[Journal of Electrochemistry](https://jelectrochem.xmu.edu.cn/journal)

[Volume 28](https://jelectrochem.xmu.edu.cn/journal/vol28) Issue 3 [Special Issue: Frontier of](https://jelectrochem.xmu.edu.cn/journal/vol28/iss3) [Electrochemistry \(](https://jelectrochem.xmu.edu.cn/journal/vol28/iss3)Ⅱ)

2022-03-28

In-Situ/Operando⁵⁷Fe Mössbauer Spectroscopic Technique and Its Applications in NiFe-based Electrocatalysts for Oxygen Evolution Reaction

Jafar Hussain Shah

Qi-Xian Xie

Zhi-Chong Kuang

Ri-Le Ge

Wen-Hui Zhou

Duo-Rong Liu

Alexandre I. Rykov

See next page for additional authors

Recommended Citation

Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I.

Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang. *In-Situ/Operando⁵⁷Fe Mössbauer Spectroscopic* Technique and Its Applications in NiFe-based Electrocatalysts for Oxygen Evolution Reaction[J]. Journal of Electrochemistry, 2022 , 28(3): 2108541. DOI: 10.13208/j.electrochem.210854 Available at:<https://jelectrochem.xmu.edu.cn/journal/vol28/iss3/3>

This Protocol is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

In-Situ/Operando⁵⁷Fe Mössbauer Spectroscopic Technique and Its Applications in NiFe-based Electrocatalysts for Oxygen Evolution Reaction

Authors

Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, and Jun-Hu Wang

Corresponding Author(s)

Jun-Hu Wang(wangjh@dicp.ac.cn)

In鄄Situ/Operando 57Fe M觟ssbauer Spectroscopic Technique and Its Applications in NiFe鄄based Electrocatalysts for セ化学
 J. Electrochem. 2022, 28(3), 2108541 (1 of 31)

DOI: 10.13208/j.electrochem.210854 Http://electrochem.xmu.edu.cn
 **STEe Mössbauer Spectroscopic Technique and

tions in NiFe-based Electrocatalysts for

Oxygen Evolu** *B. Electrochem.* 2022, 28(3), 2108541 (1 of 31)

DOI: 10.13208/j.electrochem.210854
 **Situl/Operando⁵⁷Fe Mössbauer Spectroscopic Technique and

Its Applications in NiFe-based Electrocatalysts for

Oxygen Evolution Reac** $\begin{array}{lll} &\text{\#} &\text{\#} &\text{\#} \\ \text{\#} &\text{\#} &\text{\#} \\ \text{Do1: 10.13208/j.electrochem.210854} & &\text{Htp://electrochem.xml.edu_en}\\ \text{Do1: 10.13208/j.electrochem.210854} & &\text{Htp://electrochem.xml.edu_en}\\ \end{array} \\ \begin{array}{lll} \text{\#} &\text{\#} &\text{\#} &\text{\#} &\text{\#} &\text{\#} &\text{\#} \\ \text{\#} &\text{\#} &\text{\#} &\text{\#} &\text{\#} \\ \text{\$ e

2022, 28(3), 2108541 (1 of 31)

208/j.electrochem.210854
 Http://electrochem.xmu.edu.cn
 **Dauer Spectroscopic Technique and

Fe-based Electrocatalysts for**
 volution Reaction

7, Zhi-Chong Kuang¹, Ri-Le Ge¹, W 31)

Http://electrochem.xmu.edu.cn
 **SCOPIC Technique and

trocatalysts for

ion**

Ri-Le Ge¹, Wen-Hui Zhou¹,

Shan Luo², Jun-Hu Wang^{1*}
 a Center, Dalian Institute of Chemical

tina; 2. Institute of Photoelectron Http://electrochem.xmu.edu.cn
 echnique and
 ysts for

, Wen-Hui Zhou¹,

Jun-Hu Wang^{1*}
 lian Institute of Chemical
 ute of Photoelectronic
 enices and Technology of $\frac{d}{dt}$ $\begin{array}{rcl}\n&\text{E} & \text{E} & \text{E} & \text{E} \\
\text{L} & \text{Eletrochem. 2022, 28(3), 2108541 (1 of 31)} \\
&\text{DOL: 10.13208/j.electrochem.210854} & &\text{Htp://electrochem.xml.edu.cn} \\
&\text{F} & \text{Mössbauer Spectroscopic Technique and}\n\end{array}$

 $\begin{array}{cccccc} &\text{L} & \mathcal{H} & \mathcal{F} \\ &\text{L} & \mathcal{H} & \mathcal{H} \\ &\text{D} & \mathcal{H} & \mathcal{H} & \mathcal{H} \end{array} \quad\qquad\qquad \text{L}^{2} & \mathcal{H}^{2} & \$ **LEtarbooken, 2022, 28(3), 2108541 (1 of 31)**

DOI: 10.132083j.electrochem.210854

DOI: 10.132083j.electrochem.210854
 Illip://electrochem.xmu.edu.cn
 Cample 1. Rykov¹, **Concept Expect Concept and Different Concept** ed 化 学

(022, 28(3), 2108541 (1 of 31)

108/j.electrochem.210854 Http://electrochem.xmu.edu.cn
 **aauer Spectroscopic Technique and

Fe-based Electrocatalysts for

wolution Reaction

Zhi-Chong Kuang¹, Ri-Le Ge¹, Wen-Hu** ^{41 (1 of 31)}

²¹⁰⁸⁵⁴ Http://electrochem.xmu.edu.cn
 **ctroscopic Technique and

Electrocatalysts for

Ceaction**

Xuang¹, Ri-Le Ge¹, Wen-Hui Zhou¹,

Jing-Shan Luo², Jun-Hu Wang^{1*}
 eet Data Center, Dalian Inst Http://electrochem.xmu.edu.cn
 **Pechnique and

ysts for**

,¹, Wen-Hui Zhou¹,

, Jun-Hu Wang^{1*}
 dian Institute of Chemical
 titute of Photoelectronic
 Devices and Technology of
 electronic Technology, (1. Center for Advanced Missbauer Spectroscopy, Missbauer Spectroscopy (1. Center, Data Center, Name)

Many Republications in NiFe-based Electrocatalysts for

Many Republications in NiFe-based Electrocatalysts for

Many R $\begin{tabular}{ll} & & \textbf{1:} & \textbf{1:} & \textbf{2:} & \textbf{2:} & \textbf{3:} & \textbf{3:} & \textbf{3:} & \textbf{4:} \\ & \textbf{1:} & \textbf{1:} & \textbf{1:} & \textbf{1:} & \textbf{2:} & \textbf{2:} & \textbf{3:} & \textbf{3:} & \textbf{4:} \\ & \textbf{2:} & \textbf{2:} & \textbf{2:} & \textbf{2:} & \textbf{2:} & \textbf{2:} & \textbf{3:} & \textbf{4:} & \textbf{4:} \\$ **Example 2022, 2023, 2008541** (1 of 31)

Thin Film Device Device and This **Applications in NiFe-based Electrocatalysts for**
 **In-Situl/Operando⁵ Te Mössbauer Spectroscopic Technique and

Its Applications in NiFe-based** $\begin{array}{ll} \text{b)} & \text{if.} & \text{if.} \\ \text{f.} & \text{f.} & \text{f.} \\ \text{f$ *F. Electrochem.* 2022, 28(3), 2108541 (1 of 31)

DOE 10.132085 electrochem.210854
 **Energy Conversion and Energy Converse Center Spectroscopic Technique and

Its Applications in NiFe-based Electrocatalysts for

Oxygen Ev**

Absorption of Absorption Cost-Example Cost-Example Cost-effective and The development of Republications in NiFe-based Electrocatalysts for $Oxygen$ **Evolution Reaction Jafar Hussain Shah¹, Qi-Xian Xie², Zhi-Chong Kuang¹ In-Situ/Operando⁵⁷Fe Mössbauer Spectroscopic Technique and

Its Applications in NiFe-based Electrocatalysts for

Oxygen Evolution Reaction

Jafar Hussain Shah¹, Qi-Xian Xie², Zhi-Chong Kuang¹, Ri-Le Ge¹, Wen-Hu THE SET ASSET AS fts Applications in NiFe-based Electrocatalysts for**
Cypy Concert C development of in鄄situ/operando characterizations is urgently required to detect key intermediates along with active sites and phases **EXAMPED CONTINUITY NEACTION**

Data Flussain Shah¹, Qi-Xian Xie², Zhi-Chong Kuang¹, Ri-Le Ge', Wen-Hui Zhou',
 Conter for Adeoneed Massbauer Spectroscopy, Mossbauer Effects Data Center, Dalian Institute of Chemical Jafar Hussain Shah¹, Qi-Xian Xie², Zhi-Chong Kuang¹, Ri-Le Ge¹, Wen-Hui Zhou¹,
Duo-Rong Liu¹, Alexandre I. Rykov¹, Xu-Ning Li¹, Jing-Shan Luo², Jun-Hu Wang²
(*I. Center for Advanced Mössbauer Spectrosc* Jafar Hussain Shah¹, Qi-Xian Xie³, Zhi-Chong Kuang¹, Ri-Le Ge¹, Wen-Hui Zhou¹,

Duo. Cone Cong Liu¹, Alexandre I. Rykov¹, Xu-Ning Li¹, Iing-Shan Luo¹, Jun-Hill Wang¹

(*I. Genter for Adeoneed Mashemer* Duo-Rong Liu¹, Alexandre I. Rykov¹, Xu-Ning Li¹, Jing-Shan Luo², Jun-Hu Wang¹
(1. Center for Advanced Mössbuser Spectracopy, Mössbuser (Sfleet Data Center, Dolina Institute of Chemical
This current status of cat (*I. Center for Advanced Mössbauer Spectroscopy*, Mössbauer-Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China; 2. Institute of Photoelectronic Thin Film *Physics, Chinese Academy of Sciences, Dairan 116023, Liconing, Chinaz 2. Institute of Photoelectronic Thin Film Detices and Technology, Key Laboratory of Photoelectronic Thin Film Detices and Technology, Taujin, Ministry* Thy and Determining of electrochemic process, assume the other analogues), as a typical model study of Praise for the OER electrocatalyst and Technology of
Tanjin, Ministry of Education Engineering Research Center of Thin Fram Fuences and retentioning, is Pranounally of productional transmit Fund Detection Transmit T_{G0} (Total Thin Thin Photoshectronic Technology,
Transm, Ministry of Education Engineering Research Center of Thin Film Ph Reneuvable Energy Conversion and Morage Center, Nankai University, Tranjin 300350, China)
 Abstract: The development of highly efficient and east-effective electrocatalysts for the sluggish oxygen evolution reaction

OC **Abstract:** The development of highly efficient and cost-effective electrocentalysts for the singuish oxygen evolution reaction
(OER) remains a significant haring to establish effective utilization of frenewable energy st Examples are experient the control of the state of the control of the state of the state of the better under the state of the better well expansion that the Mission of Mission and the Mission of the Mission and the Missio eyencow or other is considered to the consideration of the subsect of the consideration is the consideration in the mg the relationship between catatytic actroy and the coordinator structure of catatyts. In this tuberature rest tuber tuberature activation is interesting the relation to introduce in detail the knowhow about the turnet st ECs) have been proven as excellent and remarkable candidates for this purpose. But it is critically important to understand the Cs) strate interviewer their decades that influence their activity and underlying necelaation factors that influence their activity and underlying mechanism for the development of state-of-the-art OER catalysts. Therefore, the
developmental of *actitogromatio* characterizations is urgently required to detect key i development of *in-sinulay ensuale* draneaterizations is urgently required to detect key intermediates along with active sites and phases
responsible for OER. ^DFe Missobure spectroscopy is one of the appropriate and suit of renewable energy storage systems and water splitting to pro-
ER catalysts shows that NiFe-based oxygen evolution catalysts
or this purpose. But it is critically important to understand the
development of state-of-the-ar Ex causives shows unt Nire-based oxygen evolution cataysts
of this purpose. But it is critically important to understand the
dedevelopment of state-of-the-art OER catalysts. Therefore, the
d to detect key intermediates al able development of state-of-the-art OER catalysts. Therefore, the electroment and development of state-of-the-art OER catalysts. Therefore, the d to detect key intermediates along with active sites and phases sopriate an d to detect key intermediates along with active sites and phases
opriate and suitable techniques for determining the phase struc-
tifying the active sites, clarifying the catalytic mechanisms, and
dination structure of ca

1 Introduction solar, wind, and tidal energies)^[1]. However, owing to

 Φ ^{*(k*2)}*E (k*) *Electrochem.*) 2022, 28(3), 2108541 (2 of 31)

ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which

electrolyte membrane fuel cells (PEMFCs) and the positive electrode (air)²². The controllange is the condition of the electrodemic science of electrodesis (OECS), using a non-noble media and water splitting electrodemic for electrode (air)²². Therefore, the same **EVALUATION (EXAMPLE 1990)**
 EXAMPLE 1990
 EXAMPLE 1990 EXAMPLE 1990 EXAMPLE 1990 EXAMPLE 1990 EXAMPLE 1990 CO2 EXAMPLE 1990 CO2 EXAMPLE 1990 CO2 EXAMPLE 1991 EXAMPLE 1991 CO2 EXAMPLE 1991 E Example 12
 Example 12
 **Example as the anomal in the anomal in the anomal in the anomal in the co-bettoomly control and the one with the highest activation energy.

Eccluston are several kinds of novel energy conver** this reaction in the reaction in the constant $(2\pi R)$, $(2\pi R)$ and $(2\pi R)$ tion electrocatalysts (OECs), using a non-noble metal th $E^{\#}(L \& betweenchem, 2022, 28(3), 2108541 (2 of 31)$
ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which
electrolyte membrane fuel cells (PEMFCs) and CO, each elementary step ting devices, rechargeable metal-air for the settences, reduced as bending one of the settency and the electrolyte membrane full cells (*PFMFCss*) and CO₂ can be elementary step has its own activation energy.

reduction ting devices, rechargeable metal-air batteries, polymer

clectrochy membrane fuel cells (*PEMF*Cs) and CO₂ canh electrochy email contains a several kinds of novel emergy conver-

electrochemic med cells (*PEMFCs*) and CO electrolyte membrane fuel cells (PEMFCs) and CO₂ each elementary step has its own activation energy.

eduction are several kinds of novel energy conver-

And the one with the highest setivation energy is the

reduction reduction are several kinds of novel energy conver-

And the one with the highest activation energy is the

sion and storage technologies¹⁵⁴¹. Foren though the ar-

solver elementary step, making it the rate-dere-

elect sion and storage technologies^{2:9}. Even though the ar-

sion-set dementary step, making it the rate-deter-

chirecture of these devices differs, the fundamental miming step in OER⁽¹²⁾. Therefore, OER dominates

enheari chiecture of these devices differs, the fundamental mining step in OFR¹³¹. Therefore, OFR dominates
processors are almost the same, In a rechargeable met-
therefore defined in the compression compression of the compres processes are almost the same. In a rechargeable met-

al-air battre are overall efficiency of the two technologies be-

al-air battre), metal dissolution and deposition on the cause it pertains to the ecation of O-O bonds al-air battery, metal dissolution and deposition on the cause it pertains to the creation of O-O bonds and in-
negative cletredot (metal), while the oxygen reduction cludes four proton-coupled electron transfer proces-
ne negative electrode (metal), while the oxygen reduction cludes four proton-coupled electron transier process-
eaction (ORR) are expaired by ease reading the protocolarity as reading highly OFCs are required to accel-
eact on the positive clectrode (air)¹⁹. For the electrochemi-
carte the OER or decrease the overpotential to miti-
calc Co, reduction reaction (CO,RR), the OER process aget the energy loss inherent in energy conversion
for t eal CO₂ reduction reaction (CO₃RR), the OER process gate the energy loss inherent in energy conversion
can serve as the ander reaction⁹. An umnet challenge technologies.

for this teaction is the lack of efficient o ean serve as the anode reaction⁷¹. An unmet challenge technologies.

for his reaction is the lack of efficient oxygen coul-
 $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ for this reaction is the lack of efficient oxygen evolu-

The innovative combination of materials science

electrocatalyst (OPES), using a non-holb media and water splitting electrochemical year to mix the CO_SR process tion electrocatalysts (OECs), using a non-noble metal
electrochemistry opens new pathe-
electrocatalyst to pair with the CO_SR process for ways for eventage different OECs. Iroy and RuO₂ are
high overall energy convers

the the technologies¹²⁶. Electrochem.) 2022, 28(3), 2108541 (2 of 31)
ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which
electrolyte membrane fuel cells (PEMFCs) an th(*k^{*}*(*J. Electrochem.*) 2022, 28(3), 2108541 (2 of 31)

ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which

electrolyte membrane fuel cells (PEMFCs) and CO₂ $# \&L^{\omega}(L \&Electrochem.) 2022, 28(3), 2108541 (2 of 31)$

ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which

electrolyte membrane fuel cells (PEMFCs) and CO₂ each elementary $\frac{\text{tr}_{2}H_{2}^{2m}(J. Electronchem, 2022, 28(3), 2108541 (2 of 31))}{\text{tring devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which
electrolyte membrane fuel cells (PEMFCs) and CO₂ each elementary step has its own activation energy.
reduction are several kinds of novel energy conver- And the one with the highest activation energy is the
sion and storage technologies^[2-6]. Even though the ar-
shortective of these devices differs, the fundamental
mining step in OER^[12]. Therefore, OER dominates
processes are almost the same. In a rechargeable met-
ale-air battery, metal dissolution and deposition on the
cause$ **EVALUATE (Example 19.13)**
 EVALUATE EXECUTE EXECUTE CONSTANT (2013)
 EXECUTE EXECUTE CONSTANT (2013)
 EXECUTE EXECUTE CONSTANT (2013)
 EXECUTE EXECUTE CONSTANT (2014)
 EXECUTE CONSTANT (2014)
 EXECUTE CONSTANT EVALUATION
 EXALUAT EXALUAT THE SECT AND AND THE SECT AND AND THE SECT AND THE SAME SIGN AND THE SAME SIGN AND THE SAME SIGN AND THE SAME SA EVALUAT EXAM (FOLT ALCONS) and $\mathbb{R}^{(k+1)}(L)$ *Flectrochem.*) 2022, 28(3), 2108541 (2 of 31)
ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which
electrolyte membr **EVALUAT EXAMORE (META)**, $\mathcal{H}_2(\mathcal{F}_2(\mathcal{F}_3), \mathcal{F}_3(\mathcal{F}_3), 2108541 \text{ (2 of 31)}$

ting devices, rechargeable metal-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which

electrolyte membrane fuel cel 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r $28(3)$, 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r $28(3)$, 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making $28(3)$, 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r technologies. (3), 2108541 (2 of 31)
mation of an oxygen-oxygen (O-O) bond in which
the lementary step has its own activation energy.
d the one with the highest activation energy is the
west elementary step, making it the rate-deter-
i 28(3), 2108541 (2 of 31)

formation of an oxygen-oxygen (O-O) bond in which

each elementary step has its own activation energy.

And the one with the highest activation energy is the

slowest elementary step, making it t 28(3), 2108541 (2 of 31)
formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the r Excess the straight of the straight of the means of the means and the mean alternative strate and the one with the highest activation energy is the slowest elementary step, making it the rate-determining step in OER^[12] formation of an oxygen-oxygen (O-O) bond in which
each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the rate-deter-
mining step in each elementary step has its own activation energy.
And the one with the highest activation energy is the
slowest elementary step, making it the rate-deter-
mining step in OER^[12]. Therefore, OER dominates
the overall e 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (2 of 31)

-air batteries, polymer formation of an oxygen-oxygen (O-O) bond in which

s (PEMFCs) and CO₂ each elementary step has its own activation energy.

novel energy con

And the one with the highest activation energy is the
slowest elementary step, making it the rate-deter-
mining step in OER^[12]. Therefore, OER dominates
the overall efficiency of the two technologies be-
cause it perta slowest elementary step, making it the rate-deter-
mining step in OER^[12]. Therefore, OER dominates
the overall efficiency of the two technologies be-
cause it pertains to the creation of O-O bonds and in-
cludes four p mining step in OER^[12]. Therefore, OER dominates
the overall efficiency of the two technologies be-
cause it pertains to the creation of O-O bonds and in-
cludes four proton-coupled electron transfer process-
es^[13-14] the overall efficiency of the two technologies be-
cause it pertains to the creation of O-O bonds and in-
cludes four proton-coupled electron transfer process-
es^[13-14]. As a result, highly OECs are required to accel-
e cause it pertains to the creation of O-O bonds and in-
cludes four proton-coupled electron transfer process-
es^[13-14]. As a result, highly OECs are required to accel-
erate the OER or decrease the overpotential to miticludes four proton-coupled electron transfer process-

es^[13-14]. As a result, highly OECs are required to accel-

erate the OER or decrease the overpotential to miti-

gate the energy loss inherent in energy conversion
 $es^{[13\text{-}14]}$. As a result, highly OECs are required to accelerate the OER or decrease the overpotential to mitigate the energy loss inherent in energy conversion technologies.
The innovative combination of materials sci erate the OER or decrease the overpotential to mitigate the energy loss inherent in energy conversion technologies.
The innovative combination of materials science and water splitting electrochemistry opens new pathways f gate the energy loss inherent in energy conversion
technologies.
The innovative combination of materials science
and water splitting electrochemistry opens new path-
ways for creating different OECs. IrO₂ and RuO₂ are
 technologies.

The innovative combination of materials science

and water splitting electrochemistry opens new path-

ways for creating different OECs. IrO₂ and RuO₂ are

considered as benchmark catalysts due to their The innovative combination of materials science
and water splitting electrochemistry opens new path-
ways for creating different OECs. IrO₂ and RuO₂ are
considered as benchmark catalysts due to their low
onset potenti and water splitting electrochemistry opens new path-
ways for creating different OECs. IrO₂ and RuO₂ are
considered as benchmark catalysts due to their low
onset potentials for triggering the OER. However,
small reser \mathbf{I} ,

E(*Electrochem.*) 2022, 28(3), 2108541 (3 of 31)

metal carbides^[23], and organometallics^[24]. According processes by which Fe improves the OER activity of

to recent studies, all non-precious metal catalysts Ni-based \exists the \mathbb{R}^{ω} (*L* Electrochem.) 2022, 28(3), 2108541 (3 of 31)
 The recent studies, all non-precious metal catalysts

to recent studies, all non-precious metal catalysts

containing anions other than oxides and $\#E\#(J. Electron.)$ 2022, 28(3), 2108541 (3 of 31)

metal carbides^[23], and organometallics^[24]. According processes by which Fe improves the OER activity of

to recent studies, all non-precious metal catalysts

containing a $\frac{dE}{dt}$ *Electrochem.*) 2022, 28(3), 2108541 (3 of 31)

metal carbides^[23], and organometallies^[24]. According processes by which Fe improves the OER activity of

to recent studies, all non-precious metal catalysts $\text{H}(k\#(J, Electrochem.) 2022, 28(3), 2108541 (3 of 31)$

metal carbides¹²⁰, and organometalies^[24]. According

to recent studies, all non-precious metal catalysts Ni-based OECs.

containing anions other than oxides and hydroxide contact with the alkaline electrolyte[25,26]. As a result, $\pm \frac{k^2\gamma}{L}$. *Electrochem.*) 2022, 28(3), 2108541 (3 of 31)

metal carbides¹²¹, and organometallies¹³⁴. According processes by which Fe improves the OER activity of

to recent studies, all non-precious metal cataly the external capacity content in the materials in alkaline chectrolytes⁽²³⁾. According processes by which Fe improves the OER activity of
to recent studies, all non-precious metal catalysts Ni-based OECs.
containing ani **EVALUATION THE REAL CONDUM**

WE THE REAL CONDINE TO SET AND THE SERVICE THE REAL CONDINSTRATION THE SERVICE THE SERVICE THE SERVICE THE CONDUCT SOMETHING A CONDINENTIES and organometrical reachemical real-time constraini **EATAL EXECTS** (*LECTS)* (*LECTS)* (*RECTS)* (*RECTS)* (*RECTS)* (*RECTS)* (*RECTS)* (*RECTS)* (*RECTS)* (*RETS)* **Example 19.1**
 Hydroxides and the most potentiallies^[13]. According processes by which Fe improves the OER activity of

to recent studies, all non-precious metal eatalysts Ni-based OECs.

Examplement than oxides and $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ and organometallies ^[23]. According **processes by which Fe improves the OER activity of to terest studies, all non-precious metal catalysts Ni-based OECs.

co** $4k^2$ are $4k^2$ are $4k^2$ are $4k^2$ and organometallies¹⁹¹. According processes by which Fe improves the OER activity of
to recent studies, all non-precious metal catalysts Ni-bosed OECs.
containing anions other tha have shown higher OER activity[28] .

trocatalyst

mental viese entrowares when the mean one contains when the contained the contained the contains of the particles and **E** in the second in the interpretive hydroxides (was the second the containing of **Fe** Role in Ni-Base **EVENDED THEST (THE STEP INTERTMENT THEST (THE STEP) EXECT

EXECT PROPERS AND UNIONEMISE MANEWERS** matrices makes them hards to be oxi-
 ing of Fe Role in Ni-Based Elec- dized dirther and thus alters the redox electroc **2 Recent Progress and Understand**—

ing of **Fe Role in Ni-Based Elec-** dized further and thus alters the rotox detectrochem-
 tractations tractations is the mass have start and thus alters the rotox detectrolen-
 thro ing of Fe Role in Ni-Based Elec-
 into the Ni-Based Electrochem-
 into the Ni(OH)5NiOOH is the cell volt-based both \sim Ni(OH)4NiOOH is the since of the incorporated into Ni-based

The most aciree electrocatalyst f **EVALUAL EXECT THE SET THE SE** The most active electroceatalyst for OER was \overline{OECs} , it causes structural changes, 3) It is well-known
thought to be Ni(OH)-NiOOH at the start of the evo-
also based Lewis axiel with a strongest ransition metal-
hutio thought to be Ni(OH)_/NiOOH at the start of the evo-

fact that Fe¹ serves as the strongest transition met-

lution of 3d transition metals-based OECs. Subbara-

als-based Levis sciels with a stronger clearephile na-
 altion of 3d transition metals-based OECs. Subbara
man and co-workers suggested that the OER activity
man and co-workers suggested that the OER activity
three and notably affects the electronic preperties of
the order of man and co-workers suggested that the OFR activity

ture and notably affects the electronic properties of

tred of 3d transition metal divalent cations goes in

the other cations in the other cations in the other cations trend of 3d transition metal divalent cations goes in
the other cations in which being incorporated; hence
the order of Mm² \leq Fe³ \leq Co² \ltimes Ni²¹¹⁹¹, And it was
mation of active with sixes and als in th the order of Mn²⁺ \ll Fe²⁺ \ll Co²⁺ \ll Ni²⁺¹²⁰). And it was it changes the Ni oxidation states and aids in the for-
believed to be true and accepted widely until it was mation of active Ni⁴ sizes, and 4) Fe believed to be true and accepted widely until it was

fround that a trace amount of Fe (\sim 1 ppm) largely on-

hife-based OEES with a 1:0.33 ratio dependent

harened the OER activity of Ni⁺ based electrocation-

hyste found that a trace amount of Fe $(-1$ ppm) largely en-
hanced OFCs with a 1:0.33 ratio depicts a su-
hanced the OER activity of Ni²⁺ based electrocata-
percechange magnetic contact that improves OER
bytsi^{28:31}. In the hanced the OER activity of Ni² based electrocata-
perexchange magnetic contact that improves OER
hysts²⁰¹⁸. In the late 1980s, the extraordinary OER per-
clertotroatally is by allowing electrons to hop.
Tomaces of Ni(

电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (3 of 31)

etallics^[24]. According processes by which Fe improves the OER activity of

rivisions metal catalysts Ni-based OECs.

stides and hydroxides Without a doubt, Fe inco

the $(2\frac{m}{2}$ (L R lectrochem.) 2022, 28(3), 2108541 (3 of 31)
metal carbides⁽²¹⁾, and organometallies(2³¹. According processes by which Fe improves the OER activity of
to recent studies, all non-precious metal metal carbides¹⁹¹¹, and organometallies¹⁹¹, According processes by which Fe improves the OER activity of
to recent studies, all non-precious metal eachlysts Ni-based OECs.
containing anions other than oxides and hydro al carbides^[23], and organometallies^[23]. According processes by which Fe improves the OER activity of
cent studies, all non-process metal catalysts Ni-based OECs.

studies anime amons other than oxides and hydroxides The most control of the most activity of the most actual to the significant of the significant of the significant of the most activities were
progression in the significant of the significant of the most activities were
p the production of suitable construction, resulting in any in order behind the significant OEK improvements are the evo-
the production of oxides/hydroxides on the surface in metric can be a first of DER activities were
co the production of oxtates-based and subsects of the state in meth sense to the state in the contact virus auxine electrocopy⁻⁻⁻⁻⁻. As a result, grade KOH electrocity so int. OER suggested to be the materials without alkaline circumstances, their (oxy)hydroxides are all-
regardless of the materials without alka regardless of the maleral surface of the metal surface of the metal surface of the metal surface in the metal surface of the station metal (oxylyhydroxides metals). Nife-(oxy) and surface transition metal (oxylyhydroxides EVALUAT THE CONDIVIDENT CONDUCT THE TRANSPORTED THANGE THE AND THANGE SIMPLE THANGE THANGE THANGE THAN was the reaction entails downly the reaction of the control in the state of the state of Nicolar states of Nicolar States of Technomical proportion of the true is and the state of Nicolar States of Te in the matrix of Nitransition metallooxynythooties muchanis, Nire-book Dick, Based Office, Hassed Office, Hassed Offices and the finding in the matrix of Ni-based Offices and the matrix of Ni-based of the most physical state in the matrix o pyroxides have been proved to be the measl potential is seen published in literatures detailing the electrocatalysts, while their potents are not computed in Figure 2012 (CFCs, important roles stated in literatures with e materials makes in adaptation stration of Fe in the matrix of Ni-based

studies, pure Ni and Pe oxides/hydroxides are not cf-

DECs. Important roles stated in literatures with ex-

frient OER electrocatalysts, while their students, pure Ni anore occuses provides are note.

Figure Ni anore occuses provident OER electrocatalyses, while their complexes

From place of Ni in their respective hydroxides (oxy)
 2 Recent Progress and Understand (28(3), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in u (3), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in unpu (3), 2108541 (3 of 31)

vecesses by which Fe improves the OER activity of

based OECs.

Without a doubt, Fe incorporation has been the

ving force behind the significant OER improve-

nt seen with Ni-based OECs in unpurifi 28(3), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in un 28(3), 2108541 (3 of 31)

processes by which Fe improves the OER activity of

Ni-based OECs.

Without a doubt, Fe incorporation has been the

driving force behind the significant OER improve-

ment seen with Ni-based OECs (28), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in unp 28(3), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in un (28(3), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in u $(28(3), 2108541 (3 of 31))$
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in un $(283), 2108541 (3 of 31)$
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in unp $\frac{1}{28(3)}$, $\frac{2108541}{3}$ of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-bas $28(3)$, 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs $(28(3), 2108541 (3 of 31))$
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in un $(28(3), 2108541 (3 of 31))$
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in un , 28(3), 2108541 (3 of 31)
processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment scen with Ni-based OECs in **EXECTS FROM THET SETT CONSULTS CONSULTS CONSULTS (NOTE)**

Ni-based OECs.

