :,U«;,OJrZﬁod) + kg Tln

referenced to that in the bulk solution, ¢s, kg the Boltzmann constant, n; the number density of ion i, (1-d’ X, n;)/

d? the number density of solvent molecules. For a monovalent electrolyte solution, we have n,° = n_* = n’, with
n® the number density of total anions (cations) in the bulk solution. Under equilibrium conditions, the electro-
chemical potential for ion i is uniform in the whole EDL,

fni din®
1-d’ X n, 1-2d2n®
The number density of ion i is obtained as,

. n"exp(—z,eod/k, T) (18)
"1+ 2usinh¥(z,e0/2k, T)

ﬂiZMi0+zﬂOd)+kBﬂn =,LLL.O+I£BTIH (17)

where the bulk volume fraction of solvated ions is v = 2d’n°. The GCS model assumes v = 0.
Combining Eq. (2) and Eq. (18), the BPB model is described as,

2n°z.eosinh(z,eop/k, T)
V V — i i B
Y ) = T sint(z, eop/ 2k, T)

(19)

In a one dimensional case, the dimensionless form is,
5 .
U _ sinhU (20)

0X* 1+ 2usinh*(U/2)

The surface charge density can be calculated as,

ou=-| (n.~n ey = 2 | @1

Lox Ty

The ‘bvpdc’ function in Matlab is employed to solve Eq. (20) closed with the boundary conditions ex-
pressed in Eqs. (6) and (7). Figure 6 shows the typical results of the BPB model, including the spatial distribu-
tions of ¢ and the anion concentration, c_, at a series of ¢y in (A) and (B), as well as the relationships between oy
and Cy with ¢y in (C) and (D). For the purpose of comparison, the results of the GCS model at ¢y — ¢, = 0.7
V are shown in the black solid lines. The distributions of ¢ and ¢_ calculated using the GCS model are steeper
than those calculated using the BPB model. In Figure 6(B), a plateau forms when ¢y — ¢,.= 0.3 V, signifying the
natural formation of the Stern layer due to the overcrowding of counterions. Figures 6(C) and 6(D) display how

ow and Cy change with ¢y at three values of v. A larger v means either larger ions or higher concentrations or
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Figure 6 Typical results of the BPB model, including the spatial distributions of the electric potential and the anion concentration
at a series of electrode potential in (A) and (B), and the relationships between (C) the surface charge density (D) the differential dou-
ble-layer capacitance with the electrode potential. For the purpose of comparison, the results of the GCS model are shown in the
black solid lines. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the supporting infor-

mation. (color on line)

both. At larger v, the relationship between o and ¢y is less steep, indicating smaller values of Cy. Interestingly,
the shape of C4 changes from a camel shape with the minimum at ¢, to a bell shape with the maximum at ¢,.
Kornyshev gives a critical value of v = 1/3 for the camel-to-bell transition™”.
3.3 Asymmetric Size Effect

With the asymmetric size effect, the electrochemical potential, Eq. (16), is rewritten as,

_ d’n.
=0+ + —
= e by Tt (22)
where vy; is the size coefficient,
dl \
v=13 (23)

with d; being the length of the cubic cell occupied by particle i, and d; the reference size, usually taken as that of

solvent molecules.
The number density for a monovalent electrolyte solution reads™,
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beil/

n,= n (24)
1+%(7+e‘”+ yel=vy, —v)

+

To obtain Eq.(24), . and y_ in the exponent are approximated as 1. Combining Eq.(2), the dimensionless form
of the BPB equation in a one-dimensional case is,
, .
g )g _ sinhU 25)
(e tye =y~ y)

Typical results of the asymmetric BPB model are presented in Figure 7, showing how o and Cy change with
¢ for the cases of different size coefficients. We set v = 0.05, and the size coefficient of cations, vy,, or that of
anions, y_, is equal to 1 or 3. At larger vy, the relationship between o and ¢y, is less steep, indicating smaller
values of Cy. . has bigger impact than y_as ¢y — ¢,,.< 0 because the concentration of cations dominates in this
region due to the electrostatic interaction. y_ plays an important role as ¢y — ¢pe > 0.

4 Nonequilibrium Models

In this part we consider dynamics of the EDL brought out of equilibrium. We build nonequilibrium models by
using a grand potential approach, considering the size asymmetry effects. The solvent polarization which leads
to a field-dependent dielectric permittivity is considered in ref. ™), but is neglected in the following. Being
grand-can-onical, the EDL exchanges electrons freely with the electrode and exchanges ions and solvent
molecules freely with the bulk solution. Note that the EDL described here is not limited to a multiple of the De-
bye length, but could be extended to the bulk solution, because the diffuse layer and the diffusion layer are de-
scribed by the same set of equations.

Under the conditions of constant electrochemical potential i, , constant 7" and a fixed volume V, the grand po-

tential {2 of the EDL is written as,

!2=U—TS—Jdeﬂini (26)
A Surface charge density B Differential double-layer capacitance
0.06 ‘. 0.08
Veivo # VeiVo
0.04 o ] o5t
—1:3 )
0.02 3:1 2 |
3:3 i3

om/(C-m™%)

CEPB /(P -m™2)

0.03 e
v = 0.05

0 0.5 1 -1 05 0 0.5 1

¢’M = d’pzc/(v) ¢M i ¢pzc/(v)

Figure 7 Typical results of the BPB model with the asymmetric size effect, including the relationships between (A) the surface
charge density and (B) the differential double-layer capacitance with the electrode potential. The results of the symmetric BPB mod-
el are shown in the blue circles, as y, =<y_= 1. The results at y, = 1 and y_=3 are shown in the red solid lines, while the results at y.
=3 and y_=1 are shown in the yellow solid lines. The grey circles represent the results at y, =y_= 3. The parameters for calculation

are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)
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where U is the internal energy, S the entropy, u, the electrochemical potential of particle i, n; the number density

of particle z, dV the volume unit.

There are multiple ions and solvent molecules in the electrolyte solution in general. Ions, denoted with a sub-
script «, have a charge number z, and a number density n,. There is a population of ions at (near) the transition
state of the ion hopping process’®™, denoted with a superscript #. Solvent molecules are denoted with a sub-
script s. These charged particles, namely, ions and solvent molecules at both ground and excited states, interact
via coulombic forces among others. According to field theoretic studies of the coulombic fluid®"*3, the internal
energy U is expressed as,

/ 2 \
U= J dV( —é—es( V) +eyd 2 (2ata + 2ot )+ 2 (ol o + 1o (H o + Ew))) 27)
The first two terms represent the electrostatic interactions, including the self-energy correction of the electric
field, —;—es( V ¢)% and the electrostatic free energies of the ions, e, 2. z.n,, and that of the transition-state ions,

eop 2. z,-n4-. The last term accounts for many-body interactions other than the electrostatic interactions, with H,
being the internal energy except the electrostatic contribution, E,.- the activation energy of ion hopping.

The total entropy S is calculated from the lattice-gas model™,

S = Y kglnP (28)
where P is the number of ways arranging all the particles in the volume unit dV,
N,
p= t 29
[IN, !N !'TIN,.! (29)

where N,=n,dV, N,=n,dV, and V.- = n, dV are the particle numbers, and /V,=n, dV is the total number of lattice
cells in the volume unit, with n, the number density.

The lattice cells are fully occupied without any vacancy, thus N is given by,

R A

Note that there are several methods to treat size asymmetry in the lattice-gas model, as recently compared by
[48

Zhang and Huang™!. What we have used in Egs. (29) and (30) is Huang’s treatment™. The basic idea is to
effectively expand the number of total sites. However, the size asymmetry is not considered in the calculation of
P expressed in Eq.(29). As shown by Zhang and Huang, this approach captures major phenomena of the
asymmetric steric effects and avoids the artificial sequence effects™.

Using the Stirling formula and taking the continuous limit (transforming the summation to a volume integration),
we reformulate Eq. (28) as,
S=- J deB( Znaln o +nsln7TS +Znaxln o +nt—2na—ns—2na¢

¢

n n
UA Y

G

Combining Egs. (26), (27), and (31), we rewrite the grand potential as a volume integration of a volumetric

grand potential,
0= | fav (32)
with the volumetric grand potential f given by,

f: —%ES(V (1))2 + eo(b Z (zana +za¢na#) + Z (naHa + na"(Ha + Euqa*)) +

- ( zlj’ana + /:Lsns + zﬁﬁna#) (33)

,éi( znalnn“ + nlns +2na¢lnn"‘# + nt—Ena —ns—znﬁ
nt m

ny
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Using the Euler-Lagrange equation,

/AR v G/ S
o " et |70 (34)
in terms of X = ¢, we obtain the Poisson equation,
q [, 0 |
Fr (Esﬁ) =—e, Z (2ol + Zor o) (35)

When applying the Euler-Lagrange equation in terms of X = n,, we must take notice of the relation that n, =
n/Ys — 2 Y Vs — 2 Yo'V 18 also a function of n,. Therefore, adding an ion a will simultaneously reduce y./y,
solvent molecules. The consideration leads to,

L‘lnia_ﬁlﬁ_* Yo =
2o+ Hot (I = Pdnte |-+ T =0 (36)
from which we define the electrochemical potential of the ion-solvent pair,
P =Ha= 2% s (37)
with the electrochemical potential of solvent molecules expressed as,
~ 1 ..n
Ms = In— (38)
B n
and the electrochemical potential of ions « as,
Mo =Hy + z4e0 + 1flnn—“ (39)
B

When the fictitious lattice cells are occupied exclusively by ions «, namely, n, = n,, the chemical potential turns
to the standard chemical potential of ions «, denoted as u.,

u =H

« (40)
Applying the Euler-Lagrange equation in terms of X = n,-, we obtain the standard chemical potential of
transition-state ions a”,
Mo’ = Hy + E o 41
Although the transition-state ions are explicitly included in the grand-canonical potential, we will make the
approximate that n,-<n, in the following.
According to the Fick’s second law, the continuity equation for particle « in the i cubic cell is written as,

Ong _ _dJa 4
ot ox (42)

where J, is the flow flux of particle « cross the i cubic cell, the interface between the i cubic cell and the (7+1)"
cubic cell,

P Tt i — i N 0! R N
Ji= g = g —0}7 ko ?T_ka T?) (43)

Eq.(43) means that the ion transport process is pictured as an ion-solvent exchange reaction, which has been
proposed earlier to describe ion transport in solid and concentrated electrolytes™ >, where &, " and k"'~ repre-
sent the forward and backward rates of ion hopping from the i to (i+1)™ cubic cell, respectively. According to
transition-state theory and using the Brgnsted-Evans-Polanyi (BEP) relationship to associate the activation barrier
and the Gibbs free energy change, we write k£, " as,

f it = kaoexp( _ %@wsi+1 _ ﬁoe—sl)) = kaoexp(—% V tosd, ) (44)
and £,/ as,

kaiﬂﬁl — kao exp ( _%@Hi _Ij«asﬁl)

=k exp| B-Viad, | (43)
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where the standard rate constant &,° is expressed as,

33 EXP(- Bln "~ D) = 51 —exp(-BE.) (46)

with 7, being the time constant of the hopping process. The 1/2 here indicates that ions at the transition state

k=

are equally likely to go forward to the new state and backward to the original state.
Substituting Egs. (44), (45) and (46) into (43), we rewrite the flux as,