Without a doubt, Fe incorporation has been the

driving force behind the significant OER improve-

ment seen with Ni-based OECs in unpurified, rea processes by which Fe improves the OER activity of
Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in unpurified, reagent
grade Ni-based OECs.
Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in unpurified, reagent
grade KOH electrolyte so far. OER activities were
being m Without a doubt, Fe incorporation has been the
driving force behind the significant OER improve-
ment seen with Ni-based OECs in unpurified, reagent
grade KOH electrolyte so far. OER activities were
being massively reporte driving force behind the significant OER improvement seen with Ni-based OECs in unpurified, reagent grade KOH electrolyte so far. OER activities were being massively reported for these materials without realizing that Fe i ment seen with Ni-based OECs in unpurified, reagent
grade KOH electrolyte so far. OER activities were
being massively reported for these materials without
realizing that Fe in concentration as low as 1 ppm
may significant grade KOH electrolyte so far. OER activities were
being massively reported for these materials without
realizing that Fe in concentration as low as 1 ppm
may significantly change the OER activities of
Ni-based OECs. Based being massively reported for these materials without
realizing that Fe in concentration as low as 1 ppm
may significantly change the OER activities of
Ni-based OECs. Based on these findings, much re-
search has been publi realizing that Fe in concentration as low as 1 ppm
may significantly change the OER activities of
Ni-based OECs. Based on these findings, much re-
search has been published in literatures detailing the
various functions o may significantly change the OER activities of
Ni-based OECs. Based on these findings, much re-
search has been published in literatures detailing the
various functions of Fe in the matrix of Ni-based
OECs. Important role Ni-based OECs. Based on these findings, much re-
search has been published in literatures detailing the
various functions of Fe in the matrix of Ni-based
OECs. Important roles stated in literatures with ex-
perimental pie search has been published in literatures detailing the
various functions of Fe in the matrix of Ni-based
OECs. Important roles stated in literatures with ex-
perimental pieces of evidence are: 1) Incorporation of
Fe in pl various functions of Fe in the matrix of Ni-based
OECs. Important roles stated in literatures with ex-
perimental pieces of evidence are: 1) Incorporation of
Fe in place of Ni in their respective hydroxides/(oxy)
hydroxid Cs. Important roles stated in literatures with ex-
imental pieces of evidence are: 1) Incorporation of
in place of Ni in their respective hydroxides/(oxy)
droxides matrices makes them harder to be oxi-
ed further and thus perimental pieces of evidence are: 1) Incorporation of
Fe in place of Ni in their respective hydroxides/(oxy)
hydroxides matrices makes them harder to be oxi-
dized further and thus alters the redox electrochem-
istry of Fe in place of Ni in their respective hydroxides/(oxy)
hydroxides matrices makes them harder to be oxi-
dized further and thus alters the redox electrochem-
istry of Ni, 2) When Fe is incorporated into Ni-based
OECs, it c hydroxides matrices makes them harder to be oxidized further and thus alters the redox electrochemistry of Ni, 2) When Fe is incorporated into Ni-based OECs, it causes structural changes, 3) It is well-known fact that $Fe^{$ dized further and thus alters the redox electrochemistry of Ni, 2) When Fe is incorporated into Ni-based OECs, it causes structural changes, 3) It is well-known fact that Fe³⁺ serves as the strongest transition met-
als istry of Ni, 2) When Fe is incorporated into Ni-based
OECs, it causes structural changes, 3) It is well-known
fact that Fe³⁺ serves as the strongest transition met-
als-based Lewis acid with a stronger electrophilic na-

OECs, it causes structural changes, 3) It is well-known
fact that Fe³⁺ serves as the strongest transition met-
als-based Lewis acid with a stronger electrophilic na-
ture and notably affects the electronic properties of fact that Fe³⁺ serves as the strongest transition met-
als-based Lewis acid with a stronger electrophilic na-
ture and notably affects the electronic properties of
the other cations in which being incorporated; hence
it als-based Lewis acid with a stronger electrophilic na-
ture and notably affects the electronic properties of
the other cations in which being incorporated; hence
it changes the Ni oxidation states and aids in the for-
mat ture and notably affects the electronic properties of
the other cations in which being incorporated; hence
it changes the Ni oxidation states and aids in the for-
mation of active Ni⁴⁺ sites, and 4) Fe³⁺ ions in
NiFethe other cations in which being incorporated; hence
it changes the Ni oxidation states and aids in the for-
mation of active Ni⁴⁺ sites, and 4) Fe³⁺ ions in
NiFe-based OECs with a 1:0.33 ratio depicts a su-
perexchan it changes the Ni oxidation states and aids in the for-
mation of active Ni⁴⁺ sites, and 4) Fe³⁺ ions in
NiFe-based OECs with a 1:0.33 ratio depicts a su-
perexchange magnetic contact that improves OER
electrocatalysi mation of active Ni⁴⁺ sites, and 4) Fe³⁺ ions in
NiFe-based OECs with a 1:0.33 ratio depicts a su-
perexchange magnetic contact that improves OER
electrocatalysis by allowing electrons to hop.
Almost all researches in NiFe-based OECs with a 1:0.33 ratio depicts a su-
perexchange magnetic contact that improves OER
electrocatalysis by allowing electrons to hop.
Almost all researches involving Ni-based OECs
and Fe incorporation have revea perexchange magnetic contact that improves OER
electrocatalysis by allowing electrons to hop.
Almost all researches involving Ni-based OECs
and Fe incorporation have revealed that the most ap-
propriate and active composi

 $#E\# (J. Electrochem.) 2022, 28(3), 2108541 (4 of 31)$ activity despite a reduction in effective conductivity.

As a result, it is apparent that the observed increase

As a result, it is apparent that the observed increase

could not $\text{H}(k\#(J. Electron.) 2022, 28(3), 2108541 (4 of 31)$
activity despite a reduction in effective conductivity.
As a result, it is apparent that the observed increase
could not be attributed only to the change in conduc-
peak when age the $\mathbb{R}E^*$ (*J. Electrochem.*) 2022, 28(3), 2108541 (4 of 31)
activity despite a reduction in effective conductivity. idation^{psq}. Boettcher and co-workers observed compa-
As a result, it is apparent that the observ the $W^2(X, Electrochem, 2022, 28(3), 2108541 (4 of 31)$
activity despite a reduction in effective conductivity. idation^[95]. Boettcher and co-workers observed compa-
As a result, it is apparent that the observed increase rable ano **EVACAL Example 10**
 EVACAL Example 1002
 **EXECUTE ACCES AND ACCES AS a result, it is apparent that the observed incompareable and

could not be attributed on EVALUATION**
 EXALUATION 1999
 EXALUATION 1999
 **EXALUATION ACCOMPTED AS a result, it is apparent that the observed increase rable and

EXALUATION AS a result, it is a pracent that the observed increase rable and

c** \pm *i Electrochem.*) 2022, 28(3), 2108541 (4 of 31)

activity despite a reduction in effective conductivity. idation⁸⁹. Boettcher and co-workers observed compa-

As a result, it is apparent that the observed increa **Example 19**
 Example 3
 Example 1
 Example 1
 Example 1
 Example 1
 Example 1
 Example 1
 Example 3
 Example 3 \pm *Wether a* eduction in effective conductivity.
 \pm *Wether and co-workers observed comparison* and the dependent of the observed increase in the dependent of Ni(OH)₂ \rightarrow NiOOH oxidation could not be attributed o **EVALUATIVE THE CO-EXECTS INTERT AMORE THE CO-EXECTS IN A SURFACT CONDITED SOLUTION (INCRED SOLUTION) IN EXAMPLE CONDITIONS (INCRED SOLUTION IN THE SIGN OF CONDITIONS AND RESPONSIBLE THE VALUATION OF THE SIGN OF THE SIGN** (https://www.com/common-2022, 28(3), 2108541 (4 of 31)

and the conductivity despite a reduction in effective conductivity. ideation¹⁹⁵. Boettcher and co-workers observed compar-

As a result, it is apparent that the ob the \mathcal{L}^{μ} is the remotential phase of the reader of a result in the reduction of the reduction in effective conductivity. Identical and co-workers observed comparison as a result, it is apparent that the observed i **EVALUATION**
 EVALUATION $\# \{\&\cong (L \to U, \&Eleurochem.)\ 2022, 28(3), 2108541 \ (4 of 31) \}$ activity despite a reduction in effective conductivity. idation¹⁸¹. Roetcher and co-workers observed compa-
As a result, it is apparent that the observed increase ra the $\frac{d_1}{dx}$ of $\frac{d_2}{dx}$ ($\frac{d_3}{dx}$ are a detection in effective conductivity. idation¹⁸, Boettcher and co-workers observed comparies a result, it is apparent that the observed increase — mble anodic shifts of N activity despite a reduction in effective conductivity.

activity despite a reduction in effective conductivity.

As a result, it is apparent that the observed increase

rable anodic shifts of Ni(OH)₂ -> NiOOH oxidation activity despite a reduction in effective conductivity. idition¹⁸⁸. Boettcher and co-workers observed compar-

Cas a result, it is apparent that the observed increase and herease and

could not be attributed only to the Ni-based OECs. The fact that Fe in FeOOH is insu-

KOH(\sim 1 ppm Fe) for 1 hour (Fi

lating, which is a big contradiction. In this way, how

the Fe concentration reached 5%

could it improve the conductivity of NiOOH when

 $^{-1}$ Fe(NO₃)₃ in a 1 mol \cdot L⁻¹ aqueous KOH ^{1 CH} 1 CH ¹

As a result, it is apparent that the observed increase

reals anodic shifts of Ni(OH)₂ → NiOOH osidiation

could not be atrivated only to the change in conduc-

peak when aged the electrodeposited Ni(OH)₂ film in

Nicould not be attributed only to the change in conduc-

trivity that occurs when aged the clectrodeposited Ni(OH)₁ film in

Wi-based OECs. The fact that Fe in incoporated into TraceSelect KOH (\leftarrow 3 by the phe Fe) and r tivity that occurs when Fe is incorporated into TraceSclect KOH (~ 36 ppb Fe) and reagent grade
Ni-based OECs. The fact that Fe in FeOOH is insu-
Kang, which is a hige contradiction. In this way, how the Fe concentration ing, which is a big contradiction. In this way, how

the Fe concentration reached 5%, they found a simi-

dud it improve the conductivity of NiOOH when

the range in the NiCos Hendre in the reachesis of Fin in pure

whine could it improve the conductivity of NiOOH when

lare change in the Ni:Fe co-deposited film in pure

combined? Bell and co-workers proposed a plausible

emchanism in which Fe^y ions were incorporated into

diation Shiff combined? Bell and co-workers proposed a plausible

ECHI (Fe free). However, there was no such and

enchanism in which Fe' ions were incorporated into shift in Ni(OH), \sim NiOOH orientation peak in the

g-NiOOH lattices mechanism in which Fe³¹ ions were incorporated into

shift in Ni(OH)₂ \rightarrow NiOOH coidation peak in the

deNitection is an earlier announts and exhibited hire to edeposited film with 25% Fe contract. The

an extraordin B-NiOOH lattices in smaller amounts and exhibited NiF-Fe co-deposited film with 25% Fe content. The
m extraordinary shrunken Fe-O bond length, result- most intriguing result of this research was the reduc-
ong in Fe' site 28(3), 2108541 (4 of 31)
idation^[35]. Boettcher and co-workers observed compa-
rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) an 28(3), 2108541 (4 of 31)
idation^[35]. Boettcher and co-workers observed compa-
rable anodic shifts of Ni(OH)₂ → NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) and r 28(3), 2108541 (4 of 31)
idation^[35]. Boettcher and co-workers observed compa-
rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (\sim 36 ppb Fe) 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe) a 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe) 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe) 28(3), 2108541 (4 of 31)
idation^[35]. Boettcher and co-workers observed compa-
rable anodic shifts of Ni(OH)₂ → NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) and r 28(3), 2108541 (4 of 31)
idation^[58]. Boettcher and co-workers observed compa-
rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) an 28(3), 2108541 (4 of 31)

idation^[59]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe) 28(3), 2108541 (4 of 31)

idation^[85]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe) a 28(3), 2108541 (4 of 31)
idation^[59]. Boettcher and co-workers observed compa-
rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) an 28(3), 2108541 (4 of 31)

idation^[35]. Boettcher and co-workers observed compa-

rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

peak when aged the electrodeposited Ni(OH)₂ film in

TraceSelect KOH (~ 36 ppb Fe) a Let \mathbb{R}^{3} . Boettcher and co-workers observed comparable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation peak when aged the electrodeposited Ni(OH)₂ film in TraceSelect KOH (\sim 36 ppb Fe) and reagent grade KOH (idation^[35]. Boettcher and co-workers observed comparable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation peak when aged the electrodeposited Ni(OH)₂ film in TraceSelect KOH (~ 36 ppb Fe) and reagent grade KOH (~ 1 pp rable anodic shifts of Ni(OH)₂ \rightarrow NiOOH oxidation
peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) and reagent grade
KOH (~ 1 ppm Fe) for 1 hour (Figure 3(A-E))^{p6}. When
the Fe conc peak when aged the electrodeposited Ni(OH)₂ film in
TraceSelect KOH (~ 36 ppb Fe) and reagent grade
KOH (~ 1 ppm Fe) for 1 hour (Figure 3(A-E))^{p6}. When
the Fe concentration reached 5%, they found a simi-
lar change in TraceSelect KOH (~ 36 ppb Fe) and reagent grade

KOH (~ 1 ppm Fe) for 1 hour (Figure 3(A-E))^{pg}. When

the Fe concentration reached 5%, they found a simi-

lar change in the Ni:Fe co-deposited film in pure

KOH (Fe free) KOH (\sim 1 ppm Fe) for 1 hour (Figure 3(A-E))^{pg}. When
the Fe concentration reached 5%, they found a simi-
lar change in the Ni:Fe co-deposited film in pure
KOH (Fe free). However, there was no such anodic
shift in Ni(In Fe concentration reached 5%, they found a similar change in the Ni:Fe co-deposited film in pure KOH (Fe free). However, there was no such anodic shift in Ni(OH)₂ → NiOOH oxidation peak in the Ni:Fe co-deposited film KOH (Fe free). However, there was no such anodic
shift in Ni(OH)₂ \rightarrow NiOOH oxidation peak in the
Ni:Fe co-deposited film with 25% Fe content. The
most intriguing result of this research was the reduc-
tion in the stre shift in Ni(OH)₂ → NiOOH oxidation peak in the
Ni:Fe co-deposited film with 25% Fe content. The
most intriguing result of this research was the reduc-
tion in the strength of the Ni(OH)₂ → NiOOH oxida-
tion peak when Ni:Fe co-deposited film with 25% Fe content. The
most intriguing result of this research was the reduc-
tion in the strength of the Ni(OH)₂ → NiOOH oxida-
tion peak when aged in Fe-free KOH and the devel-
opment of a n most intriguing result of this research was the reduction in the strength of the Ni(OH)₂ \rightarrow NiOOH oxidation peak when aged in Fe-free KOH and the development of a new peak at a high overpotential, which was ascribed t tion in the strength of the Ni(OH)₂ \rightarrow NiOOH oxida-
tion peak when aged in Fe-free KOH and the devel-
opment of a new peak at a high overpotential, which
was ascribed to the production of Ni⁴⁺ ions. They also
discov tion peak when aged in Fe-free KOH and the devel-
opment of a new peak at a high overpotential, which
was ascribed to the production of Ni⁺ ions. They also
discovered that OER activity was reduced with ag-
ing time and opment of a new peak at a high overpotential, which
was ascribed to the production of Ni⁺ ions. They also
discovered that OER activity was reduced with ag-
ing time and attributed it to the reduction in struc-
tural f is ascribed to the production of Ni⁺ ions. They also
covered that OER activity was reduced with ag-
g time and attributed it to the reduction in struc-
al flaws in Ni(OH)₂. However, Ni(OH)₂ films aged
TraceSelect KO discovered that OER activity was reduced with ag-
ing time and attributed it to the reduction in struc-
tural flaws in Ni(OH)₂. However, Ni(OH)₂ films aged
in TraceSelect KOH (~ 36 ppb Fe) and reagent grade
KOH (~ 1 p ing time and attributed it to the reduction in structural flaws in Ni(OH)₂. However, Ni(OH)₂ films aged
in TraceSelect KOH (\sim 36 ppb Fe) and reagent grade
KOH (\sim 1 ppm Fe) showed a substantial increase in
OER ac tural flaws in Ni(OH)₂. However, Ni(OH)₂ films aged
in TraceSelect KOH (\sim 36 ppb Fe) and reagent grade
KOH (\sim 1 ppm Fe) showed a substantial increase in
OER activity. This suggests that incorporation of Fe
boost in TraceSelect KOH (\sim 36 ppb Fe) and reagent grade

KOH (\sim 1 ppm Fe) showed a substantial increase in

OER activity. This suggests that incorporation of Fe

boosts activity, although the anodic shift of Ni(OH)₂
 KOH (\sim 1 ppm Fe) showed a substantial increase in
OER activity. This suggests that incorporation of Fe
boosts activity, although the anodic shift of Ni(OH)₂
→ NiOOH oxidation peak in these cases is opposite
to what 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (4 of 31)

ffective conductivity. idation^[35]. Boettcher and co-workers observed compa-

the observed increase rable anodic shifts of Ni(OH)₂ → NiOOH oxidation

the change

OER activity. This suggests that incorporation of Fe
boosts activity, although the anodic shift of Ni(OH)₂
→ NiOOH oxidation peak in these cases is opposite
to what was anticipated. Furthermore, aging had no
effect on boosts activity, although the anodic shift of Ni(OH)₂
 \rightarrow NiOOH oxidation peak in these cases is opposite

to what was anticipated. Furthermore, aging had no

effect on the co-deposited NiFe-(oxy)hydroxide films.

The \rightarrow NiOOH oxidation peak in these cases is opposite
to what was anticipated. Furthermore, aging had no
effect on the co-deposited NiFe-(oxy)hydroxide films.
They concluded that the OER activity is intrinsic to
NiFe-(oxy) to what was anticipated. Furthermore, aging had no
effect on the co-deposited NiFe-(oxy)hydroxide films.
They concluded that the OER activity is intrinsic to
NiFe-(oxy)hydroxide sheets and not linked to struc-
tural flaws effect on the co-deposited NiFe-(oxy)hydroxide films.
They concluded that the OER activity is intrinsic to
NiFe-(oxy)hydroxide sheets and not linked to struc-
tural flaws in Ni₀₇₅Fe₀₂₅OOH. However, the observed
anodic They concluded that the OER activity is intrinsic to NiFe-(oxy)hydroxide sheets and not linked to structural flaws in Ni₀₇₅Fe₀₂₅OOH. However, the observed anodic shift of Ni(OH)₂ → NiOOH oxidation peak in their rese NiFe-(oxy)hydroxide sheets and not linked to structural flaws in $Ni_{0.75}Fe_{0.25}OOH$. However, the observed anodic shift of Ni(OH)₂ → NiOOH oxidation peak in their research could not be fully explained.
Later on, Strasse Figure 2 Steady-state constant in the competent in the state of the conductivity of NiOH), and a

state of NiORHy or the state effect on the co-deposited NiFe-(oxylhydroxide films

tistics of NiORHy of the state effect on Since of NiO(UI₁). In the notic profession of the relation of the college incorporation of the NiO(UI1). In the DR activity is intrinsic to the observed from the Silfung electrochemical water ox-

They concluded that th go of the Nt(OH)₃ oxida-

lectrochemical water ox-

They concluded that the OER activity is intrinsic to

NiFe-(oxy)hydroxide films.

Wind the OER activity is intrinsic to

NiFe-(oxy)hydroxide films.

In this concluded (IOH), oxida-

effect on the co-deposited NiFe-(oxy)hydroxide films.

ical water ox-

They concluded that the OER activity is intrinsic to

NiFe-(oxy)hydroxide films.

Nicolarid at the OER activity is intrinsic to

tural tion peak to NiOOH during electrochemical water ox-

Weild (and the OER activity is intrinsic to structure of NiCOH) $\frac{1}{2}$. The control in the strength of NiCOH) $\frac{1}{2}$ and the strength condition peak in the streng NiFe-(oxy)hydroxide sheets and not linked to strain
 $\frac{1}{2}$
 \frac

Copyright©2014 American Chemical Society. Reproduced with permission. (color on line) **During O₂** evolution may be responsible for insignifi-

Numering Occurs and West the set of CV-R and the set of the set of the set of the content of the set of the Controlled the metal state of Circuit ($\Delta E_{\rm tot} = 2$ metal detected metal and the state of $\Delta E_{\rm tot} = 2$ metal and $\Delta E_{\rm tot} = 2$ metal detected in the state of $\Delta E_{\rm tot} = 2$ metal and $\Delta E_{\rm tot} = 2$ metal and $\Delta E_{\rm tot} = 2$ There was no Fe or very little Fe or very **Example 12**
 Example 12

Example the main of Continuous Co Example 18. The metal reduction phase during on the metal reduction phase during on the metal reduction phase during O2 evolution phase during O2 evolution phase during O2 evolution phase during O2 evolution phase durin From a computer metallic of the substantial of the substantial of the substantial of the substantial of δ for the substantial of δ for the substantial δ of δ for the substantial δ of δ or δ for the su **Example 19**

Note the **Concertification** $\frac{d^2}{dx^2} = 2m\sqrt{\frac{2m\pi}{\pi}} = 2m\sqrt{\frac{2m\pi}{$ **Example 1.** $\frac{1}{4}$ **Constrained Constrained C Eighree 3** Cyclic volumme pearals in (η) = **R**
 Eighree 3 Cyclic volumme grans were taken during the uging of films in various partices of KOII. A total of 13 CV seems are

shown for each sample: one for the initial **Figure 3** Cyclic voltanmograns were taken during the aging of films in various purities of KOH. A total of 13 CV scans are shown for each system from the case of the minia as-deposited flim (the dark purity)e), and one a shown for each sample: one for the initial as-deposited flim (the dark parple), and one additional sean after each 5 min aging period
up to a total of hour of aging (the dark roll). The changes in the amolie are lost step np to a total of 1 hour of sging (the dark red). The changes in the anodic and cathodic peak positions $(\Delta E_{\rm so}$ and $\Delta E_{\rm so}$) are labeled for custom for the Nix-Fax-no(10%, cold, $(\Delta E_{\rm so}$ vanish in the next in the N each set of CVs. (ΔE_n , value is abova for the Ni_i-Fe_{an}(OH), as the oxidation peak is partially obscured by the OER current.)³⁰¹
Copyright@2014 American Chemical Society. Reproduced with permission. (color on line) Copyright 20014 American Chemical Society. Reproduced with permission. (color on line)

during O₂ evolution may be responsible for insignifi-

portance of Fe concentration, electrolyte strength,

can detectable high val during O₂ cvolution may be responsible for insignifi-
portance of Fe concentration, clectrolyte strength,
cant detectable high valence metal deposition²⁸¹. When and support material during catalyst fabrication. Al-
th during O₂ evolution may be responsible for insignification of Fe concentration, electrolyte strength,
cant decreasted high valuence metal deposition⁵⁹. When and support material during etally
the evas no Fe or very lit cant detectable high valence metal deposition⁹³. When and support material during eatalyst fabrication. Althore was no Fe or very little Fe (less than 10%), the though there is an explanation for why andic shift knetice there was no Fe or very little Fe (less than 10%), the though there is an explanation for why anodic shift kin
competition competition preferred metal oxidation, but and intensity drop oecur in Ni-based OECs with im-
kwhe

etivity
 $\begin{pmatrix}\n\overline{e} & 0.3 & 0.4 & 0.5 & 0.6 \\
0.3 & 0.4 & 0.5 & 0.6\n\end{pmatrix}$

determined by \overline{e}

determined by \overline{e}
 \overline{e}
 E

and the subset of $\frac{5}{2}$
 $\frac{25}{2}$ terivity
 $\frac{2}{5}$
 $\frac{2}{5}$

Elms in various purities of KOH. A ctivity $\frac{2}{3}$
 $\frac{2}{3}$

Ellins in various purities of KOH. A total of 13 CV scans are

purified KOH

in t Example and Manuscript Manuscript Care is a component of Nie-

Fe contential, $\eta(\mathbf{V})$ and $\mathbf{R}_{\text{p},\epsilon} = -2 \text{ mV}$ Ni_{9,75}Fe $\mathbf{e}_{\alpha,3}(\mathbf{O}H)$, purified KOH

Durified KOH

Expressed on the contential, $\eta(\mathbf{V})$ do defined the subset of Niegral and September in a subject of Alberta Correlation in the subsetion of $\frac{1}{2}$ is still and cathodic peak positions (ΔE_{pa} and ΔE_{pa}) are labeled for original and cathodic peak posi $\sum_{k=1}^{n}$ $\Delta E_{p,q} = -2 \text{ mV} \frac{\mathbf{M}_{0,pq} \mathbf{F}_{0,2pq}(\text{OH})_2}{\text{partial KO}}$
 $\Delta \mathbf{F}_{0,1} = -2 \text{ mV} \frac{\mathbf{M}_{0,pq} \mathbf{F}_{0,2pq}(\text{OH})_2}{\text{partial KO}}$
 $\Delta \mathbf{F}_{0,2}$
 $\Delta \mathbf{F}_{0,3}$
 $\Delta \mathbf{F}_{0,4}$ and $\Delta \mathbf{F}_{0,5}$ and $\Delta \mathbf{F}_{0,6}$ ar ble findings in a study of NiFe-LDH (LDH: layered

do **Containery**
 Configured Consisting
 Consponential, $\eta(\mathbf{0} \cdot \mathbf{R}_{\theta})$
 Consponential, $\eta(\mathbf{0} \cdot \mathbf{R}_{\theta})$

diffus and cathodic peak positions ($\Delta E_{\theta\theta}$ and $\Delta E_{\theta\theta}$) are labeled for

e oxidation peak **Conditionally Conditionally Conditional**
 Compositerists, $\mathbf{\hat{r}}(\mathbf{M}) \cdot \mathbf{R}_{\alpha}$
 Conditional scan after each 5 min aging period

dic and cathodic peak positions ($\Delta E_{\gamma,\alpha}$ and $\Delta E_{\alpha,\beta}$) are labeled for films in various purities of KOH. A total of 13 CV scans are
purple), and one additional scan after each 5 min aging period
dic and cathodic peak positions $(\Delta E_{p,a} \text{ and } \Delta E_{p,b})$ are labeled for
e oxidation peak is partial purple), and one additional scan after each 5 min aging period
dic and cathodic peak positions $(\Delta E_{p,a} \text{ and } \Delta E_{p,b})$ are labeled for
e oxidation peak is partially obscured by the OER current.)^[36]
mission. (color on lin dic and cathodic peak positions ($\Delta E_{\rm ps}$ and $\Delta E_{\rm nb}$) are labeled for
e oxidation peak is partially obscured by the OER current.)^[36]
mission. (color on line)
portance of Fe concentration, electrolyte strength,
an is partially obscured by the OER current.)^[36]
ission. (color on line)
portance of Fe concentration, electrolyte strength,
and support material during catalyst fabrication. Al-
though there is an explanation for why ano insision. (color on line)
portance of Fe concentration, electrolyte strength,
and support material during catalyst fabrication. Al-
though there is an explanation for why anodic shift
and intensity drop occur in Ni-based portance of Fe concentration, electrolyte strength,
and support material during catalyst fabrication. Al-
though there is an explanation for why anodic shift
and intensity drop occur in Ni-based OECs with in-
creasing Fe portance of Fe concentration, electrolyte strength,
and support material during catalyst fabrication. Al-
though there is an explanation for why anodic shift
and intensity drop occur in Ni-based OECs with in-
creasing Fe and support material during catalyst fabrication. Al-
though there is an explanation for why anodic shift
and intensity drop occur in Ni-based OECs with in-
creasing Fe content, but enhancing mechanism by re-
dox inactive though there is an explanation for why anodic shift
and intensity drop occur in Ni-based OECs with in-
creasing Fe content, but enhancing mechanism by re-
dox inactive Fe³⁺ ions is still a subject of ambiguity.
Gray and

 K -edges^[37], Copyright[©]2016 American Chemical Society, Reproduced with permission, (color on line)

For OCE 1998
 Example 3.5
 Example 3.5
 Example 3.6
 Example 3 EVALUATION CONTROV
 EVALUATION CONTROV
 EVALUATION CONTROV
 EVALUATION CONTROV
 EXECUTED CON EVALUATION THE CONTROVERT CONTROVER CONTROVER CONTROVERTIES WELL AS THE CONTROVERT CONTROVERT CONTROVERT (SOPTIBOT THE CONTROVERT CONTROVERT CONTROVERT CONTROVERT CONTROVERT CONTROVERT CONTROVERT CONTROVERT CONTROVERT CO EVALUAT: This $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ **EVALUATE 1999** Energy /eV

E lution.

OFR intermediates have a weaker adsorption contact (b) Fe³ ions have a 6-percent shorter Fe-O bond length
which welve they ceal to be collent M-O bonds, in NiOOH matrices, suggesting that Fe¹⁴ ions may
which weld a la with Ni where they create more covalent M-O bonds,

which need a larger potential to break in order-

order aleady brighter orderivations states, and erives the proferable reduced as

welop O₂. This is why, in the absen which need a larger potential to break in order to de-
nearby higher oxidation states, and active sites in
velop O_2 . This is why, in the absence of Fe, Ni(OH)₂ both Nife systems are anticipated to be Fe³. The
needs velop O₂. This is why, in the absence of Fe, Ni(OH)₂ both NiFe systems are anticipated to be Fe³². The meets a greater overpotential to start the oxygen evo-

and cotive medium needed for Fe³³ to analyze OER

Inti

Energy / EV Energy / EV And the state upon Fe incorporation. It was also discovered cause the only f Figure 4 *In-singipermedo* XAS of the NiFe OER eatalysts with varying eatalyst composition Ni_{ne}, Fe, (A) Fe *K*-edges and (B) Ni
 K-edges¹⁹. Copyright⁶²2016 American Chemical Society. Reproduced with permission. **ngure** 4 *m*-anoperamic AAS or the sure curst causuas win vaping campast como relugies. (A) re A-eages and (B) start ϵ -deges³⁰. Copyright@2016 American Chemical Society. Reproduced with permission. (color on line)
 te upon Fe incorporation. It was also discovered cause the only first monolayer of FeOOH is OFR ac-
t the highly active Ni,Fe₂,OOH catalyst has two tive and electrolyte-permeable at lower overpoten-
ive sites with remar state upon Fe incorporation. It was also discovered cause the only first monolayer of FeOOH is OER ac-
that the highly acity Ni_JFe₁,OOH cealsly has two tive and electrolyt-permeable at lower overpoten-
eactive sites w that the highly active Ni_Fe₁,OOH catalyst has two tive and electrolyte-permeable at lower overpoten-
active sites with remarkable difference in OFR rate tails;⁴²¹, 3) The active sites are Fe'¹ ions that replaced
c active sites with remarkable difference in OER rate inls^{te(1}, 4) The active sites are Fe³ ions that replaced
constants, and the precentage of fast sites matched Ni⁷ ions in NiOOH matrices at the edges, comers,
well constants, and the percentage of fast sites matched Ni²⁺ ions in NiOOH matrices at the edges, corners, well with the fraction of Fe in the catalyst¹⁹. These and defects itss. Those who are deeply embedded in findings well with the fraction of Fe in the catalyst³⁰. These and defect sites. Those who are deeply embedded in finding schrifted that Fe and Ni, bot har a active sites. The majority of NiOOH do not take part in OFRPs²⁶. 5) findings clarified that Fe and Ni, both are active sites the majority of NiOOH do not take part in OER⁽¹⁶, 5)

for OER, with Fe sites being aginificantly faster. This The active Ni² ions are simply stabilized by Fe³ for OER, with Fe sites being significantly faster. This The active Ni* ions are simply stabilized by Fe³, as in-
may be due to the optimal bond carrgics of interme-dicated by the anoids shift of the Ni(Oft)₂ -> NiOOH
 may be due to the optimal bond energies of interme-
dicated by the anodic shift of the Ni(OH)₂ → NiOOH
OER intermediates when corollande with Pc. On the other hand, coxidation peak with the decreased integrated change®, diates when coordinated with Fe. On the other hand,

oxidation peak with the decreased integrated charge^[26]

OER intermediates lawe a weaker adsoption conduct (b) Fe⁺ into layer a 6-percent shorter Fe-O bond length
 Ni⁺²

XANES

Ning catalyst composition Ni_{LG+}Fe_x: (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first mon N¹⁺²

XANES

2330 8350 8370 8390

Energy /eV

ving catalyst composition Ni_{va-Fe}: (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyt XANES

8330 8350 8370 8390

Energy /eV

ving catalyst composition Ni_{100} , Fe,: (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-pe XANES

S330 8350 8370 8390

Energy /eV

ving catalyst composition Ni_{10x} , Fe_{x} : (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte **EXAMES**
 EXAIDE SEALT AND SEALT CALCT CONTINUM CONTABOT CONTINUM CONTABOT CONTINUM (SAMPLATE) CONTINUM (SAMPLATE) (Color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-permeable at lower overp XANES

8330 6350 6370 6390

Energy /eV

ving catalyst composition Ni_{tm-Fe}: (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-permea 8330 8350 8370 8390

Energy/eV

img catalyst composition Ni_{10a} , Fe ,: (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-permeable **Energy /eV**

Energy /eV

img catalyst composition Ni_{100} , Fe,: (A) Fe *K*-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-permeable at lowe ing catalyst composition Ni_{100} -Fe₃: (A) Fe K-edges and (B) Ni

d with permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-permeable at lower overpoten-

tials^[43]. ring catalyst composition Ni_{100} , Fe_{21} ; (A) Fe A-eages and (B) N1
d with permission. (color on line)
cause the only first monolayer of FeOOH is OER ac-
tive and electrolyte-permeable at lower overpoten-
tials[[] is wall permission. (color on line)

cause the only first monolayer of FeOOH is OER ac-

tive and electrolyte-permeable at lower overpoten-

tials^[43]. 4) The active sites are Fe³⁺ ions that replaced

Ni³⁺ ions in N cause the only first monolayer of FeOOH is OER ac-
tive and electrolyte-permeable at lower overpoten-
tials^[42]. 4) The active sites are Fe³⁺ ions that replaced
Ni³⁺ ions in NiOOH matrices at the edges, corners,
and cause the only first monolayer of FeOOH is OER ac-
tive and electrolyte-permeable at lower overpoten-
tials^[42]. 4) The active sites are Fe³⁺ ions that replaced
Ni³⁺ ions in NiOOH matrices at the edges, corners,
and tive and electrolyte-permeable at lower overpoten-
tials^(a3). 4) The active sites are Fe³⁺ ions that replaced
Ni³⁺ ions in NiOOH matrices at the edges, corners,
and defect sites. Those who are deeply embedded in
the tials^(a3). 4) The active sites are Fe³⁺ ions that replaced
Ni³⁺ ions in NiOOH matrices at the edges, corners,
and defect sites. Those who are deeply embedded in
the majority of NiOOH do not take part in OER^[34]. 5 Ni³⁺ ions in NiOOH matrices at the edges, corners,
and defect sites. Those who are deeply embedded in
the majority of NiOOH do not take part in OER^[34]. 5)
The active Ni²⁺ ions are simply stabilized by Fe³⁺, as in and defect sites. Those who are deeply embedded in
the majority of NiOOH do not take part in OER^[34]. 5)
The active Ni²⁺ ions are simply stabilized by Fe³⁺, as in-
dicated by the anodic shift of the Ni(OH)₂ → NiOO the majority of NiOOH do not take part in OER^[34]. 5)
The active Ni²⁺ ions are simply stabilized by Fe³⁺, as in-
dicated by the anodic shift of the Ni(OH)₂ → NiOOH
oxidation peak with the decreased integrated char is eactive Ni²⁺ ions are simply stabilized by Fe³⁺, as in-
ated by the anodic shift of the Ni(OH)₂ → NiOOH
idation peak with the decreased integrated charge^[38].
Fe³⁺ ions have a 6-percent shorter Fe-O bond leng dicated by the anodic shift of the Ni(OH)₂ \rightarrow NiOOH
oxidation peak with the decreased integrated charge¹⁸⁸.
6) Fe³⁺ ions have a 6-percent shorter Fe-O bond length
in NiOOH matrices, suggesting that Fe³⁺ ions may oxidation peak with the decreased integrated charge¹⁸⁸.