Jo=—2Ds smh(évﬂm J—E 47)

d 4 n, n,
where D, is the diffusion coefficient,

2
S exp(- ) (48)
Toz,O

D,=

In the near-equilibrium regime, sinh(Bd, V t.s/2)=Bd, V .42, Eq. (47) can be approximated to,

] = DO(B a 5 Vlu’as (49)

t

where V u . is expanded as,

- _ 1 dn 1 an; dd
Vi, = e Yo p Vi O 4 50
Hhas Bn, 0x Bns v L; Vs Ox 2o ox (50)
Combining Egs. (42), (49) and (50), we obtain a modified Nernst-Planck equation,
on, _ 9 dn Yoa N Vi 0 ad |
a«a — 0 D ng Yo + D Ny 7a on; + D LN ﬁ 51
ot ox |\ *n, dx “ne YsiZsYs 0x B n 2o 0x | D

The modified Poisson-Nernst-Planck (PNP) equations in Eq. (35) and Eq. (51) constitute the continuum model
for multicomponent mass transport in electrolyte solution, which is derived from the grand potential being a
functional of the electric potential and the particle number densities.

The boundary conditions and the initial conditions are necessary for solving the PNP equation, a set of partial
differential equations. The boundary conditions are commonly divided into three types, Dirichlet, Neumann and

Robin. Dirichlet boundary conditions specify the variable value on the boundary, for example, y = y, at x = x,.

Neumann boundary conditions specify the derivative of the variable, for example, %L= a at x = x,. Robin
X
boundary conditions are a combination of Dirichlet and Neumann boundary conditions, for example, y— ig =0
X
at x = x,.

The reaction plane, designated as the coordinate origin, x = 0, is the left boundary of which conditions are,

J=md— (52)

mey

B0, 1) =ty — e + %L(o, ) :* (53)

where j represents the current density of the overall reaction, m is the number of transferred electrons in the
overall reaction, m, is the stoichiometric number of the particle « in the overall reaction. If particle « does not
participate in the reaction, we use m, = 0. Eq. (53) shows the electric potential at the HP calculated from the ele-
ctrode side, which is the same as Eq. (8). Eq. (52) is a Neumann boundary condition, while Eq. (53) is a Robin
boundary condition.

The bulk solution is the right boundary, x = x,, with the following natural boundary conditions,
ne(x:,t) = ng (54)
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d(x,0) =0 (55)
which are the Dirichlet boundary conditions, where n,” is the number density of particle « in the bulk solution.
At ¢t = 0, the initial conditions are shown as,
ny(x,0) = ny (56)
$(x,0)=0 (57)
We consider a proton-coupled electron transfer reaction, A + H" + ¢~ <> B, occurring at the HP, with A and B
being neutral species. The current density of the reaction, j, is described by the Frumkin-Butler-Volmer (FBV)

equation™,
_ | camp e | _ camw Cup _ (I-a)em
J eoanoo( g CXP( koT ) 0 ey eXp( kT )) (58)

where ny, is the areal number density of the electrode. For example, nyis calculated by (V' 3 ay)™ for M(111) with
00
the lattice constant ay. The pre-exponential factor k, is equal to k;‘L—Texp ( - iGT ) , with h being the Planck
\ B

constant, AG,X the activation energy of the reaction at standard equilibrium state. « is the charge transfer

coefficient, taken as 0.5. cgpp, carp and cypp are the concentrations of B, A and H' at the HP, respectively. cg’, ¢’
and cy® are the concentrations of B, A and H' under standard conditions, respectively. 7 is the overpotential,
defined as,

n:(bM_(b]-H’_EOO (59)
where E” is the equilibrium potential of the reaction under standard conditions, calculated by E® = —AG%e,,
with AG° being the Gibbs free energy under standard conditions.

We numerically solve the model using the built-in partial differential equations solver, pdepe function, in
Matlab, with the parameters listed in Table 1. Matlab script of this model is provided in the supporting
information.

The typical results of the PNP equation are shown in Figure 8, including the steady current density, j, as a
function with ¢y, and the distributions of the concentration of A, ¢y, at 0.1 s, 1 s and 5 s at 0.4 Vg The spatial
range of the EDL is 100 wm, and the time duration is 5 s. The steady current density is taken at 5 s. As ¢y > E®,
the oxidation reaction occurs and B is consumed. The current density increases near exponentially in the low
overpotential region and transitions to the diffusion limiting region when ¢y > 0.7 Vg, caused by the low
concentration of B at the HP. When ¢y < E®, the reduction reaction occurs. As the electric potential decreases,
the current density increases and reaches the diffusion limiting current, which is limited by the low concentration
of A at the HP. From Figure 8(B), we see as the reduction reaction occurs, the concentration of A at the HP is
lower than that in the bulk solution, and decreases as the reaction continues. At 5 s, ¢, becomes almost linear
and reaches almost zero at the HP, signifying diffusion limiting effects.

Then we apply some approximations to reduce the modified PNP equation back to the classical PNP
equation. Firstly, under the assumption n,-<n,, Eq. (35) is simplified as,

As for the modified Nernst-Planck equation, neglect of the asymmetric steric effects, that is, y; = 1, simplifies
Eq. (51) to,

on, _ 9
ot ox |

D, s ey M Eai+Daﬁ”Z”S e 20 (61)
t

“n, 0x n i'zs 0x dx |
Furthermore, if the electrolyte is sufficiently dilute, that is, n,<n,, and n,=~n,, the expression is returned back to
the classical Nernst-Planck equation,

on, _ 9

D2 4 DBz 2L | (62)
ot ox

ox x|
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Table 1 List of the Model Parameters

Symbol (unit) Value Physical significance Note
Constants
kg(T-K™) 1.381 x 102 Boltzmann constant
T(K) 298.15 Absolute temperature
h(J-s) 6.626 x 107 Planck constant
eo(C) 1.602 x 107" Elementary charge
Na(mol™) 6.022 x 10% Avogadro constant
€(F-m™) 8.854 x 107" Vacuum permittivity
F(C-mol™) 96485 Faraday constant
R(J-K™'-mol™) 8.314 Gas constant

Solution properties

Dielectric permittivity of the space between the electrode and

€p(F-m™) 6¢, the HP Ref [56]
€(F-m™) 78.5¢, Bulk dielectric permittivity of the water solvent medium

Distance from the electrode to the HP, calculated by 1.5 d,; o
Siw(nm) 04125 with the diameter of water dy, , = 0.275 nm. A
D(m?-s™) 1 x10”? Diffusion coefficient
c®(mol-m~) 1 Concentration of total cations (anions) in the bulk solution
caeg’en’(mol-m?®) 1 Concentrations of B, A and H" under standard conditions
Electrode properties
Gpoc(Vsir) 0.3 Potential of zero charge Estimated
au(A) 3.5 Lattice constant of the electrode Estimated
ny(m?) 4.713 x 10° Areal number density of M(111), calculated by (V'3 ay?)™
Reaction properties
E°(V ) 0.6 Equilibrium potential of the reaction at standard state Estimated
AG2(eV) 0.4 Activation energy of the reaction at standard equilibrium state Estimated

At equilibrium state, that is J, = 0, Eq. (62) turns into Eq. (3), the Boltzmann equation. Similarly, when J, =0,
Eq. (61) turns into Eq. (18), the equation adopted in the symmetric BPB model. Eq. (51) turns into Eq. (24), the

equation used in the asymmetric BPB model.

5 AC Impedance Models

Electrochemical impedance spectroscopy (EIS) is an in-situ, non-invasive characterization tool that can sepa-
rate multiple physicochemical processes spanning a wide frequency range. In most cases, the EIS of an EDL is
analyzed using the electrical circuit model (ECM) as shown in Figure 9. In fact, as to be discussed in the next
paragraph, the ECM has a very clear physical meaning. However, it is not rigorous, theoretically. Instead, it is
based on several assumptions which may become invalid in some cases. Therefore, it is of general importance to
derive the impedance response of the EDL that is described using the PNP theory—the *first-principles’ of con-
tinuum modelling of the EDL. We recommend the readers to follow the derivation with paper and pencil. This

way, you will grasp the process of building a physical impedance model, acquire the basic mathematical tools,
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Figure 8 Typical results of the PNP theory, including the current density varying with the electrode potential, and the distributions
of the concentration of A at 0.1 s, 1 s and 5 s at 0.4 V. The spatial range for calculation is 100 wm from the HP, and the time dura-
tion for calculation is 5 s. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the support-

ing information.

and appreciate the beauty of physicochemical modell- |

ing. |

There are usually three physicochemical processes

in the EDL: double-layer charging, charge transfer

— Rt w

reactions, and diffusion. The double-layer charging

involves redistribution of ions in the EDL, namely,
. Figure 9 ECM in the electrochemical system. Cy is an inter-
change of the net charge stored in the EDL, under the ? _ ) ] v ¢ ]
. . . facial capacitance, associated with the double-layer charging
control of the electric potential. As the EDL is usually . . . .
process, R, is a resistance, associated with the charge transfer

only a few nanometers thick, ion transport in the EDL reactions process, W describes the diffusion of species involved

is often considered to be completed immediately.
Therefore, charging the EDL is equivalent to charging
an interfacial capacitance Cy. As for the charge

in the charge transfer reactions, R, is the electrolyte solution re-
sistance, associated with the migration process in the bulk so-

lution.

transfer reactions, it takes less than 1 ps for an

electron to transfer between the electrode and the reactant in solution phase. Consequently, we can safely
assume that the reaction current flows immediately when a potential difference is imposed. In other words, the
current-electric potential relation of the charge transfer reaction is equivalent to that of a resistance R.. These
two processes are in parallel because they are controlled by the same potential difference, and the total current is
the sum of the double-layer charging part and the charge transfer reaction part. That is why the Cy and R are in
parallel in Figure 9.

The W element in Figure 9 represents the diffusion of species involved in the charge transfer reactions in the
electrolyte solution. The elements W and R, are in series because the transport process precedes/succeeds the
charge transfer reactions. Conscious readers may have noticed a logic flaw: did not we consider ion transport in
the EDL twice (one time in Cy, and the other time in W)? There is another puzzle related to it. Given the fact
that ion transport in the EDL and that in the diffusion layer are the same physical process, why do we need two
elements? Why are Cy and W located in different branches in the ECM? The way to resolve these puzzles has to
be found via rigorous physicochemical modelling.

Before entering into physics-based impedance modelling, the definition of EIS and the fundamental
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mathematical tool—Fourier transform—will be introduced. Then, we will work on calculating the impedance
response of a basic ECM to express the working mechanism of Fourier transform. Readers may find that EIS is
more than a specific kind of classical electrochemical techniques. It provides a powerful mathematical physics
approach to solve the electrochemical problems and represents a different look at electrochemical problems.
5.1 Basics of EIS

In this section, we introduce concisely the basics of EIS, including the Fourier transform and the example of a
simple electrical circuit.
5.1.1 Fourier transform

The Fourier transform of a function f{z) is,

Fo) =g (f0)= | _fnexp(ond (63)

which transforms a time-domain signal f{¢) into a frequency-domain signal F(w). The inverse Fourier transform is,
; 1" :

fO=FF@) =5 | Fojexpondo (64)

derived from Eq.(63) as follows,

o

Flw) = j fyexp(=jondi = 51 [ ] P Yexp(joo' 1)dwexp(~jeor)ds =

21»“- Jm F(w’)( J_m exp(—j (w-w')t)dt )dw = LG Fwho(w-o')dw = Flo) (65)
where we have used the Dirac’s delta function §(w-w') = ﬁ I _exp((w-")t)dt.