6) Fe^{3*} ions have a 6-percent shorter Fe-O bond length

in NiOOH matrices, suggesting that Fe^{3*} ions may

have partly higher oxidation states, and active site 6) Fe³⁺ ions have a 6-percent shorter Fe-O bond length
in NiOOH matrices, suggesting that Fe³⁺ ions may
have partly higher oxidation states, and active sites in
both NiFe systems are anticipated to be Fe³⁺. The
cond in NiOOH matrices, suggesting that Fe³⁺ ions may
have partly higher oxidation states, and active sites in
both NiFe systems are anticipated to be Fe³⁺. The
conductive medium needed for Fe³⁺ to catalyze OER
is provid have partly higher oxidation states, and active sites in
both NiFe systems are anticipated to be Fe³⁺. The
conductive medium needed for Fe³⁺ to catalyze OER
is provided by NiOOH matrices^[43]. 7) Fe³⁺ in the con-
d both NiFe systems are anticipated to be Fe³⁺. The
conductive medium needed for Fe³⁺ to catalyze OER
is provided by NiOOH matrices^[48]. 7) Fe³⁺ in the con-
ductive Fe₂S_s phase is OER active in the same way as
F

 $\frac{\text{#L}\#(J. \text{Electrochem.}) 2022, 28(3), 2108541 (7 of 31)}{\text{during a redox reaction, Corrigan et al. conducted an}}$ The presence of Fe⁴⁺ in the OER was first clearly
 *in-situ*⁵Fe Mössbauer spectroscopic study⁴⁶⁹. They said (b) observed in 2015 when Stahl et al. then the tectrochem.) 2022, 28(3), 2108541 (7 of 31)

during a redox reaction, Corrigan et al. conducted an

in-situ ³⁷Fe Mössbauer spectroscopic study¹⁴⁸. They said

the electronic changes at Fe site are not due to
 $\frac{\text{d} \xi(\frac{1}{2} \xi(L \text{ *Electrochem.}) 2022, 28(3), 2108541 (7 of 31)}{\text{during a redox reaction, Corrigan et al. conducted an}}*$
The presence of Fe⁺ in the OER was first clearly
*in-situ*⁵⁷Fe Mössbauer spectroscopic study³⁶¹. They said observed in 2015 when Stahl e **the redox process in Fe**, but attributed to the host lat-
 $\mathbb{R}E^{\text{int}}(J. Electrochem.)$ 2022, 28(3), 2108541 (7 of 31)
 $\mathbb{R}E^{\text{int}}$ are redox reaction, Corrigan et al. conducted an The presence of Fe⁴⁺ in the OER was fi $\pm \frac{1}{2}$ (*J. Electrochem.*) 2022, 28(3), 2108541 (7 of 31)

during a redox reaction, Corrigan et al. conducted an The presence of Fe⁴⁺ in the OER was first clearly
 *in-situ*⁵⁷Fe Mössbauer spectroscopic study¹⁸⁶ $\frac{d_1R}{dt} (L \tRectrochem.) 2022, 28(3), 2108541 (7 of 31)$

during a redox reaction, Corrigin et al. conducted an The presence of Fe^t in the OER was first clearly

in-situ⁵Fe Mössbauer spectroscopic study¹⁶⁴. They usad in 20 $\mathbb{R}E\#(J. Electron, Corrigan et al. conducted an
\n $\mathbb{R}E\#(J. Electron, Corrigan et al. conducted an
\n $\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{R}E\#(\mathbb{$$$ **EXAMPLE 12**
 EXAMPLE 12 either of the single component hydroxides. It was **EXALLATE 1999**
 EXALLATE 1999 EXALLATE 19 *in-situ*³¹Fe Mössbauer spectroscopic study¹⁶. They said observed in 2015 when Stahl et al. investigated NiFe-
that the electronic changes at Fe site are not due to LDM electrocatalyst during OER^(p). They used *an-i* that the electronic changes at Fe site are not due to LDH electrocatalyst during OER^[46]. They used *in-situl*
the redox process in Fe, but attributed to the host dat-
oriential. Moreover, an intimate orientation state the redox process in Fe, but attributed to the host lat-

operando ⁵Te Mössbauer technique to track the F

tice in a composite material. Moreover, an intimate

condinions tate in 3:1 NiFe-LDH and Fe oxide cat

than the tice in a composite material. Moreover, an intimate oxidation state in 3:1 NiFe-LDH and Fe oxide eata-
combination of Fe and Ni on an atomic scale rather $\frac{1}{2}$ sts, while polarizing them in the OER zone. hurt-
than th combination of Fe and Ni on an atomic scale rather

than the mixture of Ni(OH)₂ and FeOOH particles

estingly, as shown in Figure 5, the existence with the mixture of Ni(OH)₂ and FeOOH particles

exhibited better perf

Example 19
 Example 19 $\frac{\ln\{k\mathcal{P}(f, klecmcben, 2022, 28(3), 2108541 (7 \text{ or } 31)}{\ln\{k\}}$

during a redox reaction, Corrigan et al. conducted an The presence of Fe^{t+} in the OER was first clearly

tin-siza²Fe Müssbauer spectroscopic study⁶⁸. Th **in the set of the SER was first clearly
in-sine in redox reaction, Corrigen et al. conducted an
in-sine in the OER was first clearly
that the electronic changes at F** $4E^2(L)E(extrocheen.) 2022, 28(3), 2108541 (7 of 31)$
during a redox reaction, Corrigan et al. conducted an The presence of Fe^{ti} in the OER was first clearly
that the electronic changes at fe site are not due to LDI letcherocally th(*E*F*(*L Electrochom.*) 2022, 28(3), 2108541 (7 of 31)

tharing a redox reaction, Corrigan et al. conducted an The presence of Fe^{*} in the OFR was first clearly

in-sini⁷Fe Mössbauer spectroscopic study⁶⁴. They during a redox reaction, Corrige and at conducted and more resumed to the interaction of μ and μ and μ as the sites for μ and $\$ during a redox reaction, Corrigan et al. conducted an

The presence of Fe^{t+} in the OER was first electry

in-site ^{2Fe} Mossbauer spectroscopie study⁵⁶. They staid observed in 2015 when Stahl et al. twentigated NiFe-
 to the host lat-

operando ⁵⁷Fe Mössbauer technique to track the Fe

r., an intimate coidation state in 3:1 NiFe-LDH and Fe oxide cata-

ic scale rather lysts, while polarizing them in the OER zone. Inter-

OOH particle (3), 2108541 (7 of 31)
The presence of Fe⁴⁺ in the OER was first clearly
served in 2015 when Stahl et al. investigated NiFe-
DH electrocatalyst during OER^[47]. They used *in-situl*
erando ⁵⁷Fe Mössbauer technique (28(3), 2108541 (7 of 31)
The presence of Fe⁴⁺ in the OER was first clearly
observed in 2015 when Stahl et al. investigated NiFe-
LDH electrocatalyst during OER^[47]. They used *in-situl*
operando ⁵⁷Fe Mössbauer tech $(28(3), 2108541 (7 of 31))$

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^[47]. They used *in-situ/*
 operando ⁵⁷Fe Mössbauer $(28(3), 2108541 (7 \text{ of } 31))$
The presence of Fe⁴⁺ in the OER was first clearly
observed in 2015 when Stahl et al. investigated NiFe-
LDH electrocatalyst during OER^[47]. They used *in-situl*
operando ⁵⁷Fe Mössbauer te 28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^[47]. They used *in-situl*

operando ⁵⁷Fe Mössbauer t 28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^{[47}. They used *in-situl*
 operando ⁵⁷Fe Mössbauer (28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER⁽⁴⁷⁾. They used *in-situl*
 operando ⁵⁷Fe Mössbaue $(28(3), 2108541 (7 \text{ of } 31))$
The presence of Fe⁴⁺ in the OER was first clearly
observed in 2015 when Stahl et al. investigated NiFe-
LDH electrocatalyst during OER⁽⁴⁷⁾. They used *in-situl*
operando ⁵⁷Fe Mössbauer te . 28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^[47]. They used in-situl

operando ⁵⁷Fe Mössbauer t . 28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^{[47}]. They used *in-situl*
 operando ⁵⁷Fe Mössbau 28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^[47]. They used *in-situl*
 operando ⁵⁷Fe Mössbauer $(28(3), 2108541 (7 \text{ of } 31))$

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^[47]. They used *in-situl*
 operando ⁵⁷Fe Mössba 28(3), 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-

LDH electrocatalyst during OER^[47]. They used *in-situl*
 operando ⁵⁷Fe Mössbauer . 28(3). 2108541 (7 of 31)

The presence of Fe⁴⁺ in the OER was first clearly

observed in 2015 when Stahl et al. investigated NiFe-LDH electrocatalyst during OER^[47]. They used *in-situl*
 operando ⁵⁷Fe Mössbauer The presence of Fe⁴⁺ in the OER was first clearly
observed in 2015 when Stahl et al. investigated NiFe-
LDH electrocatalyst during OER^[47]. They used *in-situl*
operando ⁵⁷Fe Mössbauer technique to track the Fe
oxid The presence of Fe⁴⁺ in the OER was first clearly
observed in 2015 when Stahl et al. investigated NiFe-
LDH electrocatalyst during OER^[47]. They used *in-situl*
operando ⁵⁷Fe Mössbauer technique to track the Fe
oxid observed in 2015 when Stahl et al. investigated NiFe-
LDH electrocatalyst during OER^[47]. They used *in-situl*
operando ⁵⁷Fe Mössbauer technique to track the Fe
oxidation state in 3:1 NiFe-LDH and Fe oxide cata-
lysts and the divergence of the signify-

and Fe intervals and the signify-

dechnique to track the Fe

-LDH and Fe oxide cata-

in the OER zone. Inter-

e 5, the existence of Fe⁴⁺

rization and under OER

with increasing pot LDH electrocatalyst during OER^[67]. They used *in-situl*
operando ⁵⁷Fe Mössbauer technique to track the Fe
oxidation state in 3:1 NiFe-LDH and Fe oxide cata-
lysts, while polarizing them in the OER zone. Inter-
esting g OER^[47]. They used *in-situl*
technique to track the Fe
e-LDH and Fe oxide cata-
m in the OER zone. Inter-
arization and under OER
d with increasing potential.
Fe oxide did not show any
demonstrating that Fe⁴⁺ can
D *operando* ⁵⁷Fe Mössbauer technique to track the Fe oxidation state in 3:1 NiFe-LDH and Fe oxide cata-
lysts, while polarizing them in the OER zone. Inter-
estingly, as shown in Figure 5, the existence of Fe⁴⁺
was con oxidation state in 3:1 NiFe-LDH and Fe oxide cata-
lysts, while polarizing them in the OER zone. Inter-
estingly, as shown in Figure 5, the existence of Fe⁴⁺
was confirmed upon polarization and under OER
conditions, whi lysts, while polarizing them in the OER zone. Inter-
estingly, as shown in Figure 5, the existence of Fe⁴⁺
was confirmed upon polarization and under OER
conditions, which increased with increasing potential.
They found 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (7 of 31)

un et al. conducted an The presence of Fe⁴⁺ in the OER was first clearly

ppic study^[46]. They said observed in 2015 when Stahl et al. investigated NiFe-

ie sit

Copyright@2015. American Chemical Society. Reproduced with permission. (color on line)

 $\# \&\#(J. \text{Electrochem.}) 2022, 28(3), 2108541 (8 of 31)$

-0.27 mm ·s⁻¹ appeared, which indicates 12% of the potential active locations

Fe sites shown in Figure 5(D). Further increasing the give any clear understand

potential $\text{H}(k\#(J. \text{Electrochem.}) 2022, 28(3), 2108541 (8 of 31)$
-0.27 mm ·s⁻¹ appeared, which indicates 12% of the potential active locations if they exist, but could not
Fe sites shown in Figure 5(D). Further increasing the give any **ELET ELET THE EXECUTE CONDUCE 1.5 V (ELET THE EXECUTE THE SET ON A SSET ON A STRONGET PEAK AS THE SOLUTION OF** (*Electrochem.*) 2022, 28(3), 2108541 (8 of 31)
 $-0.27 \text{ mm} \cdot \text{s}^{-1}$ appeared, which indicates 12% of the

potential active locations if they exist, but could not

Fe sites shown in Figure 5(D). Further increasing the
 Fe (Figure 5(E). After 48 hours winducture applied potential active locations if they exist, but could not
Fe sites shown in Figure 5(D). Further increasing the give any clear understanding about the role of Fe dur-
poten **EVALUATE 1.19 V** Electrochem.) 2022, 28(3), 2108541 (8 of 31)
 1.927 mm ·s¹ appeared, which indicates 12% of the potential active locations if they exist, but could not

Fe sites shown in Figure 5(D). Further increa

a doublet $(\delta = 0.36 \sim 0.37$ mm·s⁻¹, $\Delta = 0.64 \sim 0.67$ whether Ni is active sites or Fe is active sites. $mm \cdot s^{-1}$). The significant feature of NiFe catalyst was potential to 1.76 V generates a stronger peak for Fe ing OER. XAS results showed that the loxidation corresponding to almost 21% of the total Fe-O in NiFe-based catalysts was signife (Figure 5(E). After bringing back the oxidation corresponding to almost 21% of the total

Fe (Figure 5(E)). After bringing back the potential to

Fe (Figure 5(E)). After bringing back the potential to

the than that of Fe³⁻O, which indi

1.49 V, the curre Fe (Figure 5(Fi)). After hringing hack the potential to

are than that of Fe³-O, which indicated that Fe should

1.49 V, the current density dropped to bassline, but the in higher value

Fe oxidation peak appeared in Mi 1.49 V, the current density dropped to bascline, but

be in higher valence states during the OER process,

Fe coxidation peak appeared in Mossbaucr spectrum and supported the result of *tin-situalogramada* Moss-

accounti Fe oxidation peak appeared in Mossbauer spectrum and supported the results of *in-situ/operando* Miss-
encounting for almost - 20% of total Fe as shown in bauer suddes⁵⁹. This work gave a strong and clear in-
Figure 5(F accounting for almost ~ 20% of total Fe as shown in

Figure 5(⁵⁰). This work gave a strong and clear in-

Figure 5(F). After 48 houst without any applied potential correle existence of high values ein to which

Figure 5 Figure 5(F). After 48 hours without any applied poten-

tigation for the existence of high valance iron which

tial the Fe oxidation peak disappeared (Figure 5(C)). survely presents in the system and may have a enciral

c tial, the Fe oxidation peak disappeared (Figure 5(G)). surely presents in the system and may have a crucial

On the other hand, in the case of ^PFe-carinched hy-

role in OER, but not much clear. The results of xy-

drou On the other hand, in the case of "Fe-enriched hy-
role in OER, but not much clear. The results of oxy-
throw is equided to to show to the sheavier such a behavior gen intermediates such a loss ousported the presence
in M drous Fe oxide, they did not observe such a behavior

in intermediates study also supported the presence

in Missbauer spectra under all the conditions as orbigh-valent iron⁶⁹¹. However, there is still debate on

in Sim in Mössbauer spectra under all the conditions as
so frigh-valent iron^{tio}! However, there is still debate on
shown in Figure 5(11-1). And the spectra showed only the mechanism of Nie'e catalyst during OER reaction,
a dou shown in Figure 5(H-J). And the spectra showed only

the mechanism of NiFe catalyst during OER reaction,

a double ($\delta = 0.36 - 0.37$ mm · s⁻¹, $\Delta = 0.64 - 0.67$ whether Ni is active sites. The is active sites.

mm · s⁻¹ a doublet ($\delta = 0.36 - 0.37$ mm ·s', $\Delta = 0.64 - 0.67$ whether Ni is active sites or Fe is active sites.

mm ·s'). The significant fracture of NiFe catalyst was

the appearance of Fe oxidation peak under an applied (NiFe-PB mm •s⁺). The significant feature of NiFe catalyst was

that papearance of Fe oxidation peak was fitted cithe²PBAs) were suited for OER through $\hat{m} \cdot \sin \hat{m}$

peatences of Fe oxidation peak was fitted cither as $\omega_{$ the appearance of Fe oxidation peak under an applied (NiFe-PBAs) were studied for OER through *in-situ/*
potential ($\simeq 1.5$ V). This rew peak was fitted citier as *operarado* XAS technique⁴⁸. It was observed that NiFe potential (≥ 1.5 V). This new peak was fitted either as *operando* XAS technique^{ns}. It was observed that NiFe-
a singlet ($\beta = 0.27$ rm \cdot s; γ) or as a double ($\beta = 0.0$) PBA was first transformed into Ni(OfF), a singlet ($\delta = -0.27$ mm ·s") or as a doublet ($\delta = 0.0$ PBA was first transformed into Ni(OH)₂ and then into
and $\Delta = 0.58$ mm ·s"), and is consistent with the exi-
bifolofl₅, under the applied potential due to depro and $\Delta = 0.58$ mm -s"), and is consistent with the exi-

dizzed Fe species as Fe¹. This was the first direct evi-

direct div-

dizzed Fe species as Fe¹. This was the first direct evi-

denote of the Fe⁴⁺ formation dized Fe species as Fe*. This was the first direct evi-
nation, which showed an excellent activity at very
denote of the Fe⁺ formation under reaction conditions. I low overpotential. They called the deprotonation pro-
F dence of the Fe⁶ formation under reaction conditions. low overpotential. They called the deprotonation pro-
Furthermore, the presence of these fe⁴ species seen as a reversible process which partially generated
differ Furthermore, the presence of these Fe⁴⁺ species even cess a reversible process which partially generated
after lowering the potential where the activity Wi⁷ as a result of charge compensation due to depro-
dropped to after lowering the potential where the activity N_i^{th} as a result of charge compensation due to deproduct
dropped to baseline indicated that these species were contaion. In other words, \hat{m}_{eff} are
not directly res dropped to haseline indicated that these species were

tonation. In other words, *in-sinu* generated catalyst

polaring a key role in enhancing the OER activity with NOOH₂, during OER was considered as responsible

play not directly responsible for the observed activity but

DiOOH_{2*a*} during OFR was considered as responsible

playing a key role in rehancing the OBR activity. For higher activity which can be transformed reverse-

This d playing a key role in enhancing the OFR activity. for higher activity which can be transformed reverse-
This discovery showed that Fe⁺ in Nife-LDH lattice $|V|$ D Ni(OH), This indicated that the structure of the
is redo

⁻¹ appeared, which indicates 12% of the potential active locations if they exist, but could not when in Figure 5(D). Further increasing the give any clear understanding about the role of Fe dur-
1.76 V generates a stron H($E\mathcal{L}(L\left|Electrochem. \right)$ 2022, 28(3), 2108541 (8 of 31)

-0.27 mm ·s⁻¹ appeared, which indicates 12% of the potential active locations if they exist, but could not

Fe sites shown in Figure 5(D). Further increasing the g **EVALUATION 1989**
 EVALUAT THE SECT ASSAME AND SET ASSAME AND SET ASSAMED THE SET ASSAMED THE SET ASSAMEL AND AND SET ASSAMEL AND THE SET ASSAMEL AND SET ASSAMEL AND SET AS SET AND SET AND SET AND SET AND SET AND SET AND the $\mathcal{H}_2^{\text{eff}}(L)$ *Electrochem.*) 2022, 28(3), 2108541 (8 of 31)

-0.27 mm ·s¹ appeared, which indicates 12% of the potential active locations if they exist, but could not

Fc sites shown in Figure 5(D). Further in **HE OF (***L* Electrochem.) 2022, 28(3), 2108541 (8 of 31)
 The Fe sites shown in Figure 5(D). Further increasing the give any clear trace for they exist, but could not

Fe sites shown in Figure 5(D). Further increasing $\frac{1}{2}$ We $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2$ the $\mathcal{Z}(L$ Electronobem.) 2022, 28(3), 2108541 (8 of 31)
 $\Phi(E\mathcal{Z}(L)E(1),E(2))$ and $\Phi(E)$ are points of the points of the points of the such **in the spectra unit of the spectra unit of the condition of the spectra unit of the spectra unit and the spectra unit of the spectra unit of** $4E \approx (LE \times (E \times (E \times (E \times E)))$

4.0.27 mm ·s⁻¹ appeared, which indicates 12% of the potential active locations if they exist, but could not

Fe sites shown in Figure 5(D). Further increasing the give any clear understanding a **EVALUATION THE (** E/T , *D. Electrochem*, 2022, 28(3), 2108541 (8 of 31)

4.0.27 mm ·s¹ appeared, which indicates 12% of the potential active locations if they exist, but cours Fe sites shown in Figure 5(D). Further inc $\frac{126}{12}$ *Chechelem*.) 2022, 28(3), 2108541 (8 of 31)

icates 12% of the potential active locations if they exist, but could not

ther increasing the give any clear understanding about the role of Fe dur-

onger peak mm •s' appeared, which indicates 12% of the potential acity correspondent in they exist, but could not as shown in Figure 5(D). Further increasing the pive any clear values in the pive any clear of NiFe catalyst was signi -0.27 mm •s¹ appeared, which indicates 12% of the potential active locations if they exist, but could not existles shown in Figure 3(D). Further increasing the give any clear anderstanding about the role of Fe durescent Fe sites shown in Figure 5(D). Further increasing the give any clear understanding about the role of Fe dur-
potential to 1.76 V generates a stronger peak for Fe ing OER. XAS results showed that the botal consideration or ates a stronger peak for Fe ing OER. XAS results showed that the bond length of

almost 21% of the total Fe-O in NiFe-based catalysts was significantly short-

arging back the potential to erthan that of Fe³-O, which in ding to almost 21% of the total

Fe-O in NiFe-based catalysts was significantly short-

ther bringing back the potential to er than that of Fe³-O, which indicated that Fe should

density droped to baseline, but be in hi 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was 28(3), 2108541 (8 of 31)
potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was Let the strainer of DER. XAS results showed that the bond length of -O in NiFe-based catalysts was significantly short-
than potential active locations if they exist, but could not
give any clear understanding about the role of Fe dur-
ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was significantly short-
er t give any clear understanding about the role of Fe during OER. XAS results showed that the bond length of Fe-O in NiFe-based catalysts was significantly shorter than that of Fe³⁺-O, which indicated that Fe should be in h ing OER. XAS results showed that the bond length of
Fe-O in NiFe-based catalysts was significantly short-
er than that of Fe³⁺-O, which indicated that Fe should
be in higher valence states during the OER process,
and su Fe-O in NiFe-based catalysts was significantly shorter than that of Fe³⁺-O, which indicated that Fe should be in higher valence states during the OER process, and supported the results of *in-situloperando* Möss-bauer s er than that of Fe³⁺-O, which indicated that Fe should
be in higher valence states during the OER process,
and supported the results of *in-situloperando* Möss-
bauer studies^[43]. This work gave a strong and clear in-电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (8 of 31)
indicates 12% of the potential active locations if they exist, but could not
Further increasing the give any clear understanding about the role of Fe dur-
stronger pe

be in higher valence states during the OER process,
and supported the results of *in-situloperando* Möss-
bauer studies^[43]. This work gave a strong and clear in-
dication for the existence of high valance iron which
su and supported the results of *in-situ/operando* Möss-
bauer studies^[48]. This work gave a strong and clear in-
dication for the existence of high valance iron which
surely presents in the system and may have a crucial
r bauer studies⁽⁴⁵). This work gave a strong and clear in-
dication for the existence of high valance iron which
surely presents in the system and may have a crucial
role in OER, but not much clear. The results of oxy-
ge dication for the existence of high valance iron which
surely presents in the system and may have a crucial
role in OER, but not much clear. The results of oxy-
gen intermediates study also supported the presence
of high-v surely presents in the system and may have a crucial
role in OER, but not much clear. The results of oxy-
gen intermediates study also supported the presence
of high-valent iron^[48]. However, there is still debate on
th role in OER, but not much clear. The results of oxy-
gen intermediates study also supported the presence
of high-valent iron^[48]. However, there is still debate on
the mechanism of NiFe catalyst during OER reaction,
whe gen intermediates study also supported the presence
of high-valent iron¹⁴⁸¹. However, there is still debate on
the mechanism of NiFe catalyst during OER reaction,
whether Ni is active sites or Fe is active sites.
Later of high-valent iron^{tag}. However, there is still debate on
the mechanism of NiFe catalyst during OER reaction,
whether Ni is active sites or Fe is active sites.
Later on in 2018, NiFe Prussian blue analogues
(NiFe-PBAs) the mechanism of NiFe catalyst during OER reaction,
whether Ni is active sites or Fe is active sites.
Later on in 2018, NiFe Prussian blue analogues
(NiFe-PBAs) were studied for OER through *in-situl*
operando XAS techniq whether Ni is active sites or Fe is active sites.

Later on in 2018, NiFe Prussian blue analogues

(NiFe-PBAs) were studied for OER through *in-situl*

operando XAS technique^[49]. It was observed that NiFe-

PBA was fir Later on in 2018, NiFe Prussian blue analogues
(NiFe-PBAs) were studied for OER through *in-situl*
operando XAS technique^[69]. It was observed that NiFe-
PBA was first transformed into Ni(OH)₂ and then into
NiOOH₂_a (NiFe-PBAs) were studied for OER through *in-situl*
operando XAS technique¹⁶⁹⁵. It was observed that NiFe-
PBA was first transformed into Ni(OH)₂ and then into
NiOOH_{2^x} under the applied potential due to deproto-
n *operando* XAS technique⁴⁶⁹. It was observed that NiFe-
PBA was first transformed into Ni(OH)₂ and then into
NiOOH_{2^{*m*} under the applied potential due to deproto-
nation, which showed an excellent activity at very
</sub>} A was first transformed into Ni(OH)₂ and then into OOH_{2₂ under the applied potential due to deproto-
ion, which showed an excellent activity at very
v overpotential. They called the deprotonation pro-
ss a reversible} NiOOH_{2x} under the applied potential due to deproto-
nation, which showed an excellent activity at very
low overpotential. They called the deprotonation pro-
cess a reversible process which partially generated
Ni⁴⁺ as nation, which showed an excellent activity at very
low overpotential. They called the deprotonation pro-
cess a reversible process which partially generated
Ni⁴⁺ as a result of charge compensation due to depro-
tonation low overpotential. They called the deprotonation process a reversible process which partially generated Ni⁺⁺ as a result of charge compensation due to deprotonation. In other words, *in-situ* generated catalyst NiOOH_{2*}* cess a reversible process which partially generated Ni⁴⁺ as a result of charge compensation due to deprotonation. In other words, *in-situ* generated catalyst NiOOH₂⁻ aduring OER was considered as responsible for hi Ni⁺⁺ as a result of charge compensation due to deprotonation. In other words, *in-situ* generated catalyst NiOOH_{2*x*} during OER was considered as responsible for higher activity which can be transformed reversely to N tonation. In other words, *in-situ* generated catalyst NiOOH_{2x} during OER was considered as responsible for higher activity which can be transformed reverse-ly to Ni(OH)₂. This indicated that the structure of the cata NiOOH_{2*x*} during OER was considered as responsible
for higher activity which can be transformed reverse-
ly to Ni(OH)₂. This indicated that the structure of the
catalyst cannot be stabilized under reaction condition
a

for higher activity which can be transformed reverse-
ly to Ni(OH)₂. This indicated that the structure of the
catalyst cannot be stabilized under reaction condition
and could be changed by applying potential. In fact,
t

Electrocatalysts

OER catalyst. The stability of the structure under OER *erando* techniques can provide infor
conditions is also very important because the stability
structural and electronic states of \uparrow
of the catalyst structure unde

 $\frac{\text{#L}\#(J. \text{Electrochem.}) 2022, 28(3), 2108541 (9 of 31)}{\text{failed to fully explain the underlying mechanism for}}$ failed to fully explain the underlying mechanism for monitor the OER process in order to identify reaction

OER. Moreover, we believe that the higher activity $\frac{\text{tL} \left(\frac{1}{2} \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_4 \mathcal{L}_5 \mathcal{L}_5 \mathcal{L}_6 \mathcal{L}_7 \mathcal{L}_7 \mathcal{L}_8 \mathcal{L}_7 \mathcal{L}_8 \mathcal{L}_8 \mathcal{L}_9 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_3 \mathcal{L}_1 \mathcal{L}_3 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_3 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_1$ $\exists t \in \mathcal{H}$. *Electrochem.*) 2022, 28(3), 2108541 (9 of 31)

failed to fully explain the underlying mechanism for

OER. Moreover, we believe that the higher activity is

intermediates and electrochemical activity on the $\frac{d}{dt}\mathcal{L}^{\infty}(J. Electrochem.)$ 2022, 28(3), 2108541 (9 of 31)

failed to fully explain the underlying mechanism for

OER. Moreover, we believe that the higher activity is

of monitor the OER process in order to identify reacti **EVALUATE 1988**
 EVALUATE 1988
 EVALUATE 1999
 EVALUATE 1999
 EVALUATE 1999
 EVALUATE 1999
 EVALUATE 1999
 OER. Moreover, we believe that the higher activity is
 INCOTENTE 1999
 OER conditions is also ve $\pm \frac{\mu_0 \pm \frac{\mu_0 \pm \mu_0}{2}}{2}$

failed to fully explain the underlying mechanism for

for the catalyst streme

of the catalyst structure intervals and electrochemical activity on the sur-

crucial, but it should not be th **EVALUATE (EXECT)**
 EVALUATE CONSTER (EXECT) 19022, 28(3), 2108541 (9 of 31)
 EVALUATE CONSTER CONSTER APPLICATE:
 EVALUATE CONSTER CONSTER CONSTER CONSTERNATE APPLICATE:
 CER catalyst The stability of the structu \pm The General applications and **CEP CHACE CORP CORP CORP**
 Experimentation of the Section of the GEN process in order to identify reaction

OER. Moreover, we believe that the higher activity is intermediates and elec \pm (*E* Electrochem.) 2022, 28(3), 2108541 (9 of 31)

d to fully explain the underlying mechanism for

content to CER process in order to identify reaction

2. Moreover, we believe that the higher activity is

intermedi the *C* E^2 (*L Electrochem.*) 2022, 28(3), 2108541 (9 of 31)

and to fully explain the underlying mechanism for

R. Moreover, we believe that the higher activity is

intermediates and electrochemical activity on the the paster of the particular method is the paster of the particular of the paster such as Tafel slopes and electrochemical impedance $\frac{4}{3}E^2\pi J. Electrochem > 2022, 28(3), 2108541 (9.631) \n$ \nfinite to fully explain the underlying mechanism for
\nOER. Moreover, we believe that the higher activity is
\nintermediates and electrochemical activity on the sur-
\nericial, but it should not be the only concern for any
\nfree of OFCs during the OFRE^{28,231}. These in-stubip-
\nOER has the ability of the structure under OER containing the
\nconditions is also very important because the stability
\nstubipertaut and electroton states of Nife-based elec-

finited to fully explain the understandant someonic someonic control.