Electrochemical processes are usually described by ordinary or partial differential equations. Therefore, the
Fourier transform of the n" derivative of a function is useful,

7 Y| — (jwyrw) (66)

given that f*"(¢) = 0 at the initial state.
We prove for the case n =1,

| Y |~ | pexp(ond = fiexpljon”, + jo | _fiexp(ond = joFw) (©7)

where we use the natural boundary conditions, f{) =f(—%) = 0. The case of other orders can be proved by re-
peating the manipulation of Eq.(67).
Another often-used property of Fourier transform is the convolution theorem,

F ((1)*g(1)) = Flw)G(w) (68)

o

where the sign “*” denotes the convolution operator defined as f(¢)*g(t) = I f()eg@ — 7)dr, F(w) and G (w)

—0

denote the Fourier transform of f{¢) and g(z), respectively. Eq. (68) is proved as follows,

FA0* ) = | | _fnet-r)drexp(zondi = |

o o

- | ey drar

= f f(r)e ‘f“‘( [ g(t-)e 7 d )dr = F(w)G(w) (69)

5.1.2 Definition of Impedance

For any electrochemical system at stationary states, we apply an arbitrary current or electric potential excitation
of small magnitude to ensure the linearity requirement, and obtain corresponding electric potential or current
response. The electrochemical impedance is defined as the ratio of the Fourier transform of the potential to that
of the current, that is,
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_FW@)
A9 =F i) 70

A simple ECM is shown in Figure 10(A), which consists of two resistors and one capacitor. The total electric
potential of this circuit is,

V) = V(1) + V(0) h
where
N V,( av, @

Vi(0) = Ri(2), i(r) = ]2{( ) 4 C dzt ® (72)

Applying Fourier transform into Egs. (71) and (72), we obtain,
F (V) = F (V1) + F (V1)) (73)
F () = R (), Fi(0) = T+ jocg (v; @), (74)
Combining Egs. (70) and (74), the electrochemical impedance reads,

F (Vi) R
=" \VwetV"V —p 4
F(i(1)) R, l1+jwRC (75)

The real part, Z'(w), and the imaginary part, Z"'(w), of Eq. (75) are,

, 1

=Ry+

Z'(@)=Ry+R [Hwr) (76)

(@)= —R_—©T
Z'(@)=-R @) (77
where 7 = RC is the time constant of this circuit. The amplitude and phase angle of this impedance are,

2
_ N (7 = 2+R+2RR0
2= N@yEY =\ [Ri+ K2R (79)
VAR Rwt

@ = arctanh( a ) = —arctanh( R+ R1+w@n)) (79)

Figure 10(B) shows the EIS of the Ry(R//C) circuit in the Nyquist plot, which is a perfect semi-circle. The
diameter of the semi-circle is equal to R and the high-frequency intercept on the horizontal axis is equal to R,.
We can also represent the EIS in the Bode plots in Figures 10(C) and 10(D). The relationship between the im-
pedance amplitude and the frequency is shown in Figure 10(C). At very low frequencies, the amplitude of im-
pedance is equal to R + R,. At very high frequencies, the amplitude of impedance approaches R,. Figure 10(D)
shows how the phase angle varies with frequency. There is only a characteristic frequency at 1/RC which
corresponds to the peak in the Nyquist plot. Notably, the peak frequency in the Bode plot deviates from 1/RCP",
5.1.3 Perturbation Analysis

Considering a dilute, symmetrical and covalent electrolyte solution, we apply a potential perturbation to the
system,

U= Uy + Uye™™ (80)
where Uy is the dimensionless electrode potential, the superscript “0” denotes the stationary electrode potential,

“ o
~

the sign denotes the magnitude of the perturbation potential and w™ is the dimensionless angular frequency

referenced to D/A,*. When the perturbation is sufficiently weak (J)M <25mV, or Uy < 1), the linear response
approximation is valid. Then, all system variables are decomposed into stationary parts and perturbation parts of
the same frequency, namely,

C.=CO+ C.e" (81)
C.=C +Ce™ (82)
U=U"+ U™ (83)
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Figure 10 (A) A simple RC electrical circuit; (B) The Nyquist plot; (C) The Bode plot of amplitude; (D) The Bode plot of phase
angle. The parameters used for calculation are as follows, Ry=R =1 Q, C = 0.5 F, and the frequency range: 1 x 10®* Hz to 1 x 10*

Hz. Matlab script of this model is provided in the supporting information. (color on line)

Substituting Egs. (81)-(83) into the PNP equation, and omitting the stationary and high-order parts, we obtain,

- 20 T ~ ‘
jorCo= G+ (00U g OV 4
.mr:az&_i( ool | = ol
JOC= N T X Cax T ) ®
277 ~ N
o -lc-c (86)

Usually, C.°, C°and U° are X-varying, making it difficult to solve Egs. (84)-(86) analytically. Nevertheless,
at the pzc, we have, C,"= C°=1 and U° = 0. Therefore, Eqgs. (84) and (85) are reduced to,

o O = 32& n 92U

) G 87)
o 9C. U
N Gy ¢ (88)
Substituting Eq. (86) into Eqs (87) and (88) leads,
PCo_ o 15 17
i (jo™ + 2—)C+ —Z—C, (89)
20 ~ ~
L0 e
Two equations above can be rewritten into a matrix form,
2
837x — Ax 1)
®1 ®2
A= (92)
®2 ®1

x=[C.,C]" 93)
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0,= (" + 1) (94)
o1 (95)
2
The eigenvalues, A, and A,, and eigenvectors, V, and V,, of matrix A are,
AL=0,-06, (96)
1=0,+0, o7
Vi=[-1,11" (98)
V,=[111" (99)
Introducing two matrixes P and H, and a vector y,
p=| ! ] (100)
1 1
A O
H= (101)
o )
y=P'x (102)
then we substitute the vector x with y and using the equality, P'AP = H, transforming Eq. (91) into,
ag; y=Hy. (103)
Notice that H is a diagonal matrix, implying that the two elements of vector y, y, and y,, can be solved
separately,
y, = aysinh(\/A, X) + a,cosh(\/A, X) (104)
¥ =Bisinh(\/A, X) +B, cosh(VA; X) (105)

where coefficients a, a, B, B, are to be determined by the corresponding boundary conditions. Afterwards, the two
elements of the vector x are obtained as,
C+:—_’y1+y2 (106)