DER. Moreover, we believe that the higher activity is intermediates and electrochemical activity on the sur-

critical, but it should not be the only failed to fully explain the underlying mechanism for

colffic. Moreover, we belicut that higher activity is intermediates and electrochermic articuly

credit to the mechanism of the mechanism of the summer of of OECs duri (28(3), 2108541 (9 of 31)
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^[52-53]. These *in-situ/op-*
erando techniques can prov (28(3), 2108541 (9 of 31)

monitor the OER process in order to identify reaction

intermediates and electrochemical activity on the sur-

face of OECs during the OER^[52-53]. These *in-situ/op-*
 erando techniques can $f(28(3), 2108541 (9 of 31))$
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^[52-53]. These *in-situ/op-*
erando techniques can provi $(28(3), 2108541 (9 of 31))$

monitor the OER process in order to identify reaction

intermediates and electrochemical activity on the sur-

face of OECs during the OER^[52-53]. These *in-situ/op-*
 erando techniques can pr $(28(3), 2108541 (9 of 31))$
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^{[52-53}]. These $in-situ/op-$
erando techniques can provide in $(28(3), 2108541 (9 of 31))$
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^[52-53]. These $in-situ/op-$
erando techniques can provide in $(28(3), 2108541 (9 of 31))$
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^[52-53]. These *in-situlop-*
erando techniques can provide $(28(3), 2108541 (9 of 31))$

monitor the OER process in order to identify reaction

intermediates and electrochemical activity on the sur-

face of OECs during the OER^[52-53]. These *in-situlop-*
 erando techniques can pr 28(3), 2108541 (9 of 31)

monitor the OER process in order to identify reaction

intermediates and electrochemical activity on the sur-

face of OECs during the OER^(58,58). These *in-situlop-*
 erando techniques can p mechanism^[54]. $\frac{8(3)}{2}$, 2108541 (9 of 31)

onitor the OER process in order to identify reaction

ermediates and electrochemical activity on the sur-

ce of OECs during the OER^[353]. These *in-situlop-*
 ndo techniques can provi $(28(3), 2108541 (9 of 31))$
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^[23:83]. These *in-situlop-*
erando techniques can provid $(28(3), 2108541 (9 of 31))$
monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^[25,53]. These *in-situ/op-*
erando techniques can provid $(28(3), 2108541 (9 of 31))$

monitor the OER process in order to identify reaction

intermediates and electrochemical activity on the sur-

face of OECs during the OER^{(32,51}). These *in-situlop-*
 erando techniques can pr **Electrochemical systems** under the GER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER^(25,5). These *in-situ/op-*
erando techniques can provide monitor the OER process in order to identify reaction
intermediates and electrochemical activity on the sur-
face of OECs during the OER⁽³²⁻⁵³⁾. These *in-situ/op-*
erando techniques can provide information about the
 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (9 of 31)

rlying mechanism for monitor the OER process in order to identify reaction

the higher activity is intermediates and electrochemical activity on the sur-

only conce

Figure 6 Selected in-situ/operando spectroscopy (APXPS),

miques includes two regions: X-ray absorption near the degreessure X-ray photoelectron spectroscopy (APXPS),

Missishaure represented Service (XANES) and extended The mathemative control of the structure (XANES) structure (XANES) and extended X-ray absorption
pressure X-ray photoelectron spectroscopy, (APXPS). structure (KXAFS). Combing with the in-sinulation
or the structure the st The street of the systems and the section spectroscopy (DV-KVEN) structure (XANES) and extended X-ray absorption

Mosshauer spectroscopy, DEMS, and surface interrogation scanning operator $N_{\text{He}}S_{\text{He}}$ COH cetallytic in Mossbauer spectroscopy, UV-visible (UV-visi spectroscopy in structure (FXAFS). Combing with the *in-sinul* troscopy, DFMS, and surface interrogation scanning δ_{perc} and δ_{H} . Complement and a γ -NiOOH structu Eigene (Electrochanical microscopy) (SI-SFCM) were used to $\frac{1}{2}$ a low potential and a y-NiOOH structure at a high the electrochanical microscopy (SI-SFCM) structure as a low potential and a y-NiOOH structure at a high OER. Moreover, we believe that the higher activity is

intermediates and electrochemical activity on the sur-

critical, but it should not be the only concern for any α from the COEC during the OFR(BE size in structura erucial, but it should not be the only concern for any

once of OECs during the OER^{103.51}. These *in-situlop*-

OER cealiby state through or the state of the state of the calibative state of the calibative state of the conditions is also very important because the stability
of the catalyst structural and electronic states of NiFe-based elec-
of the catalyst structure under OER conditions is erru-
trooks. Figure 6 graphically shows sever of the catalyst structure under OER conditions is eru-

trodes. Figure 6 graphically shows several selected

cial for commercial applications.
 3 The General Introduction of In_2 minis we been such the been successfull cial for commercial applications.
 3 The General Introduction of $In-$ niques which have been successfully applied to cap-
 5*itul0perando* **Techniques for Cha-** have been successively applied to cap-
 Electrocatalysts 3 The General Introduction of I_n inques which have been successfully applied to cap-
 Situl/Operando Techniques for Cha

are species, investigating the OER pathways and
 racterizing the NiFe-Based OER

In the past **Situ/Operando Techniques for Cha-**
 Examplementary and the NiFe-Based OER
 Examplementary and the NiFe-Based OER
 **Electrocatalysts Examplementary could be used to observe vi-

In the past, traditional electrochem Example 10.1** and **CEC Example 10.1 and Example 10.1 and** *M* **Expectises, investigating the OER pathways and Electrocatalysts** momanim spectroscopy could be used to observe vi-

In the past, traditional electrochemic **TREETIZING THE NIFE-Based OEK**
 Encorations concerned technismi¹⁶⁴.
 Encorational subset of the confident interrogation scanne interrogation scanne and the NiFe catalysts¹⁰¹. The *in-situloperando* **Raman spe-

suc Electrocatalysts**

En the past, traditional electrochemical techniques

In the past, traditional electrochemical impedance

In the past reading that of the intermediates durangery modes of

such as Tafel slopes and elect intermediates and electrochemical activity on the sur-
face of OECs during the OER⁽³²⁻⁸³⁾. These *in-situ/op-*
erando techniques can provide information about the
structural and electronic states of NiFe-based elec-
t face of OECs during the OER^{[32,53}]. These *in-situ/op-*
 erando techniques can provide information about the

structural and electronic states of NiFe-based elec-

trodes. Figure 6 graphically shows several selected
 erando techniques can provide information about the
structural and electronic states of NiFe-based elec-
trodes. Figure 6 graphically shows several selected
in-situ/operando spectroscopic characterization tech-
niques wh structural and electronic states of NiFe-based electrodes. Figure 6 graphically shows several selected in-situ/operando spectroscopic characterization techniques which have been successfully applied to capture the NiFe-bas trodes. Figure 6 graphically shows several selected
in-situ/operando spectroscopic characterization tech-
niques which have been successfully applied to cap-
ture the NiFe-based OER electrocatalytic intermedi-
ate species in-situ/operando spectroscopic characterization techniques which have been successfully applied to capture the NiFe-based OER electrocatalytic intermediate species, investigating the OER pathways and mechanism^[54]. Rama miques which have been successfully applied to cap-
ture the NiFe-based OER electrocatalytic intermedi-
ate species, investigating the OER pathways and
mechanism^[54].
Raman spectroscopy could be used to observe vi-
brat ture the NiFe-based OER electrocatalytic intermediate species, investigating the OER pathways and mechanism^[64].

Raman spectroscopy could be used to observe vi-

bration, rotational, and other low frequency modes of th ate species, investigating the OER pathways and
mechanism^[54].
Raman spectroscopy could be used to observe vi-
bration, rotational, and other low frequency modes of
the NiFe catalysts¹⁵⁵. The *in-situloperando* Raman mechanism^[54]. Raman spectroscopy could be used to observe vibration, rotational, and other low frequency modes of the NiFe catalysts^[55]. The *in-situloperando* Raman spectroscopy could monitor the intermediates duri Raman spectroscopy could be used to observe vi-
bration, rotational, and other low frequency modes of
the NiFe catalysts^[58]. The *in-situloperando* Raman spectroscopy could monitor the intermediates during the
electroc bration, rotational, and other low frequency modes of
the NiFe catalysts¹⁸⁵¹. The *in-situloperando* Raman spectroscopy could monitor the intermediates during the
electrochemical systems under the applying test volt-
ag the NiFe catalysts⁵⁵¹. The *in-situloperando* Raman spectroscopy could monitor the intermediates during the electrochemical systems under the applying test voltage in aqueous media, which could provide real-time reactio etroscopy could monitor the intermediates during the
electrochemical systems under the applying test volt-
age in aqueous media, which could provide real-time
reaction information. This technique helps to under-
stand how electrochemical systems under the applying test volt-
age in aqueous media, which could provide real-time
reaction information. This technique helps to under-
stand how an electrochemically driven reaction oc-
curs. The age in aqueous media, which could provide real-time
reaction information. This technique helps to under-
stand how an electrochemically driven reaction oc-
curs. The *in-situloperando* XAS could serve as a
valuable techni reaction information. This technique helps to under-
stand how an electrochemically driven reaction oc-
curs. The *in-situloperando* XAS could serve as a
valuable technique for studying the electronic struc-
ture and loca stand how an electrochemically driven reaction oc-
curs. The *in-situloperando* XAS could serve as a
valuable technique for studying the electronic struc-
ture and local geometric structure of catalyst materials
under wor curs. The *in-situ/operando* XAS could serve as a
valuable technique for studying the electronic struc-
ture and local geometric structure of catalyst materials
under working conditions. The XAS technique in-
cludes two r valuable technique for studying the electronic struc-
ture and local geometric structure of catalyst materials
under working conditions. The XAS technique in-
cludes two regions: X-ray absorption near the edge
structure (ture and local geometric structure of catalyst materials
under working conditions. The XAS technique in-
cludes two regions: X-ray absorption near the edge
structure (XANES) and extended X-ray absorption
fine structure (E under working conditions. The XAS technique in-
cludes two regions: X-ray absorption near the edge
structure (XANES) and extended X-ray absorption
fine structure (EXAFS). Combing with the *in-situl*
operando XAS technique cludes two regions: X-ray absorption near the edge
structure (XANES) and extended X-ray absorption
fine structure (EXAFS). Combing with the *in-situl*
operando XAS techniques, Friebel et al. found that the
Ni_{a/35}Fe_{a25} structure (XANES) and extended X-ray absorption
fine structure (EXAFS). Combing with the *in-situl*
operando XAS techniques, Friebel et al. found that the
 $Ni_{0.25}Fe_{0.25}OOH$ catalyst has an α -NiOOH structure at a high
 fine structure (EXAFS). Combing with the *in-situl*
operando XAS techniques, Friebel et al. found that the
Ni_{0.75}Fe_{0.25}OOH catalyst has an α -Ni(OH)₂ structure at
a low potential and a γ -NiOOH structure at a hi *operando* XAS techniques, Friebel et al. found that the $Ni_{0.25}Fe_{0.25}OOH$ catalyst has an α -Ni(OH)₂ structure at a low potential and a γ -NiOOH structure at a high potential. With the potential increasing, the sh

 $\#E\#(J. Electron) 2022, 28(3), 2108541 (10 of 31)$

synchrotron radiation can overcome the limitations of study of NiFe-based OER catalysts towards practical

UHV conditions^[56]. Ali-Leytty et al. conducted *in-situ* applications $\frac{\text{d} \mathcal{H}^{\#}(J. \text{Electrochem.}) 2022, 28(3), 2108541 (10 of 31)}{\text{synchrotron radiation can overcome the limitations of study of Nife-based OER catalysts towards practical
\nUHV conditions^[56]. Ali-Lcyty et al. conducted *in-situ* applications.\nAPXPS experiments on Nife based catalysts under OER conditions. They found that when the electric potential is increased from 0 to 0.3 V (vs. Ag/AgCl),
\nthe chic, Ni(OH), is oxidized to NiOOH, the O/OH ratio in \frac{d}{dx}$ $\frac{d}{dx}$ $\frac{d}{dx}$ **EVALUATE 1988**
 EVALUATE 1988
 EVALUATE 1998
 EVALUATE 1999
 E *I*E *Electrochem.*) 2022, 28(3), 2108541 (10 of 31)

synchrotron radiation can overcome the limitations of study of NiFe-based OER catalysts towards practical

UHV conditions^[56]. Ali-Leytty et al. conducted *in-s* **EV**^{\ther}(*J. Electrochem.*) 2022, 28(3), 2108541 (10 of 31)
 synchrotron radiation can overcome the limitations of study of NiFe-based OER catalysts towards practical

UHV conditions^{(sq}. Ali-Leytty et al. conducte **EVALUATION**
 EVALUAT EXAMORET SET ASSES AND A CONSECT AND A PAPER CONSECT AND A PAPER CONSECT AND A PAPER CONSECT AND INTEGRALLY SURPORTION (I.E., Ni Example 19
 **Example 19 Synchrotron radiation can overcome the limitations of study of NiFe-based OER catalysts towards practical

UHV conditions²⁸⁶. Ali-Leytty et al. conducted** *in-situ* **applications.

APXPS experime** $\frac{d\mathbb{E}/$ **EVALUAT Example 1988**
 EVALUAT EXAMORE SET THE UNITERED SET AND SYSTEM CONDUCT CONDUCT CONDUCT AND CONDUCT AND SYSTEM CONDUCT CONDUCT OF THE METAL CONDUCT OF THE METAL ORIGINAL ORDER CONDUCT OF THE DAMORE CONDUCT ON DEV Example 10. Electrochem. (and the minitions of study of NiFe-based OER catalysts towards practical
UHV conditions⁵⁹¹. Ali-Leytty et al. conducted *in-situ* applications.

APNPS experiments on NiFe based catalysts u **THEP (***L. Electrochem.*) 2022, 28(3), 2108541 (10 of 31)
 Synchrotron radiation can overcome the limitations of study of NiFe-based OFR catalysts towards practical

CIIV conditions. They issued catalysts under **4 In EVALUATION THE SET INTO A SUCK A CONSECT AND SUCK A SUCK A SUCK A SUCK A SUCK AND SUCK CONDITIONS. A PAYS experiments on NiFe based catalysts** $#i\ell\neq (L\ Ekerneken.) 2022, 28(3), 2108541 (10 of 31)$

synchrotron radiation can overcome the limitations of study of NiFe-based OER catalysts towards practical

APYPS experiments on NiFe based catalysts under a **All Introduction** 4($E\mathscr{F}(LElectroekom.)$ 2022, 28(3), 2108541 (10 of 31)
synchrotron radiation can overcome the limitations of study of NiFe-based OER catalysts towards practical
UHV conditions⁵⁶⁴. Ali-Leytty et al. conducted *in-situ* app synchrotron radiation can overcome the limitations of

UIIV conditions⁵⁷⁰. Ali-Leytty et al. conducted *in-situ*

upplications.

APXPS experiments on NiFe based catalysts under
 4 Introduction of ⁵⁷Fe Mössbauer

O synchrotron radiation can overcome the limitations of

UHV conditions of DiFic-based OER catalysts towards practical

UHV conditions.⁵⁶¹, Mi-Leytty et al. conducted *in*-situations.

OER conditions. They found that when UIIV conditions¹⁶⁸. Ali-Leytty et al. conducted *in-sinu* applications of ⁵⁷**Fe Mössbauer**

OER conditions. They found that when the electric **4 Introduction** of ⁵⁷**Fe Mössbauer**

DOER conditions. They found t APXPS experiments on NiFe based catalysts under

OER conditions. They found that when the electric

oeconomic function is increased from 0 to 0.3 V (vs. Ag/AgCl),

i.e., Ni(OH)₂ is oxidized to NiOOH, the O/OH ratio incr OFR conditions. They found that when the electric

poetcroscopy

potential is increased from 0 to 0.3 V (v_s Ag/AgCl),

i.e., Ni(OH), is oxidized to NiOOH, the O/OH ratio in

creases significantly. In addition, the Ni an potential is increased from 0 to 0.3 V (vs. Ag/AgCl).

Les Coloritation to NOO Fraction in a standard technique for analyzing eatalysis processes

tecnses significantly. In addition, the Ni and Fe 2p

Erenses significantl ereases significantly. In addition, the Ni and Fe 2p
soon after Moskshaure effect was discovered¹⁹⁹. This is
NPS spectra also show the oxidation of Ni and Fe
main golish methods of Ni and Fe
smallence of the main golish XPS spectra also show the oxidations of Ni and Fe

unique for revealing the "black box" of catalysis be-

durique for revealing the "black box" of catalysis be-

durique for revealing the "black box" of catalysis be-

spe during OER process^[57]. The *in-situdopermalo* UV-vis cause of its *in-situdopermalo* application capabilities⁸⁶⁰.

Secretorsocopy is used to track the metal oxidation pro-

cess that cocurs in Ni(OH). Givin et al. us spectroscopy is used to track the metal oxidation pro-

spectroscopy is used to track the metal oxidation pro-

The main applications of Mössbauer spectroscopy in

operarodo UV-vis spectroscopy to track the metal oxi-

or cess that occurs in Ni(OH)₂. Görlin et al. used *in-situl* catalysis research are: 1) identification of
operardo UV-vis spectroscopy to track the metal oxi-
or active phases for catalytic processes; 2
databy moreoves in *operando* UV-vis spectroscopy to track the metal oxi-

or a crive phases for catalytic processes; 2) investiga-

droin process in bilfe hased electrocatally.t. It was

Simply performance; cat 3) sharedscrained of cat-

N found that Fe inhibited the oxidation form Ni² to

vertally tie performance; and 3) characterization of eat-
 N_1^{12} during the OFR process. Combing the *m*-sin/

or during the CR process combing the institution that NP⁻⁴⁶ during the OFR process. Combing the in-situ/ alysts during reaction and deactivation un-
operardo UV-vis spectroscopy, they concluded that
doe that also the situng prearmino conditions. There
of EMs carried out th operardo UV-vis spectroscopy, they concluded that

OETR was carried variative and/or in-situ/operardo conditions. There

OERR was carried out at the center of Ni²² in the center of Ni²² in the center of Ni²² (OFR was carried out at the center of Ni²⁺ in the

sure limited numbers of Massbauer-active clements

Nife-baned catalys!". Moreover, Gotin et al. used in
 $m = \frac{1}{2}$, the change distribution from the addition of the ca

applications. 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (10 of 31)

ome the limitations of study of NiFe-based OER catalysts towards practical

t al. conducted *in-situ* applications.

based catalysts under **4 Introduction of ⁵⁷Fe**

28(3), 2108541 (10 of 31)
study of NiFe-based OER catalysts towards practical
applications.
4 Introduction of ⁵⁷Fe Mössbauer
Spectroscopy Spectroscopy

i.e., Ni(OH), is oxidized to NiOOH, the O/OH ratio in-

a standard technique for analyzing catalysis processes

experimently. In addition, the Ni and Fe 2p

orea after Mossbauer effect was discovered^{fly}. This is

2KPs s 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 **4 Introduction of ⁵⁷Fe Mössbauer

Spectroscopy**

Mössbauer spectroscopy has progressively become

a standard technique for (3), 2108541 (10 of 31)

Idy of NiFe-based OER catalysts towards practical

plications.
 Introduction of ⁵⁷Fe Mössbauer
 Spectroscopy

Mössbauer spectroscopy has progressively become

tandard technique for analyzing 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 4 Introduction of ⁵⁷Fe Mössbauer
 Spectroscopy

Mössbauer spectroscopy has progressively become

a standard technique fo 28(3), 2108541 (10 of 31)
study of NiFe-based OER catalysts towards practical
applications.
4 Introduction of ⁵⁷Fe Mössbauer
Spectroscopy
Mössbauer spectroscopy has progressively become
a standard technique for anal 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 4 Introduction of ⁵⁷Fe Mössbauer
 Spectroscopy

Mössbauer spectroscopy has progressively become

a standard technique fo 28(3), 2108541 (10 of 31)
study of NiFe-based OER catalysts towards practical
applications.
4 Introduction of ⁵⁷Fe Mössbauer
Spectroscopy
Mössbauer spectroscopy has progressively become
a standard technique for anal 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 **4 Introduction of ⁵⁷Fe Mössbauer

Spectroscopy**

Mössbauer spectroscopy has progressively become

a standard technique for 28(3), 2108541 (10 of 31)
study of NiFe-based OER catalysts towards practical
applications.
4 Introduction of ⁵⁷Fe Mössbauer
Spectroscopy
Mössbauer spectroscopy has progressively become
a standard technique for analyz 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 **4 Introduction of ⁵⁷Fe Mössbauer

Spectroscopy**

Mössbauer spectroscopy has progressively become

a standard technique for 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 **4 Introduction of ⁵⁷Fe Mössbauer

Spectroscopy**

Mössbauer spectroscopy has progressively become

a standard technique for 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 4 Introduction of ⁵⁷Fe Mössbauer
 Spectroscopy

Mössbauer spectroscopy has progressively become

a standard technique fo 28(3), 2108541 (10 of 31)

study of NiFe-based OER catalysts towards practical

applications.
 4 Introduction of ⁵⁷Fe Mössbauer
 Spectroscopy

Mössbauer spectroscopy has progressively become

a standard technique fo study of NiFe-based OER catalysts towards practical
applications.
**4 Introduction of ⁵⁷Fe Mössbauer
Spectroscopy**
Mössbauer spectroscopy has progressively become
a standard technique for analyzing catalysis processes
so study of NiFe-based OER catalysts towards practical
applications.
4 Introduction of ⁵⁷**Fe Mössbauer**
Spectroscopy
Mössbauer spectroscopy has progressively become
a standard technique for analyzing catalysis processe applications.
 **4 Introduction of ⁵⁷Fe Mössbauer

Spectroscopy**

Mössbauer spectroscopy has progressively become

a standard technique for analyzing catalysis processes

soon after Mössbauer effect was discovered^[59]. **4 Introduction of ⁵⁷Fe Mössbauer

Spectroscopy**

Mössbauer spectroscopy has progressively become

a standard technique for analyzing catalysis processes

soon after Mössbauer effect was discovered¹⁵⁹¹. This is

uniqu **Spectroscopy**
Mössbauer spectroscopy has progressively become
a standard technique for analyzing catalysis processes
soon after Mössbauer effect was discovered^[59]. This is
unique for revealing the "black box" of catal Mössbauer spectroscopy has progressively become
a standard technique for analyzing catalysis processes
soon after Mössbauer effect was discovered^[59]. This is
unique for revealing the "black box" of catalysis be-
cause a standard technique for analyzing catalysis processes
soon after Mössbauer effect was discovered^[39]. This is
unique for revealing the "black box" of catalysis be-
cause of its *in-situloperando* application capabiliti soon after Mössbauer effect was discovered^[59]. This is
unique for revealing the "black box" of catalysis be-
cause of its *in-situ/operando* application capabilities^[69].
The main applications of Mössbauer spectrosco unique for revealing the "black box" of catalysis be-
cause of its *in-situ/operando* application capabilities^[60].
The main applications of Mössbauer spectroscopy in
catalysis research are: 1) identification of active cause of its *in-situ/operando* application capabilities^[60].
The main applications of Mössbauer spectroscopy in
catalysis research are: 1) identification of active sites
or active phases for catalytic processes; 2) inv The main applications of Mössbauer spectroscopy in
catalysis research are: 1) identification of active sites
or active phases for catalytic processes; 2) investiga-
tion of correlations between catalyst structure and
cata talysis research are: 1) identification of active sites
active phases for catalytic processes; 2) investiga-
n of correlations between catalyst structure and
alytic performance; and 3) characterization of cat-
zsts during or active phases for catalytic processes; 2) investiga-
tion of correlations between catalyst structure and
catalytic performance; and 3) characterization of cat-
alysts during reaction activation and deactivation un-
der tion of correlations between catalyst structure and
catalytic performance; and 3) characterization of cat-
alysts during reaction activation and deactivation un-
der *ex-situ* and/or *in-situloperando* conditions. There
a catalytic performance; and 3) characterization of cat-
alysts during reaction activation and deactivation un-
der *ex-situ* and/or *in-situ/operando* conditions. There
are limited numbers of Mössbauer-active elements
such alysts during reaction activation and deactivation un-
der *ex-situ* and/or *in-situ/operando* conditions. There
are limited numbers of Mössbauer-active elements
such as iron (⁵⁷Fe), tin (¹⁹⁵Sn), antimony (¹²¹Sb), g der *ex-situ* and/or *in-situ/operando* conditions. There
are limited numbers of Mössbauer-active elements
such as iron (⁵⁷Fe), tin (¹⁹⁵Sn), antimony (²¹Sb), gold
(⁹⁷Au), nickel (⁶Ni), ruthenium (²⁹Nu), iridi

Nife-based eatalyst⁽¹⁹⁾. Moreover, Girlin et al. used *in*-
such as iron (¹⁹Es), tin (¹⁹Sn), antimony (¹⁹Sh), gold
tirulation erand the DNMS to track the Franday charge dis-
elition from the dathition of the cenda *situloper ando* DEMS to track the Faraday charge dis-
 tivistion from the addition of the catalyst to the prod-

tribution from the addition of the catalyst to the prod-

traction from the addition of the catalyst is t tribution from the addition of the catalyst to the prod-

und ¹⁸³H_/), and neptunium (³⁹Np) etc., which can be

ter formation and the redox process of the catalyst.

The lower metal redox chance indicates that the av uct formation and the redox process of the eatalyst.

Similal The lower metal redox charge indicates that the aver-

The lower metal redox charge indicates that the aver-

sign value of Ni in the NiFe-based catalyst is lo The lower metal redox charge indicates that the aver-

tion is due to several criteria such as suitable lifetime

of the interNic-based catalyst is lower of fuld in the Nic-based catalysts due to the metal state, transico than that of nickel oxide catalysts. They concluded

inter Fe inhibits the woodchor of Ni during OER

and the Fe inhibits the oxident of Ni during OER

and seems to have a stabilizing effect on low valent

Numerable and s that the Fe inhibits the oxidation of Ni-during OER

ments, ^{*n*}Fe is the most studied and well-known Misss-

and secons to have a stabilizing effect on low valent

Ni, thereby promoting OFR¹⁹¹.

Among several other *i* and scems to have a stabilizing effect on low valent

Ni, thereby promoting OER^{ID}, Microby promoting CRE^{ID}, Microby and the mis-

Ni, thereby promoting CRE^{ID}, a and the integration of the system radio

²³The Mössba Ni, thereby promoting OER^{1*m*},

Missbauer spectroscopy, which involves the emis-

Among soveral other *in-stutopermado* techniques,

"The Missbauer spectroscopy is a strong method with

tion of y-rays from radioactive n are limited numbers of Mössbauer-active elements
such as iron (⁵⁷Fe), tin (¹⁹⁵Sn), antimony (¹²¹Sb), gold
(⁴⁹⁷Au), nickel (⁶Ni), ruthenium (²⁹Nu), iridium (⁹³Ir
and ¹⁹³Ir), and neptunium (²⁹⁷Np) etc., wh such as iron (³⁷Fe), tin (¹⁹Sn), antimony (²¹Sb), gold
⁽³⁹⁷Au), nickel (⁶⁹Ni), ruthenium (³⁹Nu), iridium (³⁹Ir
and ¹⁹³Ir), and neptunium (²⁹⁷Np) etc., which can be
studied using Mössbauer spectroscopy. T (³⁹⁷Au), nickel (⁶⁹Ni), ruthenium (⁹⁹Ru), iridium (⁹³Ir
and ¹⁹³Ir), and neptunium (²³⁷Np) etc., which can be
studied using Mössbauer spectroscopy. This limita-
tion is due to several criteria such as suitable and ¹⁹³Ir), and neptunium (²³⁷Np) etc., which can be studied using Mössbauer spectroscopy. This limitation is due to several criteria such as suitable lifetime of nuclear excited state, transition energy, easy accessi studied using Mössbauer spectroscopy. This limita-
tion is due to several criteria such as suitable lifetime
of nuclear excited state, transition energy, easy acces-
sibility, and handling. Among these different ele-
ment standed analysis *machinality* in the method of $\frac{1}{2}$ is the method of inclusive furthermore, is the most studied infering of nuclear excited state, transition energy, easy accessibility, and handling. Among these dif of nuclear excited state, transition energy, easy accessibility, and handling. Among these different elements, ⁵⁷Fe is the most studied and well-known Mössbauer nuclide.

Mössbauer spectroscopy, which involves the emiss sibility, and handling. Among these different elements, ⁵⁷Fe is the most studied and well-known Mössbauer nuclide.

Mössbauer spectroscopy, which involves the emission of γ -rays from radioactive nuclei of the same el bauer nuclide.

Mössbauer spectroscopy, which involves the emission of γ -rays from radioactive nuclei and the absorption of these γ -rays by other nuclei of the same element, is a powerful technique for studying mate Mössbauer spectroscopy, which involves the emis-
sion of γ -rays from radioactive nuclei and the absorp-
tion of these γ -rays by other nuclei of the same ele-
ment, is a powerful technique for studying materials
by m

The Mossbauer effect is the absorption and emison of the first excited state of ³⁷Co has the mean life-

Independent (3) and receiver the absorption and emission of γ -rays from a recoilless nuclear resonance

The Mos **EVALUATION 1999**
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATIONS FOR PROCESS.
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVALUATION
 EVALU EVALUATION
 EXAMORE THENOM THENOM CONDUCE 2022, 28(3), 2108541 (11 of 31)
 ETHENOM CONTAMORE CONTAMORE CORPORATION
 EXAMORE THENOM CONTAMORE CORPORATION
 4.1 Principle of Mössbauer Spectroscopy
 4.1 Principle o the same for the same for the same for the same for the same frequency of the same frequency of the same frequency for the same frequency from the same frequency of Mössbauer effect some and the Napply in The Missbauer ef **Example 19**
 **set of the sender of the Shander Spectroscopy

4.1** th $\ell^2\ell^2(L$ *Electrochem.*) 2022, 28(3), 2108541 (11 of 31)

link between OER behavior and Fc structural charac-

rays, named as Müssbauer effect, soon after he was

teristics in Fe-based catalysts during the OER proce **EXAMPLE 12**
 EXAMPLE 12 (*Electrochem.*) 2022, 28(3), 2108541 (11 of 31)

link between OER behavior and Fe structural charac-

ranys, named as Mössbauer effect, soon after he was

teristics in Fe-based catalysts during **ELET THE SEAL CONDUCE TENDEM CONDUCE THE SEAL OF THE SEAL OR SEAL CONDUCT THE SEAL ORDER THE MESSAME THE MESSAME THE MESSAME THE MESSAME THE MESSAME THE MESSAM EVALUATION THE THE SECT ASSESS (SITE ASSESS)**
 EVALUATION This between OFR behavior and Fe structural charac-

rays, named as Missabauer effect, soon after he was

terristics in Fe-based catalysts during the OER proces th($k^{\text{th}}(L \cdot Klenmbelom)$ 2022, 28(3), 2108541 (11 of 31)

link between OER behavior and Fe structural charac-rays, named as Mossbauer effect, soon after he was

terristics in Fe-based eatalysts during the OER process.
 4.1 $4.1 \text{ Prinocblawer} \quad \text{L}(k \# (L. Elecreoden). 2022, 28(3), 2108541 (11 of 31) \text{link between OFER behavior and Fe structural charac-
teristics in Fe-based catalysts during the OER process. \quad \text{awarded the Nobel prize in physics 1961, may be
the Missbauer effect is the absorption and emission of γ -rays from a recoless nuclear resonance. \quad \text{Figure 7(A) descriptor in physics 1961, known as the Lan-
sinon of γ -rays from a recoless nuclear resonance of γ -flow. The Missbauer fraction^{6D}. \quad \text{Step 2(A) descriptor in$ the $\frac{1}{2}(L)$ Electrobera, 2022, 28(3), 2108541 (11 of 31)

ink between OER behavior and Fe structural charac-

rays, named as Mössbauer effect, soon after he was

teristies in Fe-based catalysts during the OER process. link between OFR behavior and Fe structural charac-

mays, named as Mössbauer effect, soon after he was

teristics in Fe-based catalysts during the OFR process.
 4.1 Principle of Mössbauer Spectroscopy
 4.1 Principle o link between OER behavior and Fe structural charac-

teristies in Fe-based catalyst during the OER process.
 Altherity: Findery definite absorption and emiss-
 4.1 Principle of Müssbauer Spectroscopy
 4.41 Principle teristics in Fe-based catalysts during the OFR process
 All Principle of Nobsorption (abso<mark>sbouter Spectroscopy)</mark>

teted only for this proportion, known as the Lamb-
 Principle of Mössbauer Spectroscopy

information a **4.1 Principle of Mössbauer Spectroscopy** tected only for this propotion, known as the Lamb-
The Massbauer effect is the absorption and emiss-
Masshauer freedtor in the control and emission of y-rays from a receilles nu The Mossbauer effect is the absorption and emiss-

Mossbauer fraction⁹⁰¹.

Sion of γ -rays from a recoilless nuclear resonance of

phenomenon, analogous to the acustic resonance of

phenomena in which the mean lifetim sion of γ -rays from a recoilless nuclear resonance

phenomenon, analogous to the acoustic resonance of the phenomena in which the mean lifetime of the excited

phenomenon, analogous to the acoustic resonance of the par phenomenon, analogous to the acoustic resonance of

phenomena in which the mean lifetime of the excited

sender (s) and receiver (r). A mucleus with energy $Y_c = f$ for

the state of the parameter of state of the parameter two tuning forks with the same frequency $f = f$, for
scate of the parent nuclei is very important. For exam-
scale (s) and recoire (s). A nucleus with cneegy E_x be, the first excited state of ⁵Co has the mean life-
sca sender (a) and receiver (r). A nucleus with energy E_s ple, the first excited state of ³Co has the mean life-
at an excited state (with Z proton and N nucleum) un-
time of around 100 ns which is normally being used
dee at an excited state (with Z proton and N neutron) un-

dengens transitions to the ground state with energy R_c . for ³Fe Missbaure experiment. As a result of the ra-

depresence instrictions to the ground state, with en dergoes transitions to the ground state with energy E_x for ^{37F}e Mössbauer experiment. As a result of the ra-
by producing γ -rays are crossing E_x . The γ -rasy may be dioactive decay, the excited state of Co deca by producing γ -rays of energy E_{ν} . The γ -rays may be

absorbed by another nucleus of the same type (dicani-
 γ ^{-rec}e excited state by electron capture

cal Z and N) in its ground state, resulting in a tr absorbed by another nucleus of the same type (identi-³²³Fe excited state by electron capture process. The ex-
coil 2 and A) in is ground state, resulting in a transi-
include is throssbeaner nucleus decoses and come cal Z and N) in its ground state, resulting in a transi-

circl state of Mossbauer nucleus decays and comes to

troin to the excited state of energy E_r . This phesime ground state. The decay of ⁶Co generates two excite tion to the excited state of energy E_v . This phecaeure absorption is called γ -rays recoilless resonance absorption as solenation in Figure 7(A). Reserved in solenation and by the solenation as operator of the mission enon is called γ -rays recoilless resonance absorbates of ⁵⁷Fe where almost 99% decay occurs for the
one as schematically shown in Figure 7(A). Res. lowest energy level which is 14.4 keV and is known
one ashorption ca sorption as schematically shown in Figure 7(A). Res-

consume absorption can only be secn if the cmission as the first excited state from ground state f⁷Fc.

and absorption lines overlap enough. When γ -rays The ground

 $\# \&\#$ (*I. Electrochem.*) 2022, 28(3), 2108541 (11 of 31)

link between OER behavior and Fe structural charac-

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-
 the $\# \# \langle I. \text{Electrochem.} \rangle$ 2022, 28(3), 2108541 (11 of 31)

link between OER behavior and Fe structural charac-

teristics in Fe-based catalysts during the OER process.
 4.1 Principle of Mössbauer Spectroscopy

The Mössba 4.1 Principle of M觟ssbauer Spectroscopy 28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) des 28(3), 2108541 (11 of 31)

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-

tected only for this proportion, known as the Lamb-

Mössbauer fraction^[63].

Figure 7(28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) de 28(3), 2108541 (11 of 31)

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-

tected only for this proportion, known as the Lamb-

Mössbauer fraction^[63].

Figure 7(电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (11 of 31)
d Fe structural charac-
uring the OER process. awarded the Nobel prize in physics 1961, may be de-
termscopy tected only for this proportion, known as the Lamb-
cha

Electrochem.) 2022, 28(3), 2108541 (11 of 31)

tural charac-

rays, named as Mössbauer effect, soon after he was

EFR process.

awarded the Nobel prize in physics 1961, may be de-
 troscopy

tected only for this propo (3), 3), 2108541 (11 of 31)

s, named as Mössbauer effect, soon after he was

arded the Nobel prize in physics 1961, may be de-

ted only for this proportion, known as the Lamb-

issbauer fraction^[63].

Figure 7(A) desc 28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) de 28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) de 28(3), 2108541 (11 of 31)

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-

tected only for this proportion, known as the Lamb-

Mössbauer fraction^[63].

Figure 7(28(3), 2108541 (11 of 31)

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-

tected only for this proportion, known as the Lamb-

Mössbauer fraction^[63].

Figure 7(28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction⁽⁶⁹⁾.
Figure 7(A) de 28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) de 28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[6].
Figure 7(A) des 28(3), 2108541 (11 of 31)
rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) de 28(3), 2108541 (11 of 31)

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-

tected only for this proportion, known as the Lamb-

Mössbauer fraction^[63].

Figure 7(28(3), 2108541 (11 of 31)

rays, named as Mössbauer effect, soon after he was

awarded the Nobel prize in physics 1961, may be de-

tected only for this proportion, known as the Lamb-

Mössbauer fraction^[63].

Figure 7(Example and Solution of the two states and as Mössbauer effect, soon after he was awarded the Nobel prize in physics 1961, may be detected only for this proportion, known as the Lamb-
Mössbauer fraction^[63]. Figure 7(A) rays, named as Mössbauer effect, soon after he was
awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) describes the overall Mössba awarded the Nobel prize in physics 1961, may be de-
tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) describes the overall Mössbauer effect
phenomena in which the mean lifetime of tected only for this proportion, known as the Lamb-
Mössbauer fraction^[63].
Figure 7(A) describes the overall Mössbauer effect
phenomena in which the mean lifetime of the excited
state of the parent nuclei is very impor Mössbauer fraction^[63].

Figure 7(A) describes the overall Mössbauer effect

phenomena in which the mean lifetime of the excited

state of the parent nuclei is very important. For exam-

ple, the first excited state of Figure 7(A) describes the overall Mössbauer effect
phenomena in which the mean lifetime of the excited
state of the parent nuclei is very important. For exam-
ple, the first excited state of 57 Co has the mean life-
t phenomena in which the mean lifetime of the excited
state of the parent nuclei is very important. For exam-
ple, the first excited state of 5C has the mean life-
time of around 100 ns which is normally being used
for te of the parent nuclei is very important. For exam-
e, the first excited state of ^{57}Co has the mean life-
ne of around 100 ns which is normally being used
 ^{57}Fe Mössbauer experiment. As a result of the ra-
active de ple, the first excited state of ⁵⁷Co has the mean life-
time of around 100 ns which is normally being used
for ⁵⁷Fe Mössbauer experiment. As a result of the ra-
dioactive decays, the excited state of ⁵⁷Co decays to
 time of around 100 ns which is normally being used
for ⁵⁷Fe Mössbauer experiment. As a result of the ra-
dioactive decays, the excited state of ⁵⁷Co decays to
⁵⁷Fe excited state by electron capture process. The ex-
 for ⁵⁷Fe Mössbauer experiment. As a result of the radioactive decays, the excited state of ⁵⁷Co decays to ⁵⁷Fe excited state by electron capture process. The excited state of Mössbauer nucleus decays and comes to gr dioactive decays, the excited state of ⁵⁷Co decays to
⁵⁷Fe excited state by electron capture process. The ex-
cited state of Mössbauer nucleus decays and comes to
ground state. The decay of ⁵⁷Co generates two excite ⁵⁷Fe excited state by electron capture process. The ex-
cited state of Mössbauer nucleus decays and comes to
ground state. The decay of ⁵⁷Co generates two excited
states of ⁵⁷Fe where almost 99% decay occurs for the

onance absorption can only be seen if the emission
and as the first excited state from ground state of ${}^{\circ}$ Fe.
and absorption lines overlap conough. When γ -rays The ground state of ${}^{\circ}$ Fe does not undergo any kin and absorption lines overlap enough. When γ -rays The ground state of "Fe does not undergo any kind of with energy E_n are enrited or absorbed in freely mov-

decay or sing as on (deal of a state to a state of a state with energy E_r are emitted or absorbed in freely mov-

ing atom (molecule) of mass m, it undergoes a recoil

are effect with energy keyl. The subspaces are coil

are first with energy keyl. The lattice has the method of ing atom (molecule) of mass m, it undergoes a recoil
energy level. Each nuclear level possesses specifie
effect with energy E_N which is many orders of magni-
energy E_N many orders of magni-
resonance is not possible in effect with energy E_8 which is many orders of magni-

energy, spin, parity, and docay constant k mean prob-

tude groater than the natural line-width (1), hence ability of decay per unit time.

resonance is not possi nude greater than the natural line-width (*I*), hence

resonance is not possible in a freely moving atom or As shown in Figure 7(B), due to the electrical mo-

resonance is not possible in a freely moving atom or \sim As s resonance is not possible in a freely moving atom or

moscille (gas, liquid). As a result, the Mossbaure reff-

monic of the calculation are decarted quadrupole intreac-

ect cannot be seen in the presence of freely moving molecule (gas, liquid). As a result, the Mössbauer eff-
conde interaction, the electrical quadrupole interaction
atoms or molecules, such as those in a graseous or fuci-
energy levels of ³Fe (ground and first excited sta ect cannot be seen in the presence of freely moving

ion, and the nuclear Zeeman interaction, the nuclear

atoms or molecules, such as those in a gaseous or liq-

emergy levels of ⁵Fe (ground and its excited states

uid atoms or molecules, such as those in a gaseous or liq-

urergy levels of ⁷Fe (ground and first excited states

urd form. Recoolling the solid state, and basically

be split by electric or magnetic fields acting at the nu uid form. Recoilless emission and absorption of with nuclear spins of 1/2 and 3/2, respectively) can γ -rays are conceivable in the solid state, and basically be split by elective or magnetic fields acing at the nul-
uncited state of Mössbauer nucleus decays and comes to
ground state. The decay of ⁵⁷Co generates two excited
states of ⁵⁷Fe where almost 99% decay occurs for the
lowest energy level which is 14.4 keV and is known
as the ground state. The decay of ⁵⁷Co generates two excited
states of ⁵⁷Fe where almost 99% decay occurs for the
lowest energy level which is 14.4 keV and is known
as the first excited state from ground state of ⁵Fe.
The states of ³⁷Fe where almost 99% decay occurs for the lowest energy level which is 14.4 keV and is known as the first excited state from ground state of 5 Fe. The ground state of 5 Fe does not undergo any kind of d lowest energy level which is 14.4 keV and is known
as the first excited state from ground state of ^{57}Fe .
The ground state of ^{57}Fe does not undergo any kind of
decay and the decay constant is zero for it due to zero
 as the first excited state from ground state of ⁵Fe.
The ground state of ⁵Fe does not undergo any kind of
decay and the decay constant is zero for it due to zero
energy level. Each nuclear level possesses specific
ene The ground state of ^{*s*T}Fe does not undergo any kind of decay and the decay constant is zero for it due to zero energy level. Each nuclear level possesses specific energy, spin, parity, and decay constant *k* mean proba decay and the decay constant is zero for it due to zero
energy level. Each nuclear level possesses specific
energy, spin, parity, and decay constant k mean prob-
ability of decay per unit time.
As shown in Figure 7(B), energy level. Each nuclear level possesses specific
energy, spin, parity, and decay constant k mean prob-
ability of decay per unit time.
As shown in Figure 7(B), due to the electrical mo-
nopole interaction, the electr energy, spin, parity, and decay constant k mean probability of decay per unit time.

As shown in Figure 7(B), due to the electrical mo-

nopole interaction, the electrical quadrupole interac-

tion, and the nuclear Zeem ability of decay per unit time.
As shown in Figure 7(B), due to the electrical mo-
nopole interaction, the electrical quadrupole interac-
tion, and the nuclear Zeeman interaction, the nuclear
energy levels of ^{57}Fe (gro As shown in Figure 7(B), due to the electrical mo-
nopole interaction, the electrical quadrupole interac-
tion, and the nuclear Zeeman interaction, the nuclear
energy levels of ^{57}Fe (ground and first excited states
wit nopole interaction, the electrical quadrupole interaction, and the nuclear Zeeman interaction, the nuclear energy levels of ⁵⁷Fe (ground and first excited states with nuclear spins of 1/2 and 3/2, respectively) can be sp tion, and the nuclear Zeeman interaction, the nuclear energy levels of ${}^{57}Fe$ (ground and first excited states with nuclear spins of $1/2$ and $3/2$, respectively) can be split by electric or magnetic fields acting at t energy levels of ⁵⁷Fe (ground and first excited states
with nuclear spins of 1/2 and 3/2, respectively) can
be split by electric or magnetic fields acting at the nu-
cleus. The hyperfine interactions are able to cause a with nuclear spins of 1/2 and 3/2, respectively) can
be split by electric or magnetic fields acting at the nu-
cleus. The hyperfine interactions are able to cause a
positive or negative shift of the peak position from
zer

 $#E \neq (I. Electrochem.)$ 2022, 28(3), 2108541 (12 of 31)
Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Mössbauer spectroscopy in data form by curve perfine interactions **fitting**
**fitting measured Musically there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Mössbauer spectroscopy in data form by curve perfine interactions existed in the nu** $\frac{f(k\#(J. Electron, 2022, 28(3), 2108541 (12 of 31))}{(12.6 \text{ rad})^2}$
Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Mössbauer spectroscopy in data form by curve perfine int **Figure 1.1**
 Example 1.1
 Example 1.1
 Example 1.2
 Example 1.2 $\pm \frac{\text{rk}\mathcal{L}_F^2(J. Electrochem.) 2022, 28(3), 2108541 (12 of 31)}{\text{Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Missbauer spectroscopy in data form by curve-
formalism measured Missbauer spectra, which gives in-
function about electrotnic, structural and magnetic
proporties of investigated material include: 1) Isomer
properties of investigated material include: 1) Isomer
material, structural properties and chemical bonding
shift (δ) arises from Coulombic interaction between
trung (Δ) arises from the interaction of electric field
and standard Missbauer **Instrumentation**
and
and the electric quadrilateral in the electric field
of electric field
and Miss$ \pm *Rectrochem.*) 2022, 28(3), 2108541 (12 of 31)
Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Mössbauer spectroscopy in data form by curve perfine interact the \mathcal{H}_2 arises from the interaction of electric material defined the surfactor of electric material and the interactions considering the various hy-
from Mössbauer spectroscopy in data form by eurve perfine interact $\Phi(E^{\omega}(L \cdot Electrockem, 2022, 28(3), 2108541 (12 of 31))$
Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Mössbauer spectroscopy in data form by eurve perfine interactions $\mathcal{L}(2, \mathcal{L})$

Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-

from Mössbauer spectroscopy in data form by curve perfine interactions existed in the nuclear locat **Example 12**
 Examply there are three main parameters obtained spectrum, analyzing it by considering the various hy-

from Missshauer spectroscopy in data form by curve perfine interactions existed in the nuclear locati **HEFT**(*L Electrochem*, 2022, 28(3), 2108541 (12 of 31)

Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-

Usually there are three main parameters obtained spectrum, a **1988**
 ugged the observation $\Phi(E \neq t)$. *Electrochem.*) 2022, 28(3), 2108541 (12 of 31)
 Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-

from Müssbauer spectro **Fig. 16** E4 (*Electrochem.*) 2022, 28(3), 2108541 (12 of 31)

Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-

from Mössbauer spectroscopy in data form by curve perf the $\frac{16}{2}\pi(LEctracken, 2022, 28(3), 2108541 (12 of 31))$
Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
from Mössbauer spectroscopy in data form by curve perfine interact

 $\text{LCE}(L\text{ }Electrochem.)$ 2022, 28(3), 2108541 (12 of 31)
Usually there are three main parameters obtained spectrum, analyzing it by considering the various hy-
m Mössbauer spectroscopy in data form by curve perfine interactions 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pro $28(3)$, 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physica 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr (3), 2108541 (12 of 31)

actrum, analyzing it by considering the various hy-

fine interactions existed in the nuclear location,

can study the configuration and distribution of or-

al electrons, the physical properties 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (12 of 31)

a parameters obtained spectrum, analyzing it by considering the various hy-

in data form by curve perfine interactions existed in the nuclear location,

ectra, whic

28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr 28(3), 2108541 (12 of 31)
spectrum, analyzing it by considering the various hy-
perfine interactions existed in the nuclear location,
we can study the configuration and distribution of or-
bital electrons, the physical pr

 $\#E\#(J. \text{Electrochem.})$ 2022, 28(3), 2108541 (13 of 31)
temperature during measurement, which make this sweep method in which a moving driver or velocity
instrument suitable to operate at a wide range of tem-
perature conditio $\exists \ell \neq (I. Electron, 2022, 28(3), 2108541 (13 of 31)$
temperature during measurement, which make this sweep method in which a moving driver or velocity
instrument suitable to operate at a wide range of tem-
perature conditions. Sche $\exists x \in \mathbb{R}$ $\exists x \in \mathbb{R}$ temperature during measurement, which make this sweep method in which a moving driver or velocity instrument suitable to operate at a wid **figure 10**
 $\frac{d}{dt}$ $\pm (k\mathcal{F}(J. Electron) 2022, 28(3), 2108541 (13 of 31)$

temperature during measurement, which make this sweep method in which a moving driver or velocity

instrument suitable to operate at a wide range of tem-

transducer is used t **EXAMPLE 11**
 Example 19
 Example 19
 Example absorber (sample under the study) instrument suitable to operate at a wide range of tem-
 Example 19
 Example instrument suitable to operate at a wide range of tem-
 $\pm \frac{1}{2}$ (*L Electrochem.*) 2022, 28(3), 2108541 (13 of 31)

temperature during measurement, which make this sweep method in which a moving driver or velocity

instrument suitable to operate at a wide range of tem-
 $\pm \frac{1}{2}$ (*k*²²(*k k betwochem*) 2022, 28(3), 2108541 (13 of 31)
temperature during measurement, which make this sweep method in which a moving driver or velocity
instrument suitable to operate at a wide range of **Example 19** and the source and detector of $14.4 \text{ keV} \gamma$ -rays, and is used to detect and some pind absorption of the source and is instrument suitable to operate at a wide range of tem-
transfluence is used to move the \pm ile $\frac{1}{2}$ (*L Electrochem*.) 2022, 28(3), 2108541 (13 of 31)

temperature during measurement, which make this sweep method in which a moving driver or velocity

instrument suitable to operate at a wide range of $\pm \frac{1}{2}$ (*L Electrochera*,) 2022, 28(3), 2108541 (13 of 31)
 comperature during measurement, which make this sweep method in which a moving driver or velocity

instrument suitable to operate at a wide range of te $4 \cdot 4 \cdot 2 \cdot 4$

temperature during measurement, which make this sweep method in which a moving driver or velocity

instrument suidable to operate at a wide range of term larandour f is used to move the source or sample r $\frac{1}{2}E^{\#}(L\ Etermechem.) 2022, 28(3), 2108541 (13 of 31)$
 instrument suitable to operate at a wide range of tem-
 instrument suitable to operate at a wide range of tem-
 instrument suitable to operate at a wide range of tem EVALUATION EXACT ENECTORET THE SET USING SUBSAT (13 of 31)
 Emperature during measurement, which make this sweep method in which a moving driver or velocity

instrument suitable to operate at a wide range of tem-

tra mperature during measurer are spectral in the spectra is the section of the solution of the solution of (A) continues the simulate this may be interesting that this may be the solution of (A) continues are determined a mo $28(3)$, $2108541(13 of 31)$
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitte 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted $28(3)$, 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmi 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted $28(3)$, 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmi $28(3)$, 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmi 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted $28(3)$, $2108541(13 of 31)$
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitte 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted $28(3)$, 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmi 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted 28(3), 2108541 (13 of 31)
sweep method in which a moving driver or velocity
transducer is used to move the source or sample re-
peatedly (so-called Doppler moving) with a specific
velocity, while γ -rays are transmitted Example 1920 and the memory of the memory and the memory and the memory of the memory of the memory of the source of sample repeatedly (so-called Doppler moving) with a specific velocity, while γ -rays are transmitted o 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (13 of 31)

ent, which make this sweep method in which a moving driver or velocity

the a wide range of tem-

illustration of (A) con-

peatedly (so-called Doppler moving) with

 $\frac{d}{dx}$ = $\frac{d$ $\#E\#$ (*J. Electrochem.*) 2022, 28(3), 2108541 (14 of 31)
instantaneous velocity of the source by advancing ent physical models, but only a few of these models
memory address one by one. The triangular wave-
form and 10 $\text{E} \{E \neq L\}$. *Electrochem.*) 2022, 28(3), 2108541 (14 of 31)

instantaneous velocity of the source by advancing ent physical models, but only a few of these models

memory address one by one. The triangular wave-

fo $\frac{45}{2}$ **Exerible 10.** Electrochem.) 2022, 28(3), 2108541 (14 of 31)

instantaneous velocity of the source by advancing contriphysical models, but only a few of these models

memory address one by one. The triangular w 4.3 instantaneous velocity of the source by advanced velocity. $222, 28(3), 2108541 (14 of 31)$

instantaneous velocity of the source by advancing ont physical models, but only a few of these models

memory address one by o $\frac{4!}{2}$ (*k Rectrochem.*) 2022, 28(3), 2108541 (14 of 31)

instantaneous velocity of the source by advancing contently produces the summer and published.

form and 1024 memory channels produce two mir-
 $\frac{1}{2}$ chanspectrum.

form and 1024 memory channels produce two mi-

ror-imaged Mössbaurs spectra each with 512 chan-

ror-imaged Mössbaurs spectra each with which the Six former to produce a model spectram with which

ror-imaged Mössbaurs spe ror-imaged Missbauer spectra each with 512 chan-

is software to produce a model spectrum with which

nels. With sufficiently good velocity linearity, the two measured spectrum could be compared, fitted, and

spectra can nels. With sufficiently good velocity linearity, the two measured spectrum could be compared, fitted, and
spectra can be easily combined (to increase the signal and product. The fitting of the Mossbauer spectrum
for noise spectra can be casily combined (to increase the signal analyzed. The fitting of the Mössbauer spectrum,

to noise ratio) to give one 512 channel Mössbauer should not only be carried out on the obtained data,

spectrum.
 to noise ratio) to give one 512 channel Missbauer should not only be carried out on the obtained data,

spectrum.

4.3 Data Analysis and Fitting to the first also consider a theoretical model. This is be-

4.3 Data Analys but first also consider a theoretical model. This is be-
4.3 Data Analysis and Fitting the acts fitting could get superficially unreasonable
4.2 Data Data form experiment, the next
chi-squared value (χ) if based on un **4.3 Data Analysis and Fitting** cause fitting could get superficially unreasonable
After obtaining data from experiment, the next chi-sequend value (χ) if based on unphysical model.

After obtaining data from experimen After obtaining data from experiment, the next

schies and collect (χ) if based on umphysical model.

step is analysis and fitting of the spectra to determine

Commonly, three are three different line shapes em-

the a step is analysis and fitting of the spectra to determine
the active phase sem-
the active phase structure and valence states of Fe in phoyed for modeling of a Müssbauer spectrum as
the catalyst. The fitting of data is usu the active phase structure and valence states of Fe in ployed for modeling of a Mossbauer spectrum as
the catalyst. The fitting of data is usually approximate shown in Figure 9. The combination of Lorentzian
delafter comp the catalyst. The fitting of data is usually approximat-
shown in Figure 9. The combination of
ed after comparison with previously available data in
and Gaussian line resultant is called as the
help in the iterature or da after comparison with previously available data in and Gaussian line resultant is called as the Voigt line

literature or database system. The past data can shape which is referred to as a pseudo-Voigt function

lip in th the literature or database system. The past data can

shape which is referred to as a pseudo-Voigt function

helap in the attribution and screening of the object

since shape, valence state, spin state and coordination

E help in the attribution and screening of the object

since it is a linear mixture of the two shapes, valence state, spin state and coordination

structure based on the analytical and filted results. Tratory to laboratory. phase, valence state, spin state and coordination Frror in analysis is obvious and it varies from labor-
structure based on the analytical and fitted results. Tatoy to laboratory. Double traens are typically state
of Ther structure based on the analytical and fitted results. ratory to laboratory. Doublet areas are typically stated
Therefore, the database system was developed which to no better than one significant place alter the deci-
for Therefore, the database system was developed which

is a globally connocted network of different ecnters

mall somer shift (δ) and quadrupole splitting (Δ) values

is a globally connocted network of different ecnter

ters collect data from the Müssbauer analysis of the field (*B*) values are exceedingly crratic. In general, posibly absolut reduction to the upublished literature where it can be used for fitting Mössbauer technique can published literature where it can be used for fitting Mössbauer technique can detect down to 1% of the encrits of future materials. One of the biggest to fall normal Fis in the sample, but challenging for the secure and sa and analysis of future materials. One of the biggest total normal Fc in the sample, but challenging for the centres of Müssbaucr effect, where the reference and samples containing less than 0.1% weight Fe, the data collec centers of Misschauer effect, where the reference and samples containing less than 0.1% weight Fc, the data collected from the whole world for different Misschauer signal is available to be largely enhanced Misschauer sim data collected from the whole world for different Missbauer signal is available to be largely enhanced
Missbauer samples, is Missbauer Effect Data Centre if the emrichd isotope ⁷Fe is used for preparing the
Missbauer sa Messbauer samples, is Missbauer Fiffect Data Center if the enriched isotope ⁹Fe is used for preparing the andarm Institute of Chemisel Sciencess, Chinese somples. Analemy of Sciences (https://med. dicp.ac.en/)⁶⁴¹. Tak

电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (14 of 31)
source by advancing ent physical models, but only a few of these models
The triangular wave-
have been compared and published.
els produce two mir-
A variety of physi

 $\frac{4}{3}$ for the source by advancing and $\frac{4}{3}$ channel $\frac{4}{3}$ controllar to source by advancing and physical models, but only a few of these models
memory address one by one. The triangular wave-
form and 1024 mem \pm *H*/ \pm ²/*L Electrochem.*) 2022, 28(3), 2108541 (14 of 31)

instantaneous velocity of the source by advancing ent physical models, but only a few of these m

memory address one by one. The triangular wave-

form a **Example 19**
 Example 19 $\frac{1}{2}$ **Example 18**
 the $\mathcal{C}_t(L\ Eermohen, 12022, 28(3), 2108541 (14 of 31)$

instantaneous velocity of the source by advancing ent physical models, but only a few of these models

memory address one by one. The triangular wave-

have been compared $\frac{4}{5}$ ($\frac{4}{5}$))) instantaneous velocity of the source by advancing can physical models, but only a few of these models
memory address one $4.8 \div 2(1.5 \times 10^{13} \text{m})$

instantaneous velocity of the source by advancing ent physical models, but only a few of these models

memory address one by one. The triangular wave-

form and 1024 memory charges produce two the $2^{\pm}(L \cdot R/eromshem.)$ 2022, 28(3), 2108541 (14 of 31)

instantaneous velocity of the source by advancing ent physical models, but only a few of these models

memory address one by one. The triangular wave-

have been comp instantaneous velocity of the source by advancing

ent physical models, but only a few of these models

memory address one by one. The triangular wave-

have been compared and published.

form and 1024 memory channels pro instantaneous velocity of the source by advancing ent physical models, but only a few of these models
nemmory address one by one. The triangular vavo-
hear form and 1024 memory channels produce two mi-
 \sim A variety of p memory address one by one. The triangular wave-

form and 1024 memory channels produce two mir-

A variety of physical models are used by the analy-

form and 1024 memory channels produce two mir-

a such varyety of physic 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which

m 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which

m (3) , 2108541 (14 of 31)
t physical models, but only a few of these models
we been compared and published.
A variety of physical models are used by the analy-
software to produce a model spectrum with which
easured $28(3)$, 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with whi $28(3)$, $2108541 (14 of 31)$

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)
ent physical models, but only a few of these models
have been compared and published.
A variety of physical models are used by the analy-
sis software to produce a model spectrum with which
measu 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
)

but only a few of these models

and published.

al models are used by the analy-

e a model spectrum with which

could be compared, fitted, and

g of the Mössbauer spectrum

arried out on the obtained data,

a theoretic 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)
ent physical models, but only a few of these models
have been compared and published.
A variety of physical models are used by the analy-
sis software to produce a model spectrum with which
measu 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 28(3), 2108541 (14 of 31)

ent physical models, but only a few of these models

have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which
 Example 18 and Solution and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which

measured spectrum could be compared, fitted, and

analyzed. The fitting o t physical models, but only a few of these models
we been compared and published.
A variety of physical models are used by the analy-
software to produce a model spectrum with which
assured spectrum could be compared, fit have been compared and published.

A variety of physical models are used by the analy-

sis software to produce a model spectrum with which

measured spectrum could be compared, fitted, and

analyzed. The fitting of the M A variety of physical models are used by the analy-
sis software to produce a model spectrum with which
measured spectrum could be compared, fitted, and
analyzed. The fitting of the Mössbauer spectrum
should not only be c sis software to produce a model spectrum with which
measured spectrum could be compared, fitted, and
analyzed. The fitting of the Mössbauer spectrum
should not only be carried out on the obtained data,
but first also cons measured spectrum could be compared, fitted, and
analyzed. The fitting of the Mössbauer spectrum
should not only be carried out on the obtained data,
but first also consider a theoretical model. This is be-
cause fitting be compared, fitted, and
the Mössbauer spectrum
out on the obtained data,
oretical model. This is be-
uperficially unreasonable
ased on unphysical model.
different line shapes em-
 $\frac{1}{10}$ Mössbauer spectrum as
ombinati analyzed. The fitting of the Mössbauer spectrum
should not only be carried out on the obtained data,
but first also consider a theoretical model. This is be-
cause fitting could get superficially unreasonable
chi-squared

should not only be carried out on the obtained data,
but first also consider a theoretical model. This is be-
cause fitting could get superficially unreasonable
chi-squared value (χ^2) if based on unphysical model.
Com but first also consider a theoretical model. This is be-
cause fitting could get superficially unreasonable
chi-squared value (χ^2) if based on unphysical model.
Commonly, there are three different line shapes em-
ploy cause fitting could get superficially unreasonable
chi-squared value (χ^2) if based on unphysical model.
Commonly, there are three different line shapes em-
ployed for modeling of a Mössbauer spectrum as
shown in Figur chi-squared value (χ^2) if based on unphysical model.
Commonly, there are three different line shapes em-
ployed for modeling of a Mössbauer spectrum as
shown in Figure 9. The combination of Lorentzian
and Gaussian line Commonly, there are three different line shapes em-
ployed for modeling of a Mössbauer spectrum as
shown in Figure 9. The combination of Lorentzian
and Gaussian line resultant is called as the Voigt line
shape which is re samples. own in Figure 9. The combination of Lorentzian
d Gaussian line resultant is called as the Voigt line
ape which is referred to as a pseudo-Voigt function
ce it is a linear mixture of the two shapes.
Error in analysis is ob and Gaussian line resultant is called as the Voigt line
shape which is referred to as a pseudo-Voigt function
since it is a linear mixture of the two shapes.
Error in analysis is obvious and it varies from labo-
ratory to shape which is referred to as a pseudo-Voigt function
since it is a linear mixture of the two shapes.
Error in analysis is obvious and it varies from labo-
ratory to laboratory. Doublet areas are typically stated
to no be since it is a linear mixture of the two shapes.

Error in analysis is obvious and it varies from laboratory to laboratory. Doublet areas are typically stated

to no better than one significant place after the deci-

mal. Error in analysis is obvious and it varies from laboratory to laboratory. Doublet areas are typically stated to no better than one significant place after the decimal. Isomer shift (δ) and quadrupole splitting (Δ) v ratory to laboratory. Doublet areas are typically stated
to no better than one significant place after the deci-
mal. Isomer shift (δ) and quadrupole splitting (Δ) val-
ues are often \pm 0.02 mm·s⁻¹, and magnetic

is a globally connected network of different centers mal. Isomer shift (δ) and quadrupole splitting (Δ) val-
for Moissbauer cifet reference and data. These cen-
der as are often a flo.02.0 mm s⁻, and magnetic hype for Mösshauer effect reference and data. These cen-

cers are often \pm 0.02 mm -s'₁, and magnetic hyperfine

ters collect data from the Mossbauer analysis of the field (*B*) values are exceedingly reraic. In general,
 to no better than one significant place after the deci-
mal. Isomer shift (δ) and quadrupole splitting (Δ) values
are often \pm 0.02 mm·s⁻¹, and magnetic hyperfine
field (B) values are exceedingly erratic. In g mal. Isomer shift (δ) and quadrupole splitting (Δ) values are often \pm 0.02 mm · s⁻¹, and magnetic hyperfine field (B) values are exceedingly erratic. In general, Mössbauer technique can detect down to 1% of t ues are often \pm 0.02 mm ·s⁻¹, and magnetic hyperfine
field (*B*) values are exceedingly erratic. In general,
Mössbauer technique can detect down to 1% of the
total normal Fe in the sample, but challenging for the
sam field (*B*) values are exceedingly erratic. In general,
Mössbauer technique can detect down to 1% of the
total normal Fe in the sample, but challenging for the
samples containing less than 0.1% weight Fe, the
Mössbauer si Mössbauer technique can detect down to 1% of the
total normal Fe in the sample, but challenging for the
samples containing less than 0.1% weight Fe, the
Mössbauer signal is available to be largely enhanced
if the enriched % of the
g for the
Fe, the
Fe, the
enhanced
aring the
de OECs,
sst equal
sed cata-
d of Fe³⁺
mply ap-
nes, only
pecies in
ll spectra
D Loren-
, and the
pecies in
Loren-
.
Loren-
.
Loren-
.
Loren-
.
Loren-
.

d fine pe total normal Fe in the sample, but challenging for the samples containing less than 0.1% weight Fe, the Mössbauer signal is available to be largely enhanced if the enriched isotope ${}^{57}Fe$ is used for preparing the sampl mples containing less than 0.1% weight Fe, the sissbauer signal is available to be largely enhanced the enriched isotope ⁵⁷Fe is used for preparing the mples. Taking an example of NiFe-(oxy)hydroxide OECs, nerally two s Mössbauer signal is available to be largely enhanced
if the enriched isotope ⁵⁷Fe is used for preparing the
samples.
Taking an example of NiFe-(oxy)hydroxide OECs,
generally two symmetrical peaks of almost equal
height if the enriched isotope ⁵⁷Fe is used for preparing the samples.