C, =Y + Yo. (107)
The boundary conditions of Egs. (106) and (107) are as follows. In the bulk solution, X = X,, the electric potential
is regarded as the reference, namely, it does not change with the excitation. In addition, all ions have their bulk

concentrations which also do not change with the potential perturbation,

C.=0,C.=0,U=0. (108)
At the HP, X = 0, the boundary conditions are rephrased as,

37)6(_ _ % _o (110)
Bip =Ty + 0w 20 (111)
where ]de is specifically deduced as follows. Firstly, we define,

%TL:H,H:HMﬁ (112)

where II° = Uy - U’ — U, is the dimensionless stationary overpotential and M= M= U w the dimensionless

perturbation of the potential difference between the electrode surface and the HP.
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We consider a reaction of metal ions deposition, M"+ e~ <> M, occurring at the HP. The current density of the
reaction, j 4, is described by the FBV equation,

Je :ko(exp(%)—%%em(—%fmﬂ) (113)

where ¢ p is the concentration of M" at the HP, ¢.” is the concentrations of M" in the bulk solution, and k, is the
reaction rate constant.
Substituting Eqgs. (81) and (112) into the FBV theory, Eq. (113), gives,

ja=kolexp(a(Il°+ ID) = (C.*+ C.)exp(~(1-a)(I1' + IT))] (114)
Expanding Eq. (114) into a first-order Taylor series leads to,

Jae = ko[exp(adT9)(1 + o) - (C.2+ C.)exp(~(1-a)IT)(1-(1-a)TT)] (115)
Removing the stationary parts and second-order parts, we obtain,

Joo = ko[ (aexp(eI?) + (1-a)C.lexp(—(1-a) 1) T-exp(~(1-a)[I°)C.]. (116)
Defining two variables related to the reaction rate,

v, = ko(aexp(adl®) + (1-a)C exp(-(1-a)I1°%), v, = koexp(=(1-a)I1°) (117)
we can reformulate Eq. (116) as,

Joe=v:(Un = Usp) = 0.C. . (118)

5.1.4 Impedance Expression
Substituting Egs. (106)-(107) into the corresponding boundary conditions expressed in Egs. (108)-(111), we can
solve for the four coefficients introduced in Egs. (104)-(105),
2 De, N 1 ‘Vztanh(\//\z X,) FuX, ‘/
ret Xy Ap ot A VA,
‘ 1 1 T, tanh(\/rXb) ‘ “( Ap 1
—[\/A - + + 2 + v,tanh(\/A, X,)| +
(\/T \/)\1 rc+Xb \ \/)\1 )\1 ) DCO \/)\2 ’ \/72 ' !

‘Vl rc v )_ rch 1/1
2
AT X

tanh(\/A, X, ) S Yy

o, = —aytanh(VA, Xy) (120)

_Vl —+

(119)

1 1 1 [ . _tanh(\V/A X)L 1~
B ’ " - U 121
B, \/g 1‘\/7 \//Tl rc+ka\/Z A I X, M’ (121)
1| 1 o tanh(\/A, X,) | ) Lo
- & M= — + U, |tanh(\/A, X 122
B, VA, | 1(\/T VA, X LV A, P+, U (VA Xy) (122)
J . ‘ €, .
where r. = :siHP is the ratio between the Gouy-Chapman capacitance | Coc = /\s and the Helmholtz capacit-
HP “*D ‘ b |
ance “C = Ew | )
5]-lP /

Then we obtain the explicit expression of Jee expressed in Eq. (118) by substituting Egs. (119)-(122) into Egs.
(104) and (107). Besides the reaction current density j4, the EDL current density also needs to be calculated,

expressed as,

X,

4y, A (e -
Joam T T T dt
where ¢4 is the total charges stored in EDL. The dimensionless form of j4 is,

(123)
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X,

al [ - cyax |

Jo =- dr (124)
Converting Eq. (124) into frequency domain gives,

~ . nd Xy ~

Jy==0" | (€.~ Cax. (125)

The total current density is the sum of the double layer current density and the Faradic reaction current
density, namely,

J=T,+ 350 T.. (126)

So far, we obtain the dimensionless impedance expression,

[N] rA, +Xb(/\1_1)+m+zir
o Uy _ VA : (127)
J 2jw™(1 - sech(\/A, X,)) +2,

1 2
where ¥, and Y, represent the terms related to the coupling of charge transfer reaction and ion transport,

21 1 Ay [ tanh(\/A, X)) _x ‘
dr T Vl \//\» b
1

2 De, © |
1 A r A+ X, (A - 1)+tanh( \//\)‘1 X,) tanh( VA, X,)
A

+

3 De, v, VA, Vi +(r, +Xb)\/ftanh(\m)(b)‘ (128)

2 A — A A
2 :ﬁ(\//\zvztanh(\/)\z)(b )—Ulrc/\z)(l—sech(\//\le))+U1rc)\1ﬁ+ Dé) v, /A, tanh(\/A, X,) (129)
0 0 0

2/\[)2
DCq

Notably, if there is no reaction at the HP, v, = v, = 0, we obtain > ; = er =0, and Eq. (127) is reduced to the