Taking an example of NiFe-(oxy)hydroxide OECs, generally two symmetrical peaks of almost equal height are expected for pre-OER powder-based cata-lyst, ind

Example 1.1 and the fitted with the spectral method of the *spectral method in* and the spectral method of the spectral method of the method of the spectral method of the spectral method of the spectral method of the sp **Example the solution of Example CER**-emhancing impact was
 Example OER-emhancing impact was
 Example the solution of $\frac{1}{2}$
 Example the solution of $\frac{1}{2}$
 Example the solution of $\frac{1}{2}$
 Example the Velocity (mm/s)
 Shows the different conduction of the shapes enployed for approximation of which showed similar improvement in OER activity

practically measured "Fe Morssbeure spectra. (color on line) of NO. Nonchel **Eignre 9** Different line shapes employed for approximation of
which showed similar improvement in OER activity
practically measured ⁵re Missionary eperta (color on line) of NiO. Nonethelets, the degree of Ce^r -induce reparely. The spectra and the super-

interaction of NO. Nonetheles, the degree of Ce¹-induced enhancement $(T_{\rm vir})$, and the relative resonance area

hancement was near to that of Fe¹⁺-induced enhancement

All-franxim Franchinal contents in the state of the state of the state of the matter of the cataloge of the different components of the absorption parameter (A) of the different components of the absorption parameter (A) of the diffe half-maximum (I^*_{∞}) , and the relative resonance ament. However, until 2014-2015, no significant effort

(A) of the different components of the shorpton pat-

(A) of the different components of the shorpton pat-

tens. half-maximum (T_{eq}) , and the relative resonance area

was made to give a logical and acceptable explana-

(A) of the different components of the absorption pat-

terms. In the case of two different kinds of Fe³⁺ dec (A) of the different components of the absorption pat-

tion for this enhancement. And for more the species in the system which could arise due to different kinds of Fe³

decades, these findings of Fe impurities-ba

spe terns. In the case of two different kinds of $Fe⁺$ decades, these lindings of Fe imputties-based engences in the system which could arise due to differ-
ence in coordination at the surface and inside to life-
time of ence in coordination at the surface and inside the lat-

completely hidden.

tice, the fitting of the spectrum may not be simple

Since Mössbauer study of NiFe-C

and could require fitting with two doublets or one reasona

Half-Half-Maximum (*Y***_m**), and the relative resonance area the relation of the relation of the angular contention of the angular contention of the relation of the relation of the relation of the relation of the relatio **Example the different components of the absorption** of the different components of the patent of the patent of the absorption of the different components of the absorption pat-
 Example of the strength components of the Example the control in the cases of two different color of the significant
 Examplementarial
 **Examplementarism Constructed and the significant

Examplementarism Constructed** and \mathbf{r} the significant
 Examplemen Solution

Solution and the system of the significant research in the system of the significant

species in which the discovered that when Fe impurities are injected into NiO andots, the OER activity

increases¹⁹¹. Aft **Example 19** materials. Corrigan conducted one of the significant

researches in which he discovered that when Fe impurities
 $\frac{1}{4}$ of $\frac{$ **The species of the spectrum may not be simpled to the spectrum may not be summarized for their impact once and internal in the spectrum may not be the spectrum may of the spectrum may other and outder of the spectrum may** The maximal could require the species of the spectrum may not be sumpted to the could require the could require the special of the spectral of the special of the spectral of the spectral of the spectral of the spectral of **Example 1.1** The meanse of two different kinds of Fe¹

Figure 9 Different line shapes employed for approximation of the preformance by impregrating into NiO electrodys¹⁹¹.
 Primere 9 Different line shapes employed **Figure 9 Different limes of the spectra as Feederal Confirmed intervention and the spectra as Federal Confirmed intervention of Figure 9 Different line shapes employed for approximation of the spectra confirmed be confir** 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of the 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of the $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one o 28(3), 2108541 (15 of 31)

search on electrochemical water splitting processes

utilizing non-precious metal oxides and hydroxides to

replace the precious metal ones and costly anodic

materials. Corrigan conducted one o $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one o $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one o $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one o $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one o 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of th 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of th 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of th 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of th 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of th $28(3)$, 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one o search on electrochemical water splitting processes
search on electrochemical water splitting processes
utilizing non-precious metal ones and costly anodic
materials. Corrigan conducted one of the significant
researches i search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of the significant
researches in utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials. Corrigan conducted one of the significant
researches in which he discovered that when Fe impu-
rities are i replace the precious metal ones and costly anodic
materials. Corrigan conducted one of the significant
researches in which he discovered that when Fe impu-
rities are injected into NiO anodes, the OER activity
increases[[] materials. Corrigan conducted one of the significant
researches in which he discovered that when Fe impu-
rities are injected into NiO anodes, the OER activity
increases^[32]. Afterward, several other transition metal
ra earches in which he discovered that when Fe impu-
es are injected into NiO anodes, the OER activity
reases^[32]. Afterward, several other transition metal
ions were investigated for their impact on OER
formance by impregn rities are injected into NiO anodes, the OER activity
increases^[32]. Afterward, several other transition metal
cations were investigated for their impact on OER
performance by impregnating into NiO electrodes^[35].
But increases^[32]. Afterward, several other transition metal
cations were investigated for their impact on OER
performance by impregnating into NiO electrodes^[35].
But not a comparable OER-enhancing impact was
observed fr cations were investigated for their impact on OER
performance by impregnating into NiO electrodes^[35].
But not a comparable OER-enhancing impact was
observed from any other *d*-block element except Ce⁴⁺,
which showed performance by impregnating into NiO electrodes¹³⁵.
But not a comparable OER-enhancing impact was
observed from any other *d*-block element except Ce⁺⁺,
which showed similar improvement in OER activity
of NiO. Nonethe But not a comparable OER-enhancing impact was
observed from any other d -block element except Ce^{+t},
which showed similar improvement in OER activity
of NiO. Nonetheless, the degree of Ce⁺¹-induced en-
hancement was n **Example 19**
 Example 19
 Example 19
 Example 2014
 Example 2014
 Example 2014
 Example 2014
 Example 2014
 Example 30
 Example 19
 Example 19 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (15 of 31)
search on electrochemical water splitting processes
utilizing non-precious metal oxides and hydroxides to
replace the precious metal ones and costly anodic
materials.

species in the system which could arise due to differ-

lanced OER performance of Ni-based materials were

einc, the filting of the spectrum may not be simple

circ, the filting of the spectrum may not be simple

complete tice, the fitting of the spectrum may not be simple

since Mossbauer study of NiFe-OECs provided

and could require fitting with two doublets are one simple. The presence of high valence

doublet and one singlet. The pres could require fitting with two doublets or one

some reasonable explanations to this unprecedented

but and one signica. The presence of high valence

such as Fe^t could be confirmed if the spectral

and signical doublet Source and one singular conservation of the presence of napar values of the *singular conservation* and the sycket Fr such as Fr could are constrained it to spectral

respect to the simulate parameters for the constrained of Niesbauer electrochemical

could not be fitted with only one doublet and an iso-

we discuss the key challengin could not be intered with any one odubits and an iso-

end the metally among the since a very small among the since the since the since the since of the since the me smit is onserved around are on ever negative

we discuss the key challenging issues and parameters

be confirmed by comparing pre-OER and post-OER

for OER reaction to observe the evolution of the

spectra by fitting c sinc. Moreover, stansity or catalystrative can also the dovelop an *in-situloperando* Mössbauer instrument
the confirmed by comparing pre-OFR and post-OFR to OER reaction to observe the colution of the
spectra by fitting observed from any other *d*-block element except Ce⁺⁺, which showed similar improvement in OER activity of NiO. Nonetheless, the degree of Ce⁴⁺-induced enhancement. However, until 2014-2015, no significant effort was which showed similar improvement in OER activity
of NiO. Nonetheless, the degree of Ce⁴⁺-induced en-
hancement was near to that of Fe³⁺-induced en-
hancement. However, until 2014-2015, no significant effort
was made t of NiO. Nonetheless, the degree of Ce^{*1}-induced en-
hancement was near to that of Fe³⁺-induced enhance-
ment. However, until 2014-2015, no significant effort
was made to give a logical and acceptable explana-
tion for hancement was near to that of Fe³⁺-induced enhance-
ment. However, until 2014-2015, no significant effort
was made to give a logical and acceptable explana-
tion for this enhancement. And for more than two
decades, thes ment. However, until 2014-2015, no significant effort
was made to give a logical and acceptable explana-
tion for this enhancement. And for more than two
decades, these findings of Fe impurities-based en-
hanced OER perfo was made to give a logical and acceptable explana-
tion for this enhancement. And for more than two
decades, these findings of Fe impurities-based en-
hanced OER performance of Ni-based materials were
completely hidden.
S tion for this enhancement. And for more than two
decades, these findings of Fe impurities-based en-
hanced OER performance of Ni-based materials were
completely hidden.
Since Mössbauer study of NiFe-OECs provided
some rea decades, these findings of Fe impurities-based en-
hanced OER performance of Ni-based materials were
completely hidden.
Since Mössbauer study of NiFe-OECs provided
some reasonable explanations to this unprecedented
OER ac hanced OER performance of Ni-based materials were
completely hidden.
Since Mössbauer study of NiFe-OECs provided
some reasonable explanations to this unprecedented
OER activity, it became crucial to develop and im-
prove completely hidden.

Since Mössbauer study of NiFe-OECs provided

some reasonable explanations to this unprecedented

OER activity, it became erucial to develop and im-

prove the *in-situloperando* Mössbauer electrochemi-Since Mössbauer study of NiFe-OECs provided
some reasonable explanations to this unprecedented
OER activity, it became crucial to develop and im-
prove the *in-situ/operando* Mössbauer electrochemi-
cal setup and experime some reasonable explanations to this unprecedented
OER activity, it became crucial to develop and im-
prove the *in-situ/operando* Mössbauer electrochemi-
cal setup and experimental understandings. Firstly,
we discuss the OER activity, it became crucial to develop and im-
prove the *in-situ/operando* Mössbauer electrochemi-
cal setup and experimental understandings. Firstly,
we discuss the key challenging issues and parameters
to develop a prove the *in-situ/operando* Mössbauer electrochemical setup and experimental understandings. Firstly, we discuss the key challenging issues and parameters to develop an *in-situ/operando* Mössbauer instrument for OER rea cal setup and experimental understandings. Firstly,
we discuss the key challenging issues and parameters
to develop an *in-situ/operando* Mössbauer instrument
for OER reaction to observe the evolution of the
chemical stat we discuss the key challenging issues and parameters
to develop an *in-situ/operando* Mössbauer instrument
for OER reaction to observe the evolution of the
chemical state of the iron dynamically in the catalyst
and struct to develop an *in-situ/operando* Mössbauer instrument
for OER reaction to observe the evolution of the
chemical state of the iron dynamically in the catalyst
and structure of the catalyst during electrochemical
reactions.

ⁱ if $k\neq (L \text{ *Electrochem.*})$ 2022, 28(3), 2108541 (16 of 31)

attached with CHI660E electrochemical station. The and easily machined material

Doppler velocity of the spectrometer is calibrated sorption property. An elect

EMALE 1989
 EMALE 1989 $#E\# (J. \nElectrochem.) 2022, 28(3), 2108541 (16 of 31)$

attached with CHI660E electrochemical station. The and easily machined material with very low γ -ray ab-

Doppler velocity of the spectrometer is calibrated sorption prope $# \langle \mathcal{K}^{\#}(J. \text{Electrochem.}) 2022, 28(3), 2108541 \text{ (16 of 31)}$

attached with CHI660E electrochemical station. The and easily machined material with very low γ-ray ab-

Doppler velocity of the spectrometer is calibrated sorpt national recommended standardization. Generally, **Example 1988**
 Example 1988
 Example 1988
 Example 1999
 Example 1999 EVALUATION ENTITLE (FOCUS ACCONDMENTATION CONTROLLATION CONTROLLATION CONTROLLATION CONTROLLATION CONTROLLATION
 EXECUTE: THE SCONDIST CONTROLLATION CONTROLLATION EXECUTION THE SCONDIST CONTROLLATION EXPLAINING THE SC **EVALUATION**
 EXECUTE: Extended with CHI660E electrochemical station. The and easily machined material with very low y-ray ab-

Doppler velocity of the spectrometer is calibrated sorption property. An electrochemical re **Example 19**
 Example 19 Example 10

We diff-difference that the self-developed several the self-state of intervals and the self-state of the self-developed several serveral several several several the respect to α -Fe at 298 K according to t **EVALUATION EXAMORE (EXAMORE 1992)**, 2008541 (16 of 31)
 Example 1998 whether when the spectrometer is calibrated sorption property. An electrochemical reaction cell

Doppler velocity of the spectrometer is calibrated s **HE-F(L Electrochem.) 2022. 28(3), 2108541 (16 of 31)**
 1112chocharm ME-MEGOOE electrochemical station. The and easily machined material with very low y-ray ab-
 1200 Doppler velocity of the spectrometer is calibrated **EVALUATION THE CONSECT (EXECT AND ART (16 of 31)**
 EUROPER VIOLET AND CONSECT AND CONSECT AND AND CONSECT AND CONSECT AND ART (16 of 21)
 EUROPER VIOLET (2008) EVALUATION CONSECT AND ART (2009) EVALUATION MATEL WI EXALURE 1999
 EXALURE 1999 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situ/operando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for $in-situ/operando$ Mössbauer
spectral measurements is shown in Figure 1 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situ/operando* M össbauer
spectral measurements is shown 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situ/operando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 28(3), 2108541 (16 of 31)
and easily machined material with very low γ -ray ab-
sorption property. An electrochemical reaction cell
with high versatility for *in-situloperando* Mössbauer
spectral measurements is shown i 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (16 of 31)

chemical station. The and easily machined material with very low γ-ray ab-

rometer is calibrated sorption property. An electrochemical reaction cell

according to

right©2021. ELSEVIER B.V. Reproduced with permission. (color on line)

working electrode area leaves from upper side of **EVALUATION**
 EXALUAT CONDEGENDER (Example 1922, 28(3), 2108541 (17 of 31)
 Exaction coll where the electrolyte enters from lower window of the same size as the *in-situloperando* cell,

part of reference electrode an **EVALUATION**
 EXALUAT CONDEVALUAT CONDEND
 EXALUAT CONDEND
 EXAL $\pm \frac{(\cancel{E} + \cancel{E}) \cdot E \cdot (E \cdot E \cdot \text{F})}{(\cancel{E} + \cancel{E}) \cdot E \cdot \text{F}}$

Traction cell where the electrolyte enters from lower window of the same size as the *in-situloperando* cell,

part of reference electrode and after passing throu **Example 19**
 Reaction cell where the electrolyte enters from lower window of the same size as the *in-situloperando* cell,

part of reference electrode and after passing through is pressed to the cell's front, ensuring $4E\div(L \nEleurochem) 2022, 28(3, 2108541 (17 of 31)$

reaction cell where the electrolyte enters from lower window of the same size as the *in-situloperando* cell,

part of reference electrode and after passing through is pressed t **EVALUATION**
 EXECUTE: Electrochem.) 2022, 28(3), 2108541 (17 of 31)
 Exaction coll where the electrolyte enters from lower window of the same size as the *i*

part of reference electrode and after passing through is **Example 19**
 EXAMPLE 19

The fabrication of electrode for *in-situloperando* tional ³Fe Mässbauer spectra measurement, in which
Mössbauer test is very sensitive task and necds high the ⁸^{Fe} nucleus, one kind of the Fe isotopes with on-
Micro Mossbauer test is very sensitive task and needs high the ⁵Fe nucleus, one kind of the Fe isotopes with onti-
nite of the catalyst. In a typical OFR experiment in electrochemical ^{5F}e Missbauer testing, the catalyst is
 attention. For this purpose, the key step is to prepare $1y \sim 2.2\%$ natural abundance. For the *in-situdoperando*
ink of the caths/st. In a typical ORR cypreiment in electrochemical ³Fe Müssbauer testing, the catalyst ink of the catalyst. In a typical OER experiment in electrochemical ⁷Fe Mössbauer testing, the catalyst is
our hab, 10 mg of catalyst powder is added into solu-
recommended to be prepared using enriched ⁵Fe iso-
orion our lab, 10 mg of catalyst powder is added into solu-
recommended to be prepared using emriched ⁵Fe iso-
into continuing 40 µL Nation, 480 µL isopropanol, topos for calmancing the resonant absorption signals.
and 480 µL

 $\# \# \# (J. Electrochem.)$ 2022, 28(3), 2108541 (17 of 31)
reaction cell where the electrolyte enters from lower window of the same size as the *in-situloperando* cell,
part of reference electrode and after passing through is presse part of reference electrode and after passing through 28(3), 2108541 (17 of 31)
window of the same size as the *in-situ/operando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situ/operando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)

window of the same size as the *in-situ/operando* cell,

is pressed to the cell's front, ensuring that the Möss-

bauer γ -rays only can enter from the cell's window,

and the Mössbauer γ -r 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays (3), 2108541 (17 of 31)

mdow of the same size as the *in-situ/operando* cell,

pressed to the cell's front, ensuring that the Möss-

uer γ -rays only can enter from the cell's window,

d the Mössbauer γ -rays in othe 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (17 of 31)

lyte enters from lower window of the same size as the *in-situ/operando* cell,

after passing through is pressed to the cell's front, ensuring that the Möss-

s fr

 $\pm k \neq 0$. *Electrochem.*) 2022, 28(3), 2108541 (17 of 31)

the electrolyte enters from lower

window of the same size as the *in-situ/operand*

ctrode and after passing through is pressed to the cell's front, ensuring t **EVALUATION**
 EXALUATION THE CONTEXANT (17 (T31)
 EXALUATE:
 EVALUATION THE THE CONSERV (FOR THE THE CONSERVANT (17 of 31)
 Fraction cell where the electrolyte enters from lower window of the same size as the *in-situ/operundo* cell,

part of reference clectrode and after passi **ig** $f(\frac{2\pi}{4})$. *Electrochem*, 2022, 28(3), 2108541 (17 of 31)

practicion cell where the clectrolyte caters from lower window of the same size as the *in-situtogecuado* cell,

part of reference electrode and after pas **EVALUATION**
 Example 19 mg
 Ex ig the $\frac{4}{3}$ the $\frac{4}{3}$ Electrochem.) 2022, 28(3), 2108541 (17 of 31)

reaction coll where the electrolyte enters from lower window of the same size as the *in-situ/operando* cell,

part of reference clectrode and reaction cell where the electrolyte cursor and since several in the variable cells, the simulatoperando cell,
part of reference electrode and after passing through in pressed to the same size as the in-situatioperando cel reaction cell where the electrolyte enters from lower
window of the same size as the *in-stituloperando* cell,
part of reference electrode and after passing through
the pressed to the ed!'s front, ensuing that Miss-
parti part of reference electrode and after passing through

is pressed to the cell's front, ensuring that the Möss-

vorking electrode are lacent of the base from upper side of baser y-rays any can enter from the cell's window working electrode area leaves from upper side of bauer y-rays only ean enter from the cell's window, counter electrole. This kind of flow style can help to and the Mossbauer y-rays in other directions are contrelected. Th counter electrode. This kind of flow style can help to

and the Müssbauer γ -rays in other directions are

maintain the pH during the electrochemical reaction. Shielded by the lead plate. We call this specific lead

The maintain the pH during the electrochemical reaction.

Sincelleded by the lead plate. We call this specific lead

The flow rate of both pumps kccps same during the plate a Missbaurer spectrometre collimator.

The flow rate The flow rate of both pumps keeps same during the

reaction and the amount of electrolyte in a beaker

centeration and the moment of electrolyte in a beaker

centeration is recommended in case of normal iron containing

t reaction and the amount of electrolyte in a beaker

fenerally, $5 \sim 10$ mg Fe cm³ of absorber thickness

should be cnosed such as 100 ~ 200 mL to maintain is recommended in case of normal iron containing

the pH of 0.1 should be enough such as 100 ~ 200 mL to maintain is recommended in case of normal iron containing
the pH of 0.1 mol - L⁺ KOH solution. Substance used in eatalyst preparation for a conven-
The fabrication of electrode f the pH of 0.1 mol-L" KOH solution.

The fabrication of clectroche for *in-situal-pertando*

The fabrication of clectrochemic of correct and incell and incell and the periodiscurs pectra measureman, in which

Missishauer t 28(3), 2108541 (17 of 31)
window of the same size as the *in-situ/operando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situ/operando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situ/operando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays 28(3), 2108541 (17 of 31)
window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays **Excess transformation** sizes as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ-rays only can enter from the cell's window,
and the Mössbauer γ-rays in other directions are
s window of the same size as the *in-situloperando* cell,
is pressed to the cell's front, ensuring that the Möss-
bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays in other directions are
sh is pressed to the cell's front, ensuring that the Mössbauer γ -rays only can enter from the cell's window, and the Mössbauer γ -rays in other directions are shielded by the lead plate. We call this specific lead plate bauer γ -rays only can enter from the cell's window,
and the Mössbauer γ -rays in other directions are
shielded by the lead plate. We call this specific lead
plate a Mössbauer spectrometer collimator.
Generally, $5 \sim$ and the Mössbauer γ -rays in other directions are
shielded by the lead plate. We call this specific lead
plate a Mössbauer spectrometer collimator.
Generally, $5 \sim 10$ mg Fe cm⁻² of absorber thickness
is recommended i shielded by the lead plate. We call this specific lead
plate a Mössbauer spectrometer collimator.
Generally, $5 \sim 10$ mg Fe cm² of absorber thickness
is recommended in case of normal iron containing
substance used in ca plate a Mössbauer spectrometer collimator.

Generally, $5 \sim 10$ mg Fe cm² of absorber thickness

is recommended in case of normal iron containing

substance used in catalyst preparation for a conven-

tional ⁵⁷Fe Möss Generally, $5 \sim 10$ mg Fe cm² of absorber thickness
is recommended in case of normal iron containing
substance used in catalyst preparation for a conven-
tional ⁵⁷Fe Mössbauer spectra measurement, in which
the ⁵⁷Fe is recommended in case of normal iron containing
substance used in catalyst preparation for a conven-
tional ⁵Fe Mössbauer spectra measurement, in which
the ⁵Fe nucleus, one kind of the Fe isotopes with on-
ly ~ 2.2% substance used in catalyst preparation for a conventional ⁵Fe Mössbauer spectra measurement, in which
the ⁵Fe nucleus, one kind of the Fe isotopes with on-
ly ~ 2.2% natural abundance. For the *in-situ/operando*
elect tional ⁵⁷Fe Mössbauer spectra measurement, in which
the ⁵⁷Fe nucleus, one kind of the Fe isotopes with on-
ly ~ 2.2% natural abundance. For the *in-situ/operando*
electrochemical ⁵⁷Fe Mössbauer testing, the catalyst the ⁵⁷Fe nucleus, one kind of the Fe isotopes with on-
 $ly \sim 2.2\%$ natural abundance. For the *in-situloperando*
electrochemical ⁵⁷Fe Mössbauer testing, the catalyst is
recommended to be prepared using enriched ⁵⁷Fe $\frac{1}{2}N \sim 2.2\%$ natural abundance. For the *in-situloperando*
electrochemical ³⁷Fe Mössbauer testing, the catalyst is
recommended to be prepared using enriched ³⁷Fe iso-
topes for enhancing the resonant absorption electrochemical ³⁷Fe Mössbauer testing, the catalyst is
recommended to be prepared using enriched ³⁷Fe iso-
topes for enhancing the resonant absorption signals.
Compared with the window material and the carbon
paper s commended to be prepared using enriched ⁵⁷Fe iso-

exercises for enhancing the resonant absorption signals.

Impared with the window material and the carbon

per substrate, the electrolyte solution is the greatest

ectin

part in the OER reaction and enough amount of Fe

content to detect good quality spignals.

On the other good quality spignals.

On the other good quality signals.

On the other hand, we prefer a continuous flow of hours content to detect good quality signals.

and removal of applied potentials, and then alter 4%

on the other hand, we prefer a continuous flow of thous to 22 hours when the clectrode is fully drive
dectrodyte rather than On the other hand, we prefer a continuous flow of
bours to 72 hours when the electrode is fully dried.
Some time as using a small amount of electrolyte and
the structure capability at during electrode is they are therefor electrolyte rather than changing electrolyte after

miss will give a clear understanding about the struc-

some time as using a small amount of electrolyte and

ture stability adit in erequired for recovering the o-

high some time as using a small amount of electrolyte and

highly are furge slobility and time required for recovering the

highly are timited between celectroscondalizer and states are riginal structure capability of the cata highly active electrocatalyst may result in change of

priginal structure capability of the elatalyst. If the

electrolyte which could alter the reaction

pre-OFR and post-OFB and post-OFB are solicitated as a stable stru pH of the electrolyte which could alter the reaction

dynamics. Hence, a continuous flow of electrolyte

dynamics. Hence, a continuous flow of electrolyte

that the catalyst has a disposition will prevent this kind of pH namics. Hence, a continuous flow of electrolyte lar and show symmetric, then it could be considered
ough reactior will prevent this kind of pH from that the catalyst has a stable stattere and otes so to
maging during the through reactor will prevent this kind of pH from

charging during the reaction even at longer rm. And undergo systemetral transformation, and the role of

elate sume time, also enough amount of clectrolyce

at the sume t changing during the reaction even at longer run. And undergo any structural transformation, and the role of
the same time, also enongh amount of electrolyte the chemical state change of Fe species could also tenus the pre at the same time, also enough amount of electrolyte

the chemical state change of Fe species could also be

must be presented inside the reaction cell during the

must be presented inside the catalyst working conditions.

 $\frac{d}{dx}$ $\text{tL}(k\#(J. \text{Electrochem.}) 2022, 28(3), 2108541 (18 of 31)$

statalyst is needed for one OER test, but for the *in*-

situ/operando ⁵⁷Fe Mössbauer studies enough Fe con-

is any effect we should consider during analysis and

ten $\#E \neq (L \n{Electrochem.})$ 2022, 28(3), 2108541 (18 of 31)

catalyst is needed for one OER test, but for the *in*-

situdoperando ⁵Fe Mössbauer studies enough Fe con-

is any effect we should consider during analysis and

tent $\frac{dE}{dt}E^{\text{in}}_{\text{int}}(J. \text{ *Electrochem.*}) 2022, 28(3), 2108541 (18 of 31)$

catalyst is needed for one OER test, but for the *in*——strate to study the effect of substrate because if there
 situloperando ⁵Fe Mössbauer studies $\frac{4}{5}$ and $\frac{4}{5}$ (*Electrochem.*) 2022, 28(3), 2108541 (18 of 31)

catalyst is needed for one OER test, but for the *in*-strate to study the effect of substrate because if there
 situloperando ^{*s*}Fe Mössbauer s $\pm \frac{\text{4}E}{\text{4}C}$ Electrochem.) 2022, 28(3), 2108541 (18 of 31)

ceatalyst is needed for one OER tests, but for the in-

situdoperando ⁵⁷Fe Mössbauer studies enough Fe con-

is any effect of substrate because if ther **EVALUATION**
 EXECUTE: Electrochem.) 2022, 28(3), 2108541 (18 of 31)
 CELLA and the istudioperando ⁵Fe Missbauer studies enough Fe con-

is any effect we should consider during analysis and

tent in the catalyst is $\pm \frac{R \pm \epsilon}{L}$ *Leternochem.*) 2022, 28(3), 2108541 (18 of 31)

catalyst is needed for one OER test, but for the *in*-strate to study the effect of substrate because if there
 situdoperando ²Fe Mössbauer studies enou \pm the $\frac{1}{2}$ and the mathemole of the content of the content of the content of the sympable particle of the simulated of the simulated of the simulated of the simulated of the content of the content of the content o **Example 11**
 Example 12
 Example 12 the $\frac{4}{5}$ corrected to the method space of the signal controller in the space of the simulated to detect signal controller in the catalyst is predict in the catalyst is reded for one OER test, but for the in-
strate t **EVALUATION**
 ENET ALTERT (ACTES AND ASSAMPTED ASSAMPTED (18 of 31)
 ENET ASSAMPTED CONTROL CONTRO the $\frac{d_1}{d_2}$ the *Le Hermohem*,) 2022, 28(3), 2108541 (18 of 31)

catalyst is needed for one OFR test, but for the *in*-

situdoperando ⁹Fe Mössbauer studies enough \bf{F} con-

is any effect we should consider du $\frac{1}{2}E\frac{2\pi}{4}L E$ $Elecmcheen.)$ 2022, 28(3), 2108541 (18 of 31)

catalyst is necded for one OER test, but for the *in*-strate to study the effect of substrate because if there
 *stitutioperundo*⁵ Fe Mössbauer studies eno **i EVACUAL EXECTION TENDEV**
 EXECUTE: EXECTION ACTES THE CONDUM THE CONDIDENTIFY THE CONDIDENTIFY THE CONDIDENTIFY THE CONDIDENTIFY THE CONDIDENTIFY THE CONDIDENTIFY THE CONDUCT IS USED THE USED USED THE USED USED T callalyst is needed for one OER test, but for the in-
statebog callalyst is needed for one OER test, but for the in-
state to state to state of substrate because if there
statebog electors due and the catalyst is required catalyst is needed for one OFR test, but for the *in*-
strate to study the effect of substrate because if there
the study operator of $\frac{1}{2}$ for the study operator studies enough $F \in$ con-
is any effect or entired we $\sin\mu\phi_P$ rando ⁵Te Müssbauer studies enough Fe con-

is any effect we should consider during analysis

signals. Depositing in the catalyst is required to detect good quality

fitting process to normalize. After pre-OER it in the catalyst is required to detect good quality

mathematics. After pre-OER tests, first

mathematics length in a to thrick catalyst layer on one

in-sidiogrearial (OCP) to study the cifect of clear

exhige dectrode signals. Depositing a too thick catalyst layer on one in-sint/operando test should be conducted at open circulation is not recommended as only sur-
contring electroles is not recommended as only sur-
caline particles will working electrode is not recommended as only sur-

involucing (OCP) to study the effect of electrolyte.

frace particles will the part in OER while the bottom

invally, the absorption of y-range or strength of the

frace fiace particles will take part in OER while the bottom Usually, the absorption of y-rays or strength of the principles may not take particles of signals could be decreased in the presence of electrofore, to make it sure th particles may not take part, hence signals could be signals could be decreased in the presence of electrolytical mixture of unreducted and reacted Fe in OER catalyst in the profile could consider a could alter that ϵ i mixture of unreacted and reacted Fe in OER catalyst.

They the this problem could be lessened if experi-

Therefore, to reake it sure that every particle of the ment continues for longer time. Next, one test should

cataly Therefore, to make it sure that every particle of the ment continues for longer time. Next, one test should
catalyst is pixcinated to detect signals, we need sover-
endatored at an applied potential lower than the
catalys catalyst is taking part in OFR, and enough amount of
early the conducted at an applied potential lower than the
catalyst is presented to detect signals, we need sever-
potential required for OER, i.e., lower than the onse enalyst is presented to detect signals, we need sever-

potential required for OFR, i.e., lower than the onset

al plectes of well-prepared working electrodes placed and potential. This will show whether there is any chan al pieces of well-prepared working electrodes placed
potential. This will show whether there is any change
pieces of electrodes deposited with the same catalyst tais or not. Alter these initial experiments, now we
pieces o parallel to each other as shown in Figure 11(B) $(3-5$ of electrochemical state of Fe species at lower potenties
picces of electrochas deposited with he same catalyst tails or not. After tense initial experiments, now we
 pieces of electrodes deposited with the same eatalyst

ink placed at the distance of less than 1 mm). This can go for onset potentials and higher potentials

ink placed at the distance of less than 1 mm). This can go for o ink placed at the distance of less than 1 mm). This can go for onset potentials and higher potentials. Af-
will fielilitate cocyparied of the cathlyst to take the retudying at different potentials, one should test the
par will firelihate every particle of the eatalyst to take
part in the OFR reaction and enousdy anomat of Fe post-OER inmediately after taking out the electrolyte
point in the OER reaction and enousd for a point of reaction s 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
 $in-situ/operando$ test should be cond 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situloperando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situloperando test shou $28(3)$, 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test sh $28(3)$, 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situloperando test 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situloperando test shou $28(3)$, $2108541 (18 of 31)$
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test shoul 28(3), 2108541 (18 of 31)
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situloperando test shou $28(3)$, $2108541 (18 of 31)$
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test shoul $26(3), 2106341 (18.0131)$
strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situloperando test shoul strate to study the effect of substrate because if there
is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should be conducted at open cir-
 is any effect we should consider during analysis and
fitting process to normalize. After pre-OER tests, first
in-situ/operando test should be conducted at open cir-
cuit potential (OCP) to study the effect of electrolyte. fitting process to normalize. After pre-OER tests, first in-situ/operando test should be conducted at open circuit potential (OCP) to study the effect of electrolyte. Usually, the absorption of γ -rays or strength of th in-situloperando test should be conducted at open circuit potential (OCP) to study the effect of electrolyte.
Usually, the absorption of γ -rays or strength of the signals could be decreased in the presence of electroly cuit potential (OCP) to study the effect of electrolyte.
Usually, the absorption of γ -rays or strength of the signals could be decreased in the presence of electrolyte, but this problem could be lessened if experiment c Usually, the absorption of γ -rays or strength of the signals could be decreased in the presence of electrolyte, but this problem could be lessened if experiment continues for longer time. Next, one test should be conduc signals could be decreased in the presence of electrolyte, but this problem could be lessened if experiment continues for longer time. Next, one test should be conducted at an applied potential lower than the potential req trolyte, but this problem could be lessened if experi-
ment continues for longer time. Next, one test should
be conducted at an applied potential lower than the
potential required for OER, i.e., lower than the onset
potent ment continues for longer time. Next, one test should
be conducted at an applied potential lower than the
potential required for OER, i.e., lower than the onset
potential. This will show whether there is any change
of elec be conducted at an applied potential lower than the
potential required for OER, i.e., lower than the onset
potential. This will show whether there is any change
of electrochemical state of Fe species at lower poten-
tials potential required for OER, i.e., lower than the onset
potential. This will show whether there is any change
of electrochemical state of Fe species at lower poten-
tials or not. After these initial experiments, now we
can potential. This will show whether there is any change
of electrochemical state of Fe species at lower poten-
tials or not. After these initial experiments, now we
can go for onset potentials and higher potentials. Af-
ter of electrochemical state of Fe species at lower potentials or not. After these initial experiments, now we can go for onset potentials and higher potentials. After studying at different potentials, one should test the post tials or not. After these initial experiments, now we
can go for onset potentials and higher potentials. Af-
ter studying at different potentials, one should test the
post-OER immediately after taking out the electrolyte
 can go for onset potentials and higher potentials. Af-
ter studying at different potentials, one should test the
post-OER immediately after taking out the electrolyte
and removal of applied potentials, and then after 48
h ter studying at different potentials, one should test the post-OER immediately after taking out the electrolyte and removal of applied potentials, and then after 48 hours to 72 hours when the electrode is fully dried. Thi post-OER immediately after taking out the electrolyte
and removal of applied potentials, and then after 48
hours to 72 hours when the electrode is fully dried.
This will give a clear understanding about the struc-
ture st rs to 72 hours when the electrode is fully dried.

so will give a clear understanding about the structions and three reading about the structions and structure capability of the catalyst. If the OER and post-OER spectra o This will give a clear understanding about the structure stability and time required for recovering the original structure capability of the catalyst. If the pre-OER spectra of a catalyst are similar and show symmetric, t riginal structure capability of the catalyst. If the
pre-OER and post-OER spectra of a catalyst are simi-
lar and show symmetric, then it could be considered
that the catalyst has a stable structure and does not
undergo a pre-OER and post-OER spectra of a catalyst are similar and show symmetric, then it could be considered that the catalyst has a stable structure and does not undergo any structural transformation, and the role of the chemi lar and show symmetric, then it could be considered
that the catalyst has a stable structure and does not
undergo any structural transformation, and the role of
the chemical state change of Fe species could also be
confir that the catalyst has a stable structure and does not
undergo any structural transformation, and the role of
the chemical state change of Fe species could also be
confirmed under OER catalyst working conditions.
One most undergo any structural transformation, and the role of
the chemical state change of Fe species could also be
confirmed under OER catalyst working conditions.
One most important point here is that the current
density must 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (18 of 31)

R test, but for the *in*-

strate to study the effect of substrate because if there

udies enough Fe con-

is any effect we should consider during analysis and

to

6 In-Situ/Operando $57Fe$ Mössbauer

the chemical state change of Fe species could also be confirmed under OER catalyst working conditions.
One most important point here is that the current density must be stable during whole reaction at every applied potent

 $\#E\# (J. \text{Electrochem.}) 2022, 28(3), 2108541 (19 of 31)$
formed to NiOOH_{2-x} during OER, which generate Ni⁴⁺ stability issue of NiFe-OEC was investigated and the
hence the OER activity was improved. These contra-
dictory and inc hence the OER activity was improved. These contra- $\text{d}t/\mathcal{C}^*$ (*J. Electrochem.*) 2022, 28(3), 2108541 (19 of 31)

formed to NiOOH_{2x} during OER, which generate Ni⁴⁺ stability issue of NiFe-OEC was investigated and the

hence the OER activity was improved. These $\frac{dE}{dt}$ $\frac{f(k\cdot\frac{2\pi}{3})}{\pi}$

formed to NiOOH₂₂ during OER, which generate Ni⁺

stability issue of NiFe-OEC was investigated and the

hence the OER activity was improved. These contra-

real phase of the catalyst was conf $\frac{4E}{2}$ (*J. Electrochem..*) 2022, 28(3), 2108541 (19 of 31)
formed to NiOOH₂, during OER, which generate Ni⁴⁺ stability issue of NiFe-OEC was investigated and the
hence the OER activity was imposed. These contra-

of NiFe-OECs is responsible for higher OER activity. pared with that of NiFe@C obtained from highter
of Therefore, we tried to solve both these challenging perature pyrolization of NiFe-PBAs. The NiFe-issues and address w Therefore, we tried to solve both these challenging perature pyrolization of NiFe-PBAs. The NiFe-PBAs'

issues and address well in our following suchces.

CNTS OBR activity with the optimum annount of

We have so far disc issues and address well in our following studies.

CNTs OFR activity with the optimum amount of

We have so far dissuesed the effects of doped⁷in-

socyts of CNTs was found to be significantly superi-

socyts of CNTs wa We have so far discussed the effects of doped/in-

Sur,⁹% of CNTs was found to be significantly superi-

corporated Fe in Ni-based OECs, their activity. But it is Tafel slope showed the smallest value of 83 mV dec⁻

i corporated Fe in Ni-based OECs, their activities, pos-

sub-factors responsible for higher activities, pos-

sub-factors responsible for higher activity. But it is Tarisl slope showed the smallest value of 88 mV $\text{deg}\cdot\text$ sible factors responsible for higher activity. But it is

imperiate showed the smallest value of 83 mV-dec³

imperiate to highlight the suitable meltod for their among other samples as shown in Figure [210). The

synthe important to highlight the suitable method for their
sympless as shown in Figure 12(B). The
symphosis and *in-sinius/operando* studies. We here rece-
Symphoffraction (XRD) results before and after de-
ommend a suitable an synthesis and *in*-situ/operando studies. We here rec-

Dommend a surishe and fine in enchancement as with the synthesis position and entired in The electrophycPlance and fine in the synthesis position and entired in the ommend a suitable and facile method for the synthesis position and activation by CV of NiFe-PBA/CNTs of NiFe-(wyphydroxica) CBCs by using PBAs as pre-

environg met materials and the crystal process are standed that the c of NiFe-(oxy)hydroxide OECs by using PBAs as pre-

ucusors, which was newly developed in our lab^{ton}. We structure was changed after eatition is abown in

know that PBAs have the typical chemical formula

Eignic 12(C). T cursors, which was newly developed in our lab^{ton}. We
structure was changed after activation as shown in
Know that PBAs have the typical chemical formula
 F Eigure 12(C). The XRD peaks interstities vore signif-
KnoW[M/m(know that PBAs have the typical chemical formula

Figure 12(C). The XRD peaks intensities were signif-

A_DM_M(M_MC(N)_b)⁻¹x14O, where A indicates the alkili cannot betweed atter attivation, which suggests that

met $A/M_n[Mm(CN)_0] \cdot xH_2O$, where A indicates the alkali icantly reduced after activation, which suggests that metal ions such as Na' and K' etc., while M dm of the crystal structures of Nire-BIAs sures horked during represent t metal ions such as Na² and K² etc., while M and M

the crystal structure of NiFe-PBAs was broken during

represent the transition metal cations^{8,690}. In the PBAs the acirtation process. The characteristic peaks repr represent the transition metal cations^{(66,69}). In the PBAs the activation process. The characteristic peaks represent after the transition metal ions (M^2 -C=N-M^o). Due to experige Spectra and the difference in elect erystal structures, eyanide groups serve as bridges be-

serving NiFe-PBAs completely disappeared after 125

tween transition media long ($W^2 - C = N - N^1$). Due to eyeles, indecting that the NiFe-PBA structure had

the diffe application. $A_1M_n[\dot{M}_m(CN)_6] \cdot xH_2O$, where A indicates the alkali corresponding M and M metals show high and low

Electrocatalysts

 $4R^2(L \text{ Electrowehem.}) 2022, 28(3), 2108541 (19 of 31)$
formed to NiOOH₂₂ during OER, which generate Ni^{*} stability issue of NiFe-OEC was investigated and the
hence the OER activity was improved. These contra-
real phase of the \pm *Wetter (J. Electrochem.*) 2022, 28(3), 2108541 (19 of 31)
formed to NiOOH₂, during OER, which generate Ni⁺¹ stability issue of NiFe-OEC was investigated and the
hence the OER activity was improved. These contra- $\pm \frac{1}{2}$ ($\pm \frac{1}{2}$ and NiOOHL₃, during OER, which generate Ni^{*} stability issue of NiFe-OEC was investigated and the hence the OER activity was improved. These contra-

real phase of the catalyst was confirmed du the Sigman model of NiOOH₂, during OER, which generate Ni⁴⁴ stability issue of NiFe-OEC was investigated and the hence the OFR activity was improved. These contra-
nearly these of NiFe-OEC was investigated and the hen $\frac{1}{2}$ $\frac{1}{2}$ **FE in Ni-Based Acts** (E/K (E/K acts (E/K acts (E/K)) and E/K (E/K) and E/K) and E/K (E/K (E/K) and E/K (E/K) and **EVALUATION THE FACT CONTIC CONTIC SUPPORT (19 (19 THE SUPPORT) (19 THE SUPPORT ACT (19 THE SUPPORT ACT THE SUPPORT ACT THE SUPPORT ACT THE SUPPORT ACT THE SUPPORT (19 THE SUPPORT ACT THE SUPPORT ACT THE SUPPORT ACT THE S** $\frac{16}{22}(L\text{E}/$. Electrosheem.) 2022, 28(3), 2108541 (19 of 31)

formed to NiOOH₂, during OER, which generate Ni⁺ stability issue of NiFe-OEC was investigated and the

between the OER activity was improved. These c the $2^x (L. R/2e$ and the
three the OKIOOH₂, during OFR, which generate Ni⁺
subility (size of NFE-GDFC was investigated and the
hence the OER activity was improved. These contra-
real phase of the catalyst was confirmed during OER
diatory and incomplete claims indicated two major
before going for *in-siuuperanab* Massbauer study to
the clearly understood and explained and 2) the
this purpose, composites of NiFe-PBAs/carbon nano-
reversible structural transformation of NiFe-OBCs
in the OER, making it unclear that which phase were synthesized and the
inotropic
of NiFe-OBCs is responsible for higher OFR activity.
one
of NiFe-OBCs is responsible for higher OFR activity**From the NiOOHL₃, during OER, which generative surespects to the state of SF-OEC was investigated and the hence the OFR activity was improved. These contra-
heliots and facile method for the synthesis of NiFe-OEC was i** formed to NiOOH₂, during OER, which generate Ni⁴¹ stability issue of NiFe-OEC was investigated and the hoffs activity was improved. These contra-

real phase of the castalyst was confirmed during OER

herects be distr hence the OER activity was improved. These contra-
electrons and incomplete calimits indicated two major before going for *in-sinulogremalo* Missbaucar study to
draws in these studies: 1) the real role of Fe⁴ could furt dictory and incomplete claims indicated two major

brakes was in the serval is: 1) the real root of Fe⁻ could further elucidat and understand the mechanism. For

flaxes in thes studies: 1) the real root of the chemical flaws in these studies: 1) the real role of Fe^t' could

further clucidate and understand the mechanism. For

not be clearly understood and explained and 2) the this purpose, composites of NiFe-OBA

orders are therefore not be clearly understood and explained and 2) the

this purpose, composites of NiFe-PBAs

reversible structural transformation of NiFe-OECs

tubes (CNTs) with the optimized am

during the OER, making it urelare that whic of and explained and 2) the this purpose, composites of NiFe-PBAs/carbon rnsformation of NiFe-OECs tubes (CNTs) with the optimized amount of ζ it unclear that which phase were synthesized and their OER activities were explained and 2) the this purpose, composites of NiFe-PBAs/carbon nano-
tion of NiFe-OECs tubes (CNTs) with the optimized amount of CNTs
respectively. where synthesized and their OER activities were com-
higher OER activi reversible structural transformation of NiFe-OECs

urbese (CNTs) with the optimized amount of CNTs

during the OFR, making it unclear that which phase

or NiFe-OECs is responsible for higher OER activity. Pared with that during the OER, making it unclear that which phase

or Syruence synthesized and their OFR activities were com-

or NiFe-OECs is responsible for higher OFR activity . pared with that of NiFe-@C obtained from high-tem-

The higher OER activity. pared with that of NiFe@C obtained from high-tem-

th these challenging perature pyrolization of NiFe-PBAs. The NiFe-PBAs/

CNITs OER activity, with the optimum amount of

effects of doped/in8wt.% o 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situ/operando* Mössbauer study to
further elucidate and understand the 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand the $28(3)$, 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situ/operando* Mössbauer study to
further elucidate and understan $28(3)$, $2108541 (19 of 31)$
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for $in-situ/operando$ Mössbauer study to
further elucidate and understand the mechani 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand the $28(3)$, 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understan $28(3)$, $2108541 (19 of 31)$
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand t $28(3)$, $2108541 (19 of 31)$
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situ/operando* Mössbauer study to
further elucidate and understand t $28(3)$, $2108541 (19 of 31)$
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situ/operando* Mössbauer study to
further elucidate and understand t 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand th 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situ/operando* Mössbauer study to
further elucidate and understand th 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand th 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand th 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand th 28(3), 2108541 (19 of 31)
stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand th **Example 12** (B) is sure of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand the mechanism. For
 stability issue of NiFe-OEC was investigated and the
real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand the mechanism. For
this purp real phase of the catalyst was confirmed during OER
before going for *in-situloperando* Mössbauer study to
further elucidate and understand the mechanism. For
this purpose, composites of NiFe-PBAs/carbon nano-
tubes (CNTs) before going for *in-situloperando* Mössbauer study to
further elucidate and understand the mechanism. For
this purpose, composites of NiFe-PBAs/carbon nano-
tubes (CNTs) with the optimized amount of CNTs
were synthesized further elucidate and understand the mechanism. For
this purpose, composites of NiFe-PBAs/carbon nano-
tubes (CNTs) with the optimized amount of CNTs
were synthesized and their OER activities were com-
pared with that of this purpose, composites of NiFe-PBAs/carbon nanotubes (CNTs) with the optimized amount of CNTs were synthesized and their OER activities were com-
pared with that of NiFe@C obtained from high-tem-
perature pyrolization of tubes (CNTs) with the optimized amount of CNTs
were synthesized and their OER activities were com-
pared with that of NiFe@C obtained from high-tem-
perature pyrolization of NiFe-PBAs. The NiFe-PBAs/
CNTs OER activity with were synthesized and their OER activities were com-
pared with that of NiFe@C obtained from high-tem-
perature pyrolization of NiFe-PBAs. The NiFe-PBAs/
CNTs OER activity with the optimum amount of
8wt.% of CNTs was found pared with that of NiFe@C obtained from high-tem-
perature pyrolization of NiFe-PBAs. The NiFe-PBAs/
CNTs OER activity with the optimum amount of
8wt.% of CNTs was found to be significantly superi-
or to NiFe@C as shown i perature pyrolization of NiFe-PBAs. The NiFe-PBAs/
CNTs OER activity with the optimum amount of
8wt.% of CNTs was found to be significantly superi-
or to NiFe@C as shown in Figure 12(A), and the
Tafel slope showed the sma TTs OER activity with the optimum amount of $t.*$ of CNTs was found to be significantly superito NiFe@C as shown in Figure 12(A), and the fel slope showed the smallest value of 83 mV·dec⁻¹ to NiFe@C as shown in Figure 12 8wt.% of CNTs was found to be significantly superior to NiFe@C as shown in Figure 12(A), and the Tafel slope showed the smallest value of 83 mV·dec⁻¹ among other samples as shown in Figure 12(B). The X-ray diffraction (or to NiFe@C as shown in Figure 12(A), and the
Tafel slope showed the smallest value of 83 mV·dec⁻¹
among other samples as shown in Figure 12(B). The
X-ray diffraction (XRD) results before and after de-
position and act Tafel slope showed the smallest value of 83 mV \cdot dec⁻¹
among other samples as shown in Figure 12(B). The
X-ray diffraction (XRD) results before and after de-
position and activation by CV of NiFe-PBA/CNTs
(8wt.%) on among other samples as shown in Figure 12(B). The
X-ray diffraction (XRD) results before and after de-
position and activation by CV of NiFe-PBA/CNTs
(8wt.%) on carbon paper indicated that the crystal
structure was change X-ray diffraction (XRD) results before and after de-
position and activation by CV of NiFe-PBA/CNTs
(8wt.%) on carbon paper indicated that the crystal
structure was changed after activation as shown in
Figure 12(C). The X metal ions such as Na⁺ and K⁺ etc., while M and M the crystal structure of NiFe-PBAs was broken during 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (19 of 31)

R, which generate Ni⁴⁺ stability issue of NiFe-OEC was investigated and the

proved. These contra-

indicated two major before going for *in-situ/operando* Mössba

the difference in electronegativities of C and N, the been completely transformed into other structures.

spin states, respectively, These materials are useful to 125 cycles, which and low

for different applications such n states, respectively. These materials are useful

to 125 cycles, which suggests that there is no further

different applications solid as batteries, gas store, change in crystal structure after 125 cycles. Further-

dif position and activation by CV of NiFe-PBA/CNTs (8wt.%) on carbon paper indicated that the crystal structure was changed after activation as shown in Figure 12(C). The XRD peaks intensities were significantly reduced after (8wt.%) on carbon paper indicated that the crystal
structure was changed after activation as shown in
Figure 12(C). The XRD peaks intensities were signif-
icantly reduced after activation, which suggests that
the crystal structure was changed after activation as shown in
Figure 12(C). The XRD peaks intensities were signif-
icantly reduced after activation, which suggests that
the crystal structure of NiFe-PBAs was broken during
the activa Figure 12(C). The XRD peaks intensities were significantly reduced after activation, which suggests that the crystal structure of NiFe-PBAs was broken during the activation process. The characteristic peaks representing N icantly reduced after activation, which suggests that
the crystal structure of NiFe-PBAs was broken during
the activation process. The characteristic peaks repre-
senting NiFe-PBAs completely disappeared after 125
cycles, the crystal structure of NiFe-PBAs was broken during
the activation process. The characteristic peaks repre-
senting NiFe-PBAs completely disappeared after 125
cycles, indicating that the NiFe-PBA structure had
been compl the activation process. The characteristic peaks representing NiFe-PBAs completely disappeared after 125 cycles, indicating that the NiFe-PBA structure had been completely transformed into other structures. The XRD result senting NiFe-PBAs completely disappeared after 125
eycles, indicating that the NiFe-PBA structure had
been completely transformed into other structures.
The XRD results after the 500 cycles were similar
to 125 cycles, whi eycles, indicating that the NiFe-PBA structure had
been completely transformed into other structures.
The XRD results after the 500 cycles were similar
to 125 cycles, which suggests that there is no further
change in crys been completely transformed into other structures.

The XRD results after the 500 cycles were similar

to 125 cycles, which suggests that there is no further

change in crystal structure after 125 cycles. Further-

more, The XRD results after the 500 cycles were similar
to 125 cycles, which suggests that there is no further
change in crystal structure after 125 cycles. Further-
more, *ex-situ* ⁵Fe Mössbauer spectral measurement
shown in to 125 cycles, which suggests that there is no further
change in crystal structure after 125 cycles. Further-
more, *ex-situ* ⁵Fe Mössbauer spectral measurement
shown in Figure 12(D) before and after activation of
NiFe-

Examples and Source COX

From S¹)
 $\frac{6.80 \text{ V}}{1000}$
 $\frac{1500}{1000}$
 $\frac{1500}{2000}$
 $\frac{2500}{2000}$
 $\frac{2500}{400}$
 $\frac{450}{400}$
 $\frac{550}{500}$
 $\frac{1500}{1000}$
 $\frac{1500}{2000}$
 $\frac{2500}{400}$
 $\frac{450}{400}$ In the first part of our case study above, we con-Figure 12 (mm s¹)

Figure 12 (A) Linear sweep voltammetric results of NiFe-PBAs/CNTs with varying amount of CNTs. (B) Tafel slopes for NiFe-PBAS/CNTs (C) C NEO among the sinuture of NiFe-PBAS/CNTs (C), D_{ex} can be **Figure 12** (A) Linear sweep voltammetric results of NiFe-PBAs/CNTs with varying amount of CNTs. (B) Tafel slopes for NiFe-PBAs/CNTs, (C) XRD analysis showing the structures of NiFe-PBAs/CNTs, carbon paper, NiFe-PBAs/CNTs

trochemical activation in the alkaline condition gen-

to the atomic ratio of Fc/Ni) catalysts

rerating Ni(OH)₂/NiOOH. In this stage, this Ni(OH)₂/ sized by the topotactic transformation

NiOOH can be considered to t

strategy^[71]. **Example 18.1**
 Example 18.0
 Concerned by
 Concerned by
 Concerned by
 Concerned by
 Concerned by
 Concerned and the novelties in our second part case study. (D) *Ex-situ* **²Fe Mössbauer spectroscopic analy** 1500 2000 2500 460 4450 560 550 600

hift (cm⁻¹) Raman shift (cm⁻¹)

Raman shift (cm

FIGURE 12 CONSTRANTS (C) XRIS analysis showing the structures of NiFe-PIAACCNTs, cumben paper, Niic-PIAACCNTs vacuum control. And the report of the CHAME (NIFe-PIAACCNTs vacuum of the CHAME (NIFe-PIAACCNTs before and aft Where PAW and the properties and the state of the production of the production of the production of the production (F) Remains pectometer for Nire-PBAseCNTs before and after CV activation. (E) Raman spectra for Nire-Nite-PHAeVCNTs before and after CV activution. (E) Raman spectra for Nite-PHAeVCNTs before and after CV activution. (F) *In-situal*
operando Raman spectroscopic analysis for NiFe-PHAs/CNTs at different applied potentials. sperson Raman spectroscopic analysis for NiFe-PBAsCNTs at different applied potentials. (color on line)
trochemical activation in the alkaline condition gen-
to the atomic ratio of Fe/Ni) catalysts were synthe-
erreductin trochemical activation in the alkaline condition gen-

contemption From extraing Ni(OH)/NiOOH. In this stage, this Ni(OH)/sized by the topotactic transformation of NiFe_{G-}Fe

NiOOH can be considered to the real active ph trochemical activation in the alkaline condition gen-

to the atomic ratio of Fe/Ni) catalysts were synthe-

erating Ni(OH), Ni on this stage, this Ni(OH) y sized by the topotactic transformation of NiFe_x-Fe

NiOOH can erating Ni(OH)_NNiOOH. In this stage, this Ni(OH)y sized by the topotactic transformation of NiFe₅-Fe NOMOH can be considered to the real active phase **properties** which is more considered to the real active phase whic NiOOH can be considered to the real active phase, PBAs in an alkaline solution. The NiFe_m-Fe PBAs which is more reasonable to claim that why NiFe-PBAs materials with different iron contents doped in the has high activit series of NiFe_n-(oxy)hydroxides (NiFe_n-O_xH₁, m refers spectroscopy is so high that it could even differentiate Raman shift (cm⁻¹)

NTs with varying amount of CNTs. (B) Tafel slopes for NiFe-

As/CNTs, carbon paper, NiFe-PBAs/CNTs/carbon paper, and

mmetry. (D) *Ex-situ* ³⁷Fe Mössbauer spectroscopic analysis of

for NiFe-PBAs/C Raman shift (cm⁻¹)

CNTs. (B) Tafel slopes for NiFe-

IFe-PBAs/CNTs/carbon paper, and

dissbauer spectroscopic analysis of

and after CV activation. (F) $In-situ/$

or on line)

Fe/Ni) catalysts were synthe-

transformatio NTs with varying amount of CNTs. (B) Tafel slopes for NiFe-
As/CNTs, carbon paper, NiFe-PBAs/CNTs/carbon paper, and
mmetry. (D) *Ex-situ* ³⁷Fe Mössbauer spectroscopic analysis of
for NiFe-PBAs/CNTs before and after CV a VIS with varying amount of CNTs. (B) Tatel slopes for NIFe-
As/CNTs, earbon paper, NiFe-PBAs/CNTs/cardon paper, and
mmetry. (D) *Ex*-situ ³Fe Mossbauer spectroscopic analysis of
for NiFe-PBAs/CNTs before and after CV ac states in the system of the system of the system and the system of the system of the Mic-FBAs'CNTs before and after CV activation. (F) $In-situl$
pramety. (D) Ex-situ ⁵Fe Missbauer spectroscopic analysis of
prent applied po Example 2.1 Section and after CV activation. (F) *In-situl*
for NiFe-PBAs/CNTs before and after CV activation. (F) *In-situl*
rent applied potentials. (color on line)
to the atomic ratio of Fe/Ni) catalysts were synthe-
s stream applied potentials. (color on line)

to the atomic ratio of Fe/Ni) catalysts were synthe-

sized by the topotactic transformation of NiFe_{ar}Fe

PBAs in an alkaline solution. The NiFe_aFe PBAs

materials with diff to the atomic ratio of Fe/Ni) catalysts were synthe-
sized by the topotactic transformation of NiFe_{*m*}-Fe
PBAs in an alkaline solution. The NiFe_{*m*}-Fe</sub> PBAs
materials with different iron contents doped in the Ni
sites to the atomic ratio of Fe/Ni) catalysts were synthe-
sized by the topotactic transformation of NiFe_{ar}-Fe
PBAs in an alkaline solution. The NiFe_{ar}-Fe
PBAs
materials with different iron contents doped in the Ni
sites we to the atomic ratio of Fe/Ni) catalysts were synthe-
sized by the topotactic transformation of NiFe_{*m*}-Fe
PBAs in an alkaline solution. The NiFe_m-Fe
PBAs materials with different iron contents doped in the Ni
sites we sized by the topotactic transformation of NiFe_{*m*}-Fe</sub>
PBAs in an alkaline solution. The NiFe_mFe PBAs
materials with different iron contents doped in the Ni
sites were prepared by our previously developed
strategy^{*rm*} PBAs in an alkaline solution. The NiFe_mFe PBAs
materials with different iron contents doped in the Ni
sites were prepared by our previously developed
strategy^{*Fu*1}.
One of the novelties in our second part case study
h

 $\frac{1}{2}$ $\frac{1}{2}$

The spin Fe3+ was observed in the Nisibality of High spin Fe3+ was observed in ex-situ and in-stitute per spin spin Fe3+ was observed in the Spin Fe3+ was observed in the Spin Fe3+ was observed in the Spin Fe3+ was obse The sum of the set of the control of the control of the control of the set of **Example 10**
 Example 10 s a continue of Nice and Parameteria shape and parameterial and parameterial shape and parameters as shown in Figure 13 (A-D) *Fession* "Fe Missbauer analysis of Nire_c-Fe PBAs by topolarities trains of Nirec. (E-H) *Ex-*Figure 13 (A-D) E_{ex} /mans y

Figure 13 (A-D) E_{ex} -inn ²Fe Mossbauer analysis of NiFe_a-Fe PBAs doped with different ratios of NiFe. (E-H) E_{ex} -stin²Fe Nossbauer analysis of NiFe_a-O_LH, derived from Examples and 2 Figure 13(A-D) *Ex*-sita.³Figure 14(A) shows that the NiFeq_x-O_tH, exhibited the lowest operators in the precursor NiFe, Fe PBAs doped with different ratios of NiFe, (E-H) *Ex*-sita.³³Fe Missonar Figure 14(A) shows that the NiFe₀₂-O_x-O_x-O_x-C₁H_v exhibited lysts shown in Figure 14(F-G) indicate that NiFe₀₂-O_xbuser analysis of Nite_x-O,14, derived from the precursors Nite_x¹e PHAs by topolactic transformation, (color on line)
between two different crystallographic positions of gen coordinated octahedral in both crystal pha between two different crystallographic positions of

Fe¹¹ which is usually not possible with other charac-

Fe²¹ which is usually not possible with other charac-

terization techniques. This makes ²⁷Fe Mössbauer val between two different erystallographic positions of

gen coordinated ottahedral in both crystal phases of

Fei² which is usually not possible with other charec-

erization its mailers. This makes ^{sp}ie Mössbauer value Fe¹¹ which is usually not possible with other charac-

Fe¹³ which smaller Δ

etrization techniques. This makes ³Fe Missbauer value indicating the occhical symetry should be

espectroscopy more sophisticated and s terization techniques. This makes ³⁷Fe Mössbauer value indicating the octahedral symmetry should be
spectroscopy more sophisticated an sensitive to higher in later one than the former one. This also fur-
study Fe contai spectroscopy more sophisticated and sensitive to higher in later one than the former one. This also fur-
study Fe containing materials. Moreover, increasing the illustrates the high energy resolution of the "Fe
the Fe rat study Fe containing materials. Moreover, increasing ther illustrates the high energy resolution of the ⁹⁷Fe
which, later on, will be transformed into Nife_{ia}, O, M, the changes in the electron chinique where even sub-
 the Fe ratio increases the Fe^{*} amount in the Ni sites,

whisehauer spectroscopic technique where even sub-

which, later on, will be transformed into NiFeg., O₁H, the changes in the electron density and the electric
 $\frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ G 100
 $\sum_{\substack{99 \text{ s}}^{90} \text{ s}}$
 $\sum_{\substack{99 \text{ s}}^{90} \text{ s}}$
 $\sum_{\substack{99 \text{ s}}^{90} \text{ s}}$
 $\sum_{\substack{10 \text{ m/s} \cdot 10}}^{90}$
 $\sum_{\substack{10 \text{ m/s} \$ Figure 2011 and $\frac{1}{2}$ and $\frac{1}{2}$ Examples and the similar similar tries in pectra with the simple example and in-situ ioperando Raman spectra with the similar trend was also observed at the similar trend was also observed with different ratios of Ni:Fe. Example 1

by a subset of the situal specific and the situation of Ni-Fe. (E-H) Ex-situ ⁵Fe Möss-

BAs by topotactic transformation. (color on line)

gen coordinated octahedral in both crystal phases of
 α -phase Ni(O **PERTUBE SHEAD SH** $\frac{1}{2}$ V_{t} results for different ratios of Ni:Fe. (E-H) *Ex-situ* ⁵Fe Möss-
BAs by topotactic transformation. (color on line)
gen coordinated octahedral in both crystal phases of
 α -phase Ni(OH)₂ and γ -phase NiOOH (D-E). The LSV results for different $NiFe_m-O_xH_y$ catas doped with different ratios of Ni:Fe. (E-H) *Ex-situ* ³Fe Möss-
BAs by topotactic transformation. (color on line)
gen coordinated octahedral in both crystal phases of
 α -phase Ni(OH)₂ and γ-phase NiOOH, with smal en de la componentation de
La componentation de la co H_v exhibited the lowest overpotential of 263 mV at by topotactic transformation. (color on line)

a coordinated octahedral in both crystal phases of

hase Ni(OH)₂ and γ -phase NiOOH, with smaller Δ

ue indicating the octahedral symmetry should be

her in later one gen coordinated octahedral in both crystal phases of α -phase Ni(OH)₂ and γ -phase NiOOH, with smaller Δ value indicating the octahedral symmetry should be higher in later one than the former one. This also furth gen coordinated octahedral in both crystal phases of α -phase Ni(OH)₂ and γ -phase NiOOH, with smaller Δ value indicating the octahedral sym metry should be higher in later one than the former one. This also furt α -phase Ni(OH)₂ and γ -phase NiOOH, with smaller Δ
value indicating the octahedral sym metry should be
higher in later one than the former one. This also fur-
ther illustrates the high energy resolution of the NiOOH, with smaller Δ
1 sym metry should be
mer one. This also fur-
resolution of the ⁵⁷Fe
nique where even sub-
nsity and the electric
uclide position can be
1 was also observed in
Raman spectra where
rise in peaks value indicating the octahedral sym metry should be
higher in later one than the former one. This also fur-
ther illustrates the high energy resolution of the ⁵⁷Fe
Mössbauer spectroscopic technique where even sub-
tle c higher in later one than the former one. This also fur-
ther illustrates the high energy resolution of the ⁵⁷Fe
Mössbauer spectroscopic technique where even sub-
tle changes in the electron density and the electric
fiel is illustrates the high energy resolution of the ⁵⁷Fe
issbauer spectroscopic technique where even sub-
changes in the electron density and the electric
dd distribution at the iron nuclide position can be
arly identified Mössbauer spectroscopic technique where even sub-
the changes in the electron density and the electric
field distribution at the iron nuclide position can be
clearly identified. Similar trend was also observed in
ex-situ

		电化学(J. Electrochem.) 2022, 28(3), 2108541 (22 of 31)				
	Table 1 Ex-situ ⁵⁷ Fe Mössbauer spectral parameters of NiFe _m -Fe PBAs at room temperature					
Sample	Valence/spin state	δ /Fe (mm·s ⁻¹)	Δ (mm·s ⁻¹)	$\Gamma_{\rm exp}(m m \cdot s^{-1})$	A(%)	
$NiFe0.11-Fe PBA$	Fe ^{III} high spin	0.44	0.50	0.43	14	
	Fe ^{III} low spin	-0.17	0.50	0.38	86	
NiFe _{0.2} -Fe PBA	Fe ^{III} high spin	0.40	0.65	0.38	19	
	$\rm Fe^{III}$ low spin	-0.16	0.59	0.46	81	
NiFe _{0.25} -Fe PBA	Fe ^{III} high spin	0.37	0.65	0.34	21	
	Fe ^{III} low spin	-0.15	0.62	0.45	79	
$NiFe0.29 - Fe PBA$	Fe ^{III} high spin	0.37	0.64	0.36	24	
	$\rm Fe^{III}$ low spin	-0.15	0.57	0.44	76	
	Table 2 Ex-situ ⁵⁷ Fe Mössbauer spectral parameters of NiFe _m -O _x H _y at room temperature					
Sample	Valence/spin state	δ /Fe (mm·s ⁻¹)	Δ (mm \cdot s ⁻¹)	$\Gamma_{\text{exp}}\left(\text{mm}\cdot\text{s}^{\text{-1}}\right)$	A(%)	
$NiFe0.11-OxHy$	$Fe3+$ high spin	0.32	0.44	0.28	100	
$NiFe0.2-OxHy$	$Fe3+$ high spin	0.32	0.58	0.42	100	
$NiFe0.25-OxHy$	$Fe3+$ high spin $Fe3+$ high spin	0.34 0.32	0.35	0.36	100 100	

	Fe ^m low spin	-0.16	0.39	0.46	81
	Fe ^{III} high spin	0.37	0.65	0.34	21
NiFe _{0.25} -Fe PBA	Fe ^{III} low spin	-0.15	0.62	0.45	79
	Fe^{III} high spin	0.37	0.64	0.36	24
NiFe _{0.29} -Fe PBA	Fe ^{III} low spin	-0.15	0.57	0.44	76
	Table 2 Ex-situ ⁵⁷ Fe Mössbauer spectral parameters of NiFe _m -O _x H _v at room temperature				
Sample	Valence/spin state	δ /Fe (mm·s ⁻¹)	Δ (mm \cdot s ⁻¹)	$\Gamma_{\text{exp}}\left(\text{mm}\cdot\text{s}^{\text{-1}}\right)$	A(%)
$NiFe0.11-OxHy$	$Fe3+$ high spin	0.32	0.44	0.28	100
$NiFe0.2-OxHy$	$Fe3+$ high spin	0.32	0.58	0.42	100
$NiFe0.25-OxHy$	$Fe3+$ high spin	0.34	0.35	0.36	100
$NiFe0.29-OxHy$	$Fe3+$ high spin	0.32	0.43	0.33	100
	(oxy)hydroxides (NiFe _m -O _x H _v) was firstly developed through the topotactic transformation of $NiFem$ -Fe		zation instrument as shown in Figure $10(D)$ ^[66] . This in- strument has also been applied in ORR[72] and CO_2RR [73],		
	PBAs in an alkaline solution. Furthermore, the phase		which provides a high level of research tool for the		
	purity and stability were thoroughly confirmed by		preparation of highly efficient catalysts of electrolytic		
	ex -situ and in-situ/operando Raman and ex -situ ${}^{57}Fe$		water, carbon dioxide reduction, fuel cell develop-		
	Mössbauer spectroscopies in combination with other		ment and even for detecting the structural and elec-		
	several kinds of conventional techniques. It is indi- cated that phase structure of NiFe _{0.2} -O _x H _y was irre-		tronic properties of single atom catalysts $[72,73]$. The id- entifications of durable and non-durable $FeNx$ sites in		
	versibly transformed from α -Ni(OH) ₂ to γ -NiOOH by		Fe-N-C materials for PEMFCs towards practical ap-		
	applying an anodic potential which is different from		plications have also been successfully investigated,		

THURE 2 EX-8481 TE MOSSOURT SPOCIES OF THE-C-O.F, at room experience

Simple Valence/operation can alternation of the canon of the canon of the canon of the caponal of the caponal of the caponal of the caponal of the ca Sample Valence/spin state δ Fe (mm·s^c) Δ (mm·s^c) $I_{\text{vs}}(\text{mm}\cdot\text{s}^-)$ $I_{\text{vs}}(\text{mm}\cdot\text{s}^-)$

NiFe₅₀-O,H, Fe³¹high spin 0.32 0.44 0.28 100

NiFe₅₀-O,H, Fe³¹high spin 0.32 0.43 0.35 0.36 100

NiFe₅₀-O,H, NiFe_{ar}-O,II, Fe³ high-spin 0.32 0.44 0.28 100

NiFe_{ar}-O,II, Fe³ high-spin 0.32 0.58 0.42 100

NiFe_{ar}-O,II, Fe³ high-spin 0.32 0.33 100

NiFe_{ar}-O,II, Fe³ high-spin 0.32 0.43 0.33 100

NiFe_{ar-}O,II, Vas fir NiFe_{0c}-O_JH, Fe¹ high spin 0.32 0.58 0.42 100

NiFe_{0c}-O_{JH}, Fe¹ high spin 0.32 0.35 0.36 100

NiFe_{0c}-O_{JH}, Fe¹ high spin 0.32 0.43 0.33 100

(oxy)hydroxides (NiFe₂-O_JH), was firstly developed zation ins NiFe₀-O,H, Fe³ high-spin 0.34 0.35 0.36 100