Based on previously defined dimensionless variables, we obtain the impedance reference, Z ; =

impedance of an ideal polarizable electrode that has been given in Ref.™,
5.1.5 Simplifications

Although we have obtained the analytical solution expressed in Eq. (127), it is too complex. Therefore, we
need to simplify this expression under some reasonable assumptions. Firstly, in a real system, we have X, >1=

r., then we obtain,
1

de ~ vlrc AD
jo™ 2 De,

X, 1

T +
JO" jo T+ o |

v, A | tanh(Vjo™ X,) o [ \/Tjeo , tanh(Vjo™ X,) )) (130)
2 Deg | jyin/T+ jo™ V jo™ L jor Vjor ’
2 " \
Sy o Ao (mptanh(Vie Xy g Ay e Ay Ay VT (131)
jo Deg | N S Dey o Dy Dey o jo
Substituting Eqs. (130) and (131) into Eq. (127) leads,
( LA 1 )+ Ap 1 v, tanh(Vjo™ X)) wr, |
poe Koy O jorVje w1 Dy jorTejor (2 N 2 (132)
2 5y Ao [anh (Ve X)) T |, Ay ]
> De, | Vo™ jo | U Dey jo

2

Usually, o™= w% ~@ x 10” < 1, then we obtain,
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T o 1 )+ Ap 1 v, tanh( Vjo™ X))  vr, )
poo Koy U jorV e T T Dy joT o (2 :
2 5 4y Ap | tanh(Vjo™ X,) 4+ V1 4+ jo )+U , Ap 1
ZDCO \ ]/T)nd jwnd | 1 CDCO jwnd
I+r, Ay 1 [wv, tanh( Vijo™ X)) or,
z% N jo™  Dc, jo™ |2 V™ 2
- ond
240, A, tanh(Vje™ X,) N Ay ‘1d (0,1, +5,)
Dc, Vo™ De, jo"
X 1 |
2 2 jari| T o v, anh(Vjo X)) vy Ay 1, 1 Ay w1 Ay v
jo™ N \ 1+ 7, Dc, 2 V™ 2 De, jo™ = 14, Dc, 2 jo™ Dc, 2
I+ r, Lt r s Ap (v, tanh( Vijo™ X))  or, |
¢ DCO 2 A /ja)nd 2
X
+
1+r oo
¢ 2 D, (It 7) - vire tanh(Vjo™ X,)
vy Ap vy Vo™
We notice that the final expression of Eq. (133) has a coefficient of é—, which may look a little weird to readers.
. Ay’ .
Therefore, we redefine the impedance reference as e then Eq. (133) is reformulated as,
GC
1
=X+
Zh Xb ja)“d n 1 (134)
L+re 5 De, (ar)o ke tanh(\/ jo™ X,)
v, Ap ¢ U, \/ja)T
We define, R ™= X, the dimensionless solution resistance, R = 2—% 1+r)- Ule the dimensionless charge
A Cc
vy Ap vy
tanh(Vjo™ X,)

transfer resistance and W™ = the dimensionless Warburg impedance. Eq.(134) embodies the

Vjor
coupling relationships between charge transfer reaction and EDL charging. Specifically, both R,™ and C4™ have
the capacitance ratio term, r..

Then Eq. (133) is reformulated as,

an:Rsnd+ 1 0 (135)
JoMCy™ + R+ W™
From this simplified condition, we define the characteristic frequency of charge transfer reaction as, w,™ =
ﬁ, and the characteristic frequency of diffusion as, w, = %, whose dimensionless form is w" = 12 .
Rcl Cdl Xp Xb
When w™ < wy™, Eq. (135) is simplified to,
tanh(\Vjw™ X
an:RSnd+ a ( ](1) b) (136)

whose Nyquist plot is a 45°-line followed by a semi-circle, as shown in Figure 11(D), representing ion diffusion in

bulk solution.
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When o < 0™ < ., Eq. (136) is reduced to,
1

j wndcdlnd +

an:RSnd+ (137)

ct

whose Nyquist plot is an ideal semi-circle, as shown in Figure 11(C), representing the charge transfer reaction.

Finally, when 0™ > w.™, Eq. (137) is reduced to,

1
an_ Snd 1
=R N (138)

whose Nyquist plot is a straight line representing the EDL charging process, as shown in Figure 11(B).
5.2 Numerical Methods of Impedance Calculation

In this section, we introduce the methods of calculating the impedance from time-domain data, which can be
obtained from models and experiments. Firstly, the method of an analytical Fourier transform (AFT) is introduced™.
Then it is used to calculate the impedance of the deposition reaction of metal ions. Lastly, the fast Fourier
transform (FFT), another often used numerical method, is introduced briefly.
5.2.1 Analytical Fourier transform

Applying linear interpolation to time-domain signal, we obtain

0= o0~ T -5 ool B o B 5 - B

n—1

(139)
where h(z) is the recorded time-domain signal, o(¢) the normalized step function. Then applying Fourier transform
to Eq. (139) gives,

@) = | hoexp(=jond
n—1

n-1 \ /
:L(h hexp( ]szt)) (j (th_lhl—h"A_th exp( ]szt))

](I)‘ 1 n =1

1 i ( hya= Py _ Py = Iy, |
As Az,

2
(O

exp( JwZAz ) (140)

k+1 =1

where the specific derivations are detailed below. Integrating the last term of () gives,

A, @= | hoexpjond

[:(U(l‘i )—a(t_im)) (h +h"Athl[t—.§Ati))exp(—jwz)dt

i=1 n-1 \ =1

XA )
Il h _h | n-—. \
= J (hn_1 +£7H(t _ Z At, ) exp(—jwt)d:
n2 tnfl i=1 ]
Y
DY DY R MV
h —h h —h
=h, | exp(sjond: + e | rexp(=jwrydt - Y | exp(jondi
S (LY T sny,
] n—1 n-2 \
—jwhul(eXP( szm ) exp( szAt ])
i=1 / i=1 /

n-2 \ n-1 n-2 .

+%( 1 exp‘ ]wiAt )—exp( ]wtzAtJ]—f( EAtexp[ JwIZAt) zAtexp( J‘”ZN ))J

=1 i=1
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Figure 11 Nyquist plots of simplified impedance in different frequency ranges. (A) Full frequency range, 1x10° Hz ~ 1x10™ Hz;
(B) 0™ > 0w, 1x10° Hz ~ 1x10° Hz; (C) 0 < 0™ < w ™, 1x10* Hz ~ 10 Hz; (D) 0™ < 0y, 1 Hz ~ 1x10* Hz. Parameters are c, =
100 mol-m=, ky=3x10* mol-m>-s7, D = 1x107"° m?-s™". Matlab script of this model is provided in the supporting information.

(color on line)

n-2

+.17hﬂmh"l ZAt (exp( ]szt )—CXP‘

](I) i=1 i =1

o

i =1
n-1 n=2

‘ h —h
:—jljh”l(exp( ]wZAt) exp‘ ]szt)) al) 7"&

=1 =1 n-1

n—1 n=2

ont eS|

=1 1 =1

1 n-1 \ o n=2 n-1

h,—h, ‘ |
+j7 A exp[\ Jw;lm )(i;Azi - ZAzi) (141)

i =1
Similarly, we obtain the frequency-domain expression for each term of Eq. (139),
\ ho—h | \ ‘ ‘ ‘
AN )— h,,zexp( ijAt ) Jﬁ%((em( ]wZAt )—GXp( ]wZAt ))) o h,,leXp( ]wZAt )
/ i =1 / \ i =1 / \ =1 /

1

hy— h,
H,(w) = ——h,exp —ijAt,-)+17 y ((exp[ JwZAt)—exp ]wZAt))) thexp(—waAt,-)
\ i=1 | o A, i \ i1 Jw \ i1 J
A (w)=-"Lh +LM( exp wEAt ) \))—l—h exp( szl ) (142)
: jw : wz Atl \ J i=1 / / \ J i =1 /

Adding up all terms from A | (w) to H,.(w), we obtain Eq. (140).
5.2.2 Application of AFT

Figure 12 compares the AFT-calculated and the analytical impedance expressed in Eq. (127). Notice that the
results of AFT have some deviation in the entire frequency range. Especially, the deviation in the limiting
high-frequency region is more obvious. The main reason is that the AFT method accumulates error in the
numerical calculations. Due to the fact that the AFT calculation is a quite time-consuming task in a low
frequency range, current results only show a 45°-line without a semi-circle that should occur in the low-frequency
region.

Except for the AFT method, another often-used Fourier transform method is the FFT, which is widely used
in signal processing!®. However, FFT is a completely pure numerical method. Compared with AFT, it lacks

stability and has higher requirements for the signal-noise ratio of the time-domain signal.
6 Conclusions

This paper is designed as a tutorial tool on EDL modelling, including equilibrium models (the GCS model
and the BPB model), nonequilibrium models (PNP-like models), and models under AC conditions (the EIS
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models). Exposition of these models begins with
physical insights, followed by detailed mathematical
derivation, formal analysis, and then practical numeri-
cal implementation with the Matlab scripts provided
in the supporting information. A viable attempt to
craft a physical model for the specific system under
one’s own investigation could start with following the
model development procedure presented here with
pencil and paper.
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FEFETE XIRRSTREENEE
BRIV FE TSR

FREFEY 39 S5 R
(1. P ERMEH AR K A2 SRR 2B, 280 AR 230026, HRAE A RALAIE
2. R R AL T 25 BE , e 70 410083, e N RILFIE 5 3.5 /RIS A BRSAL 2= 5T T, 7k 1 89069, 7 )

FEE : A SUE DA P AL 2 (EDL) B B A TR  FRATH e M E A28 T EDL RYFEASRHIE , (&
RT EDL #BUS AR & BT 5, FEAIJE D.C. Grahame Z 5L JLT4ER E R , K5 , FAUKKAE T FHek
AT RIRIE A2 B EDL B3 VR —F AT THROCE , AT 0T AR 14N M ) B B A5 i i B G MRS
BeEAe s B0 BUE ST, JEM | Matlab 05 BACHS . SFEPIRZS N 9 BALEHE Gouy-Chapman-Stern(GCS )
%! Bikerman-Poisson-Boltzmann (BPB)# 7  FIAEXFR B F RFEY . FRAT3R I GCS BB BPB FE7 78 4b 3 g5
FAHRR FAAAE— NP AR, GCS BEALE i A h 5] A Helmholtz - 1 3k % B8 F A R R, HAE
Helmholtz 1 PN XK EUZ PR SRR ISR % 8B 1 N SHRU8 BY Poisson-Boltzmann BEi%, PRI AL B9 55 1k
JERLATERR AR, 522 AR, BPB fRGE A TSR, felg AR e A RS 8 , AFPMEE R
Poisson-Nernst-Planck 77 #24#ii& EDL shiZ470 , A1 EDL (W E M & 18 FFEARNZ B h ik S T —1
R T A BRRST Y EDL sl i —Bg 5 ik s SeE vl ARIE IS W G T 2 B sr RN 2
EDL 8 A48 ) , A3 T EDL S8R #E 5 T EDL 1 HEAb2ABHBT IS e AR RS | Dhial e 1] 132 8 7 anfel JA
— NI IS R HE SN Y BEL RS IR A, R R B L A 2 SR AR B ARTE IR B
2= ARSI, — A RTAT I 5 SR A AR SR T IR e S A SCIT A 23 () ik B ABE TR

KRR s WAL P AT A s ALk BT s A B
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