NiFe₀-O,H, Fe³ high-spin 0.32 0.43 0.33 100

(oxy)hydroxides (NiFe₀-O,H,) was firstly developed zation instrument as shown in Figure 10(D)⁹⁸. This in-

drown) the t NiFe_{xr}-O.Hy Fe⁺ high spin 0.32 0.43 0.33 100

(oxy)hydroxides (NiFe_{xr}-O.H) was firstly developed zation instrument as shown in Figure 10(D)ⁱ⁶⁴. This in-

through the topotactic transformation of NiFe_x-Fe strumen Example 1.1 That is to say, the matter of NiFe_a,-Dependent and shown in Figure 10(D)⁸⁸. This in-
through the topotactic transformation of NiFe_a,-Fe strument has also been applied in ORR^{pc} and CO,RR^{pci},
PBAs in a (oxy)hydroxides (NiFe_x-O,II,) was firstly developed zation instrument as shown in Figure 10(D)^{os}. This in-
through the topotactic transformation of NiFe_x-Fe strument has also been applied in ORR⁷²¹ and CO₋RR⁷³ (oxy)hydroxides (NiFe_{xr}-O,H.) was firstly developed zation instrument as shown in Figure 10(D)ⁱ⁶⁰. The through the topotactic transformation of NiFe_{xr}-Fe strument has also been applied in ORR¹⁷⁹ and CO₂I
PBAs in through the topotactic transformation of NiFe_a, Fe strument has also been applied in ORR^{pa} and CO_SRR^{pa}). The particular colution. Furthermore, the phase which provides a high level of research to for the purity an in an alkaline solution. Furthermore, the phase which provides a high level of research tool for the and stability were thoroughly confirmed by preparation of highly efficient catalysts of electrolytic at and in-situlayer purity and stability were thoroughly confirmed by

perparation of highly efficient catalysts of electrolytic

and in-station mechanism and car-situs ²⁹Fe water, cathon dioxide reduction, fuel cell-develop-

Self-develop Müssbauer spectroscopies in combination with other
neeral and elec-
several kinds of conventional techniques. It is indi-
tronic properties of single atom catalysts^{prom}, The idea
seted that phase structure of NiFe_{tro}-

Table 2 Ex-siza ²⁶C Missbauer spectral parameters of NiFe_G-O,H, at room temperature

Sample Valence/spin state δTe (mm·s^{c)} Δ (mm·s^c) Δ (%)

NiFe_{Gr}-O,H, Fe³⁺high spin 0.32 0.58 0.42 100

NiFe_{Gr}-**Table 2** *Ex*-sita²Fe Mossbauer spectral parameters of NiFe₂-O.II, at room temperature

NiFe_{0ar}-O,H, Fe³ bigh spin 0.32 0.44 0.28 100

NiFe_{0ar}-O,H, Fe³ bigh spin 0.32 0.44 0.28 100

NiFe_{0ar}-O,H, Fe³ bigh 0.59 0.46 81

0.65 0.34 21

0.62 0.45 79

0.64 0.36 24

0.57 0.44 76

1.125 0.67 0.44 76

1.125 0.7 0.44 76

1.125 0.36 1.10

0.44 0.28 1.00

0.58 0.42 1.00

0.35 0.36 1.00

0.43 0.33 1.00

2.41 0.28 1.00

2.43 0.35 0.36 0.65 0.34 21

0.62 0.45 79

0.64 0.36 24

0.57 0.44 76

1.47 1.65 0.57 0.44 76

1.47 1.65 0.45 1.95 0.44 1.65 0.45 0.47 1.00

0.44 0.28 1.00

0.58 0.42 1.00

0.35 0.36 1.00

0.43 0.33 1.00

2.43 0.33 1.00

2.43 0.33 1.00
 0.62 0.45 79

0.64 0.36 24

0.57 0.44 76

1.47 1.69

neters of NiFe_n-O_sH, at room temperature
 Δ (mm·s⁺⁾) Γ_{ce} (mm·s⁺⁾ Δ (%)

0.44 0.28 100

0.58 0.42 100

0.35 0.36 100

0.43 0.33 100

2.43 0.33 100
 0.64 0.36 24

0.57 0.44 76

1.44 76

1.65 0.57 0.44 76

1.65 0.44 76

1.66 0.47 1.00 0.58 0.42 100

0.35 0.36 100

0.43 0.33 100

1.43 0.33 1.00

1.43 0.33 1.00

2.45 1.00

2.45 1.00

2.45 1.00

2.45 1.00

2.45 1.00

2.45 0.57 0.44 76
 $\frac{1}{2}$
 $\frac{1}{2}$ neters of NiFe_n-O_sH, at room temperature
 Δ (mm·s^{r)} I_{exp} (mm·s^{r)} Δ (%)
 0.44 0.28 100
 0.58 0.42 100
 0.35 0.36 100
 0.43 0.33 100
 0.43 0.33 100
 0.45 100
 0.47
 0.48 2.33 100
 0.49
 neters of NiFe_n-O_sH, at room temperature
 Δ (mm·s¹) Γ_{exp} (mm·s¹) Δ (%)
 0.44 0.28 100
 0.58 0.42 100
 0.35 0.36 100
 0.43 0.33 100
 0.43 0.33 100
 0.44 0.28 0.42 10 This in-
 $D_2RR^{[73]}$, for the trolytic evelop-
delec-
The id-sites in cal ap-
tigated, that re-Evers of Nire, -0,r, at room temperature
 Δ (mm·s²) Γ_{exp} (mm·s²) Δ (%)
 0.44 0.28 100
 0.58 0.42 100
 0.35 0.36 100
 0.43 0.33 100
 0.43 0.33 100
 0.45
 0.47
 0.48 0.49 Δ (mm·s⁻¹) I_{exp} (mm·s⁻¹) Δ (%)
 0.44 0.28 100
 0.58 0.42 100
 0.35 0.36 100
 0.43 0.33 100
 2.43 0.33 100
 2.5
 2.5 0.36 100
 2.5 0.36 100
 2.5 0.37 0.30
 0.44 0.28 100

0.58 0.42 100

0.35 0.36 100

0.43 0.33 100

100

104 104 0.33 100

2.41 100

2.43 100

2.43 100

2.43 100

2.43 100

2.63 100

2.63 100

2.63 100

2.47 100

2.47 100

2.47 100

2.47⁷³

2.77⁷³

2.47⁷⁷³ 0.58 0.42 100

0.35 0.36 100

0.43 0.33 100

0.44 0.33 100

100

100

2.41 100

2.42 100

2.43 100

2.63 100

2.64 100

2.64 100

2.77⁷⁴

2.77⁷⁴

2.77⁷⁴

2.77⁷⁴

2.77⁷⁴

2.79¹

2.79¹

2.79¹

2.79¹

2.79 . The in鄄situ/operando 57Fe M觟ssbauer results indi-0.43 0.33 100

20.43 100

20.43 100

20.53 1100

20.53 1100

20.53 1100

20.53 1100

20.53 1100

20.57 1100

20.5 ment as shown in Figure 10(D)⁽⁶⁶⁾. This in-
also been applied in ORR^[73] and CO₃RR^[73],
des a high level of research tool for the
of highly efficient catalysts of electrolytic
on dioxide reduction, fuel cell devel zation instrument as shown in Figure 10(D)^[66]. This in-
strument has also been applied in ORR^[73] and CO₂RR^[73],
which provides a high level of research tool for the
preparation of highly efficient catalysts of e zation instrument as shown in Figure 10(D)^[66]. This instrument has also been applied in ORR^{[73}] and CO₂RR^{[73}], which provides a high level of research tool for the preparation of highly efficient catalysts of ele strument has also been applied in ORR^[73] and CO₂RR^[73], which provides a high level of research tool for the preparation of highly efficient catalysts of electrolytic water, carbon dioxide reduction, fuel cell deve which provides a high level of research tool for the
preparation of highly efficient catalysts of electrolytic
water, carbon dioxide reduction, fuel cell develop-
ment and even for detecting the structural and elec-
troni

 $NiFe₀₂-O_xH_y$ at lower applied potentials, such as 1.22 V preparation of highly efficient catalysts of electrolytic
water, carbon dioxide reduction, fuel cell develop-
ment and even for detecting the structural and elec-
tronic properties of single atom catalysts^{[72,73}]. The i water, carbon dioxide reduction, fuel cell development and even for detecting the structural and electronic properties of single atom catalysts^[72,73]. The identifications of durable and non-durable FeN, sites in Fe-N-C ment and even for detecting the structural and electronic properties of single atom catalysts^[72,73]. The identifications of durable and non-durable FeN, sites in Fe-N-C materials for PEMFCs towards practical applicatio

ctro-
elec-
Ra-
tion.
.. (I)
cm⁻²
right The main and the set of $\frac{3}{2}$ and $\frac{3}{2}$ and Example the most of Nike, O.B, before the state of t Figure 14 (A) Cysic with the R₂ on the observed spectral shape has been changed at the observed spectral shape has been changed at the observed spectral shape has been changed at the shape of the observed spectral shape **Example 12**

Example 11 and 12 and 12 and 1² and 1² and 1² and 1² and 12 **Further increases as the applied model increases as the applied model increases (Figure 15(Ci)). The growth of Fe' (increase as the applied potential increase (Figure 15(Ci)). The amount of Fe' increase the applied poten** Example the (A) Cysin and Region Content (Figure 14(A) Cycle (The amount of Figure 14(A) Cycle (The black curves, α -phase NiOOII streature). (B-C) "Fe Missbeure spectra of NiFe₄-OH, before and after electro-
chemical **Eigure 14** (A) Cyclic vollummetric curves of NiFe₃-O.II, before (the bluck curves, α -phase Ni(OII), structure) and after electro-
chemical activation, (the declares, s-phase NiOOH structure), (H-2)⁻⁵/e Mossbauer s ehemical activation (the red curves, y-phase NiOOH structure). (B-C) ²Fe Mossbauer spectra of NiFe_a-O,H, before and after electronical activition. (D) Depending activation, (D) Depending activation, (D) Operator And a trochemical activation. (D) Ramam spectra (NFig-0, OII, better (black) and after (red) spepting anodic potential (E) Operato AB-
man spectra of Nite_n-O.H, collected at different applied potentials (V vs. RHE). (i) The O $\frac{1}{2}$
 $\frac{1}{2}$
 spectra were similar, which indicates the excellent
spectra were similar, which indicates the excellent
spectra were similar, which indicates the excellent structure)
that different mole points of NiFe_a-O,H, before and

to develop with the δ value of around -0.25 mm $\cdot s^{-1}$ OER (Figure 15(F)). The pre-OER and post-OER

Structure stability of the catalyst The resulting the catalystration of the stability which can also confirmed through the catalyst loading and a constant current density of 100 mA c m⁻²⁶.

C.M. The stability of the sta strate the streament of current density of the current density
 $\frac{1}{2}$ and $\frac{1}{12}$ and $\frac{1}{25}$ and $\frac{1}{25}$ and $\frac{1}{25}$ and after electro-
 C) ⁷Fe Mössbauer spectra of NiFe_a-O,H, before and after elect $\frac{68}{1.0}$ $\frac{1}{12}$ $\frac{1}{14}$ $\frac{12}{12}$ $\frac{1}{13}$ $\frac{1}{25}$ $\frac{69}{35}$ $\frac{75}{75}$ $\frac{100}{100}$

Fime (h)

he black curves, *c*-phase Ni(OH)₂ structure) and after electro-

ck) and after (red) applying anodic Time (h)

the black curves, α -phase Ni(OH)₂ structure) and after electro-
 γ ^{pr}Fe Mössbauer spectra of NiFe_{a2}-O₋H, before and after elec-

ck) and after (red) applying anodic potential. (E) Operando Ra-

vs. he black curves, *a*-phase Ni(OH)₂ structure) and after electro-
c)^{*s*T}Fe Mössbauer spectra of NiFe₀₂-O₋H, before and after elec-
ck) and after (red) applying anodic potential. (E) Operando Ra-
vs. RHE). (F) The O 2) STFe Mössbauer spectra of NiFe₀₂-O_rH, before and after elec-
ck) and after (red) applying anodic potential. (E) Operando Ra-
V vs. RHE). (F) The OER polarization curves with i_n correction.
totally with differ ck) and after (red) applying anodic potential. (E) Operando Ra-

v vs. RHE). (F) The OER polarization curves with i_n correction.

tot different molar ratios of Fe/Ni and commercial RuO₂. (I)

tt etatalyst loadings at

 $\mathbb{E} \{k \neq (J. \text{Electrochem.}) 2022, 28(3), 2108541 (24 of 31) \}$

RHE of OER (Figure 15(C)). As listed in Table 3, it potential rather than around onset potential^[47]. There-

is different from the previous *in-situl operando* M 28(3), 2108541 (24 of 31)
potential rather than around onset potential^[47]. There-
fore, the *in-situ* produced abundant Fe^{4+} at onset po-
tential and different applied potentials suggested that 28(3), 2108541 (24 of 31)
potential rather than around onset potential^[47]. There-
fore, the *in-situ* produced abundant Fe^{4+} at onset po-
tential and different applied potentials suggested that 28(3), 2108541 (24 of 31)
potential rather than around onset potential^[47]. There-
fore, the *in-situ* produced abundant Fe^{+} at onset po-
tential and different applied potentials suggested that
 $\frac{C_{100}\left(\frac{100}{1.37$ 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (24 of 31)

As listed in Table 3, it potential rather than around onset potential^[47]. There-
 n-situ/operando Möss-

observed at a higher tential and different applied pot

40 ₁ Current (mA) $\frac{8}{5}$ $\frac{8}{6}$ $\frac{8}{6}$ -10.0 2.0	1.57V 1.47V 1.42 V 1.37V 4.0 6.0 Time (h)	Current (mA) $=$ $\frac{8}{3}$ $\frac{8}{3}$ -10 $-20 - 0$ 1.2	Current (mA) $^{40}_{30}$ $^{40}_{10}$ 1.42V 1.37V 1.47V 1.4 1.6 Potential (V vs. RHE)	40 $Fe4+$ Pre 1.37 Potential (V vs. RHE)	40^\circledcirc $Fe4+$ 26 Content of 23 10 8 1.42 1.47 1.57 Post
15 The in-situ/operando ${}^{57}Fe$ Mössbauer spectra of NiFe _{0.2} -O _s H _y collected at (A) the open circuit voltage, (B) 1.37 V, (C)					
(D) 1.47 V, and (E) 1.57 V (vs. RHE). (F) $Ex-situ$ ⁵⁷ Fe Mössbauer spectrum of NiFe ₀₂ -O ₃ H _v collected after OER. The unit of					
ssbauer parameter of isomer shift (δ) is mm · s ⁻¹ relative to standard α -Fe foil. (G) The current-time curves at different applied					
als obtained during the <i>in-situ/operando</i> measurements. (H) Cyclic voltammogram without <i>i_R</i> correction of NiFe ₀₂ -O _s H _y record-					
			ng the in-situ/operando measurements. (I) The content of Fe ⁴⁺ and corresponding electric current determined at different ap-		
otentials ^[66] . Copyright 2021. ELSEVIER B.V. Reproduced with permission. (color on line) 3 The content of high-valent iron in-situ produced in the NiFe ₀₂ -O _i H _y electrocatalyst during the oxygen evolution reaction.	This work ^[65] (NiFe _{0.2} -O _x H _y)	$Fe4+$			Previous report ^[47] (Layered 3:1 NiFe oxyhydroxide) $Fe4+$
Potential (V vs. RHE)	$Fe^{4+}(%)$	δ /Fe (mm·s ⁻¹)	Potential (V vs. RHE)	$Fe^{4+}(%)$	δ /Fe (mm·s ⁻¹)
1.32	$\mathbf{0}$				
1.37	2	-0.25			
1.42 (around onset)	12	-0.24	1.49 (around onset)	$\boldsymbol{0}$	
1.47	23	-0.25			
1.52	36	-0.24			
1.57	40	-0.25	1.62	12	-0.27

 $#E#(J. Electronen) 2022, 28(3), 2108541 (25 of 31)$ Fe⁴⁺ has critical role in OER as shown in the last

Figure 15(I). Therefore, it can be concluded that the

Figure 15(I). Therefore, it can be concluded that the

amount of high-v $\frac{d_1}{k}$ $\frac{d_2}{k}$ (*L Electrochem.*) 2022, 28(3), 2108541 (25 of 31)

Fe⁴⁺ has critical role in OER as shown in the last and reaction intermediates interacting with each oth-

Figure 15(I). Therefore, it can be $\mathbb{E}e^{4t}$ has critical role in OER as shown in the last
Fe⁴⁺ has critical role in OER as shown in the last and reaction intermediates interacting with each
Figure 15(I). Therefore, it can be concluded that the er. T

7 Summary

probe precursors for preparing highly efficient NiFe-
is an active site or Ni as some *in-situloperundo* results
(oxy)hytoxide (NiFe_x-O.H) OER electrocatallysts by indicated that Fe sots as an active site for OER, while sphauer spectroscopic technology independently de-

veloped is used to conduct in-depth research on the

OER enter as α -Ni(OH)₂,

veloped is used to conduct in-depth research on the

main interaction strength of

the

sis, simulation and study case results discussion. The
 in-situloperando ⁵Te Mössbauer technique has also

of several other disturbing facto

been successfully applied in the ORR, CO_SRR, etc., selective intermediate *in-situloperando* ³Fe Mössbauer technique has also of several other disturbing factors while focusing on
becom successibily applical in the ORR, CORR, ctc., selective interemediates. Another factor is the differ-
the a been successfully applied in the ORR, CO_SRR, etc.,
the subtrofice alight bered to from configurations of *in-situl/operando* cells for the freacution both the preparation of highly efficient study of materials and *in-s* the authors hope to be able to provide a high level of the configurations of *in-situ/operando* cells for the present tool for the preparation of highly efficient study of materials under *in-situal operando* conditions.
 research tool for the preparation of highly efficient
study of materials under in-situ/operando conditions.
etaulysis of electrolytic water, carbora dioxide reduc-
As per the curre stanks of in-studioperando chane-
tion, f catalysts of electrolytic water, carbon dioxide reduc-

As per the current status of *in-situloperando* characterizations

iten, ful cell development and even for detecting the

itenzations analysis, on any single techniq

in the NiFe-2- (*J. Electrochem.*) 2022, 28(3), 2108541 (25 of 31)
 in the Nife-2- (*J.* Electrochem.) 2022, 28(3), 2108541 (25 of 31)
 in the 2- (16). Therefore, it can be concluded that the

er. The focus of all t $\frac{f_0(K) + f_1(K) - f_2(K) - f_3(K))}{f_0(K) + f_1(K) - f_2(K) + f_3(K))}$

Fe^{*} has critical role in OER as shown in the last

and reaction intermediates interacting with each oth-

Figure 15(I). Therefore, it can be concluded that the er. $Ee^{i\theta}$ has critical role in OER as shown in the last
 E^e th has critical role in OER as shown in the last

and reaction internediates interacting with each other

striguent IS(1). Therefore, it can be concluded tha **Example 19**
 Example 19 EVALUATION THE SECT ALTERT (SECT ALTERT ALTER Example 12
 Example 12 $\frac{dE}{dt}$

We $\frac{dE}{dt}$ the service of the in OER as shown in the last

Fe⁴⁺ has critical role in OER as shown in the last

Figure 15(I). Therefore, it can be concluded that the cr. The focus of all these *in-situlog* $\pm \frac{\text{Re}\frac{1}{2}x}{L}$ Electrochem.) 2022, 28(3), 2108541 (25 of 31)

ER as shown in the last and reaction intermediates interacting with each other

enable concluded that the error and these *in-situloperando* techniques
 EVALUATION THE CONSECT (EXAMPLE 1900) THE CONSECT (THE TOWER THE REST CONSECT AND THE REST AND THE REST AND NOTE THE SURFACT (OF THE TOWER THE TOWER THE TOWER THE TOWER (CONSECT) THE TOWER (THE TOWER AND THE NEW THE TOW **Home-made in the spectrochemical Fe M_i-** and intermediates interacting with each of-
Figure 15(I). Therefore, it can be concluded that the c r. The focus of all these *in-situtoperando* techniques
amount of high-valent $\mathbb{E}(E\#C, Ebeconben)$
 $\mathbb{E}(E\#C, Ebeconben)$ 2022, 28(3), 2108541 (25 of 31)

Figure 15(I). Therefore, it can be concluded that the

err. The focus of all these *in-situipperando* techniques

in the NiFe_{xt}-(oxy)hydroxide has Fe⁴¹ has critical role in OER as shown in the last

Figure 15(f). Therefore, it can be concluded that the

or. The focus of all these *in-sinuingeranda* techniques

amount of high-valent iron species *in-sinu* produced
 Fe⁴ has critical role in OER as shown in the last

refuge 15(1). There Core, it eanls concluded that the cr. The focus of all these *th*-aid inperpendict chining

Figure 15(1). The results concluded the create for the c Figure 15(1). Therefore, it can be concluded that the err. The focus of all these in-stitu/operando techniques

im the NiFe_{Na}r-(oxy)hydroxide has a positive correla-

NiOOH and the changes in oxidation states of Ni and
 amount of high-valent iron species *in-situ* produced was to investigate the transformation of Ni(OH), to
in the NiFe_{ctr} (oxy)hyroxide has a positive correla-
bin on the inference involved as a positive correla-
to in w in the NiFe_{tie}- (oxy)hydroxide has a positive correla-

NiOOH and the changes in oxidation states of Ni and

which is which that water oxidation reaction performance,

Fe. And not of the reaction different particle in N cion with its water oxidation reaction performance,

which further detections in the matrix phase for OER, while both Ni and Fe are

which further detection, data and the matrix phase for OER, while both Ni and Fe are

me which further deepens the understanding in the an active phase for OER, while both Ni and Fe are

mechanism of NiFe-hased electrocatalysts.

The important for high OFR activity in NiFe-hased OFCs.

The this tutorial revie mechanism of NiFe-based electrocatalysts. important for high OER activity in NiFe-based OECs.
 To Summarry
 The main of these in-stinulogeneod chanceterizations could
 IN this turbid review, NiFe_x-Eve PBAs are used EXECT THE SUMMERY FOLUT THE SULLY THE SULLY THE SULLY INTERFORMAT THE ARE THE SULLY INTERFORMAT THE PROPERTIENT AND THE SULLY AND THE SU In this tutorial review, NiFe_a-Fe PBAs are used as
not bring researchers to reach a consensus whether Fe
(oxy)hydroxide (NiFe_{in}OH) of ER electrocatallysts by
indicated that Fe acts as an active site for OER, while
a n (oxy)hydroxide (NiFe_a-O,H₃) OFR electrocatalysts by

indicated that Fe acts as an active site for OER, while

an avole lopotactic transformation method and the NiOOII helps in the stabilization of Fe⁴⁺¹³¹. On the

s a novel topotactic transformation method and the NiOOH helps in the stabilization of $\text{Fe}^{*(78)}$. On the home-made in-studiongermade electrochemical²Fe-Mos- other hand, some others uggested that Ni is the active soluti home-made *in-situloperando* electrochemical ⁵⁷Fe M₀. ofter hand, some others suggested that Ni is the active
stehar spectroscopic technology independently de-
OER center as c-Ni(OH), nanostructure showed better
vel oped is used to conduct in-depth research on the

OER activity compared to RuO_c⁵⁸. Moreover, the opti-

Re al active intermediates and working mecha-

m. Here we introduced in detail the application of the Sahatier cr OFR real active intermediates and working mechanismum and interaction strength of Ni with OH₅₆ also satisfies
insulling or three wintroduced in detail the application of the Sahatier criteria for the required design of mism. Here we introduced in detail the application of
 in-sintopermale ³TE Misschaure rechnique in the catalytes⁸⁷⁹. There coold be several factors that are con-
 in-sintopermale Selectrochemical OER test process, in-situ/operando ³Fe Mössbauer technique in the catalysts⁵⁹. There could be several factors that are con-
electrochemical OEC test process, including its won^t- sidered as the potential factors for different active
i electrochemical OFR test process, including its work-

sidered as the potential fietors for different active

ing principle, instrumentation, the design of reaction slits during *in-situlogerando* chancetterizations. For
 ing principle, instrumentation, the design of reaction

sites during *in-situ/operando* characterizations. For

cell, NiFe-based OFCs sample detection, data analy-

sample during *in-situ/operando* situles, it becomes

in cell, NiFe-based OECs sample detection, data analy

example, during *in-situ/operando* studies, it becomes

sis, simulation and study case results discussion. The

difficult to find out real active sites in the presences
 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of $Ni(OH)_2$ to
NiOOH and the changes in oxidati 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxida $28(3)$, 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes 28(3), 2108541 (25 of 31)

and reaction intermediates interacting with each oth-

er. The focus of all these *in-situ/operando* techniques

was to investigate the transformation of Ni (OH)₂ to

NiOOH and the changes in 28(3), 2108541 (25 of 31)

and reaction intermediates interacting with each other.

The focus of all these *in-situ/operando* techniques

was to investigate the transformation of Ni(OH)₂ to

NiOOH and the changes in oxi 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of $Ni(OH)_2$ to
NiOOH and the changes in oxidati 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these $in-situ/operando$ techniques
was to investigate the transformation of $Ni(OH)_2$ to
NiOOH and the changes in oxidation states 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each other.
The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidati 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each other.
The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidati 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxida 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxida 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each other. The focus of all these *in-situloperando* techniques
was to investigate the transformation of Ni(OH), to
NiOOH and the changes in oxidation 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each oth-
er. The focus of all these *in-situloperando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxida 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each other. The focus of all these *in-situloperando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidati 28(3), 2108541 (25 of 31)
and reaction intermediates interacting with each other.
The focus of all these *in-situloperando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidati Fracting with each oth-
 uloperando techniques

mation of Ni(OH)₂ to

dation states of Ni and

licated that NiOOH is

le both Ni and Fe are
 y in NiFe-based OECs.

haracterizations could

consensus whether Fe
 n-**Example 18 The Constrainer Constrainer** and reaction intermediates interacting with each other. The focus of all these *in-situloperando* techniques was to investigate the transformation of Ni(OH)₂ to NiOOH and the cha and reaction intermediates interacting with each other.
The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidation states of Ni and
Fe. An er. The focus of all these *in-situ/operando* techniques
was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidation states of Ni and
Fe. And most of the results indicated that NiOOH is
an act was to investigate the transformation of Ni(OH)₂ to
NiOOH and the changes in oxidation states of Ni and
Fe. And most of the results indicated that NiOOH is
an active phase for OER, while both Ni and Fe are
important for NiOOH and the changes in oxidation states of Ni and
Fe. And most of the results indicated that NiOOH is
an active phase for OER, while both Ni and Fe are
important for high OER activity in NiFe-based OECs.
But all these Fe. And most of the results indicated that NiOOH is
an active phase for OER, while both Ni and Fe are
important for high OER activity in NiFe-based OECs.
But all these *in-situloperando* characterizations could
not bring an active phase for OER, while both Ni and Fe are
important for high OER activity in NiFe-based OECs.
But all these *in-situloperando* characterizations could
not bring researchers to reach a consensus whether Fe
is an ac important for high OER activity in NiFe-based OECs.
But all these in-situ/operando characterizations could
not bring researchers to reach a consensus whether Fe
is an active site or Ni as some in-situ/operando results
ind But all these *in-situ/operando* characterizations could
not bring researchers to reach a consensus whether Fe
is an active site or Ni as some *in-situ/operando* results
indicated that Fe acts as an active site for OER, w not bring researchers to reach a consensus whether Fe

is an active site or Ni as some *in-situ/operando* results

indicated that Fe acts as an active site for OER, while

NiOOH helps in the stabilization of Fe⁴⁺⁽⁷⁵!. O is an active site or Ni as some *in-situ/operando* results
indicated that Fe acts as an active site for OER, while
NiOOH helps in the stabilization of Fe⁴⁺⁽⁷⁵l. On the
other hand, some others suggested that Ni is the ac indicated that Fe acts as an active site for OER, while
NiOOH helps in the stabilization of Fe^{4+[75]}. On the
other hand, some others suggested that Ni is the active
OER center as α -Ni(OH)₂ nanostructure showed bett NiOOH helps in the stabilization of $Fe^{i+[75]}$. On the
other hand, some others suggested that Ni is the active
OER center as α -Ni(OH)₂ nanostructure showed better
OER activity compared to RuO₂⁷⁶. Moreover, the opt other hand, some others suggested that Ni is the active
OER center as α -Ni(OH)₂ nanostructure showed better
OER activity compared to RuO₂^{rog}. Moreover, the opti-
mal interaction strength of Ni with OH_{ad} also sa OER center as α -Ni(OH)₂ nanostructure showed better
OER activity compared to RuO₂^{rog}. Moreover, the opti-
mal interaction strength of Ni with OH_{ad} also satisfies
the Sabatier criteria for the required design of OER activity compared to RuO₂⁷⁶. Moreover, the optimal interaction strength of Ni with OH_{ad} also satisfies
the Sabatier criteria for the required design of OER
catalysts²⁵⁹. There could be several factors that are al interaction strength of Ni with OH_{ad} also satisfies

E Sabatier criteria for the required design of OER

talysts^[29]. There could be several factors that are con-

lered as the potential factors for different activ the Sabatier criteria for the required design of OER
catalysts^[39]. There could be several factors that are con-
sidered as the potential factors for different active
sites during $in\text{-}situ/operatordo$ characterizations. For
exa catalysts²⁵⁰. There could be several factors that are considered as the potential factors for different active
sites during *in-situloperando* characterizations. For
example, during *in-situloperando* studies, it become sidered as the potential factors for different active
sites during *in-situloperando* characterizations. For
example, during *in-situloperando* studies, it becomes
difficult to find out real active sites in the presences
o sites during *in-situloperando* characterizations. For
example, during *in-situloperando* studies, it becomes
difficult to find out real active sites in the presences
of several other disturbing factors while focusing on
s example, during *in-situ/operando* studies, it becomes
difficult to find out real active sites in the presences
of several other disturbing factors while focusing on
selective intermediates. Another factor is the differ-
e 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (25 of 31)
as shown in the last and reaction intermediates interacting with each oth-
be concluded that the er. The focus of all these *in-situloperando* techniques
ecies *in-s*

difficult to find out real active sites in the presences
of several other disturbing factors while focusing on
selective intermediates. Another factor is the differ-
ent configurations of *in-situloperando* cells for the
 of several other disturbing factors while focusing on selective intermediates. Another factor is the different configurations of *in-situ/operando* cells for the study of materials under *in-situ/operando* conditions. As p selective intermediates. Another factor is the different configurations of *in-situ/operando* cells for the study of materials under *in-situ/operando* conditions.
As per the current status of *in-situ/operando* conditions ent configurations of *in-situ/operando* cells for the
study of materials under *in-situ/operando* conditions.
As per the current status of *in-situ/operando* charac-
terizations analysis, not any single technique has
show study of materials under *in-situ/operando* conditions.
As per the current status of *in-situ/operando* charac-
terizations analysis, not any single technique has
shown comprehensively the ability to study the phase
transf As per the current status of *in-situloperando* characterizations analysis, not any single technique has shown comprehensively the ability to study the phase transformation, changes in valence state and variation in morpho

of probi ng the local electronic structure, identifying $\#E\#(J. Electron) \geq 222, 28(3), 2108541 (26 of 31)$
of probing the local electronic structure, identifying
the active sites and phases, determining the crystal
structure, and tracking the oxidation state and environ-
tional Natura the $\mathbb{E}\{\mathcal{E}^{\#}(J. Electron})$ 2022, 28(3), 2108541 (26 of 31)
of probing the local electronic structure, identifying **Acknowledgements**
the active sites and phases, determining the crystal This work was financially supported $\frac{dE\#(J. Electronchem)}{dt}$

mentally supported by the local electronic structure, identifying

the active sites and phases, determining the crystal

the active sites and phases, determining the crystal

This work was financially $\text{H}(E\#(J, Eleetrochem.) 2022, 28(3), 2108541 (26 of 31)$
of probing the local electronic structure, identifying
the active sites and phases, determining the crystal
structure, and tracking the oxidation state and environ-
tional Na **EVALUATION 1989**
 EVALUAT CONTEX CONTENT CONTINUITY ACCOLLATE SET ACTIVE SET AND MORE ACTIVE TO THE STANCT SUPPORT STATE AND THE STANCT STATE STATE STATE STATE STATE STATE STATE STATE AND THE STATE STATE AND THE CONTENT \pm (*Electrochem.*) 2022, 28(3), 2108541 (26 of 31)
of probing the local electronic structure, identifying
the active sites and phases, determining the crystal
structure, and tracking the oxidation state and environ-
st **Example 19** The theoreto-herm.) 2022, 28(3), 2108541 (26 of 31)

of probing the local electronic structure, identifying **Acknowledgements**

the active sites and phases, determining the crystal This work was financially s **Example 19 and 19 EVALUATION EXAMORT (Exercusion ACSE)**
 EVALUATION CONTEX ACTES ACTES (SO SET AND ACTION ACTES (SO SET ALL AND MANUSE PROFINITIES the native sites and phases, determining the crystal This work was financially supported b EVALUATION 1989
 EVALUATION 1989
 EVALUATION 1999
 EVALUATION $\frac{\text{E} \{E\neq(I, Electrochem.) 2022, 28(3), 2108541 (26 of 31)}{\text{of probing the local electronic structure, identifying the crystal structure, and tracking the oxidation state and environ-} \text{This work was financial structure, and tracking the oxidation state and environ-} \text{to in all Natural Science Four, and tracking the oxidation state and environmental structure, and tracking the oxidation state and environmental state. For inner form further development in catalysis fields. For inner form, the development of *quasi-insi-isid* (21961142006) and the Internet for further development of *quasi-insi-isid* (21421KYSB20170020). Clearly, the development of *quasi-in-situ* (214$ **EVALUATION THE SECTION CONSUMBED (1)** The properties and phases, determining the crystal This work was financially supported by the National Patter and tracking the ordering the crystal This work was financially supporte th($k^{\#}(L \text{ Alexander})$) 202, 28(3), 2108541 (26 of 31)

of probing the local electronic structure, identifying **Acknowledgements**

the active sites and phases, electronic structure, identifying the crystal

tracture and trackin **EVALUE SECTION THE SECTION CONTROVED THE SECTION SET USE SET UP AN ARTICULTURE (SCITE ACTION IN THE SET UP AN ARTICULTURE IN THE SET UP AN ARTICULTURE (NOT UP AN ARTICULTURE THE SET UP AN ARTICULTURE (NOT UP AN ARTICULTU** of probing the local electronic structure, identifying **Acknowledgements**
the active sites and phases, determining the crystal This work was financially supported by the Na-
structure, and tracking the oxidation state and of probing the local electronic structure, identifying

the active sites and phases, determining the crystal

structure, and tracking the oxidation state and various-

structure, and tracking the oxidation state and vario the active sites and phases, determining the crystal

structure, and tracking the oxidation state can denviron-

structure, and tracking the oxidation state and elec-

structure, and tracking the oxidation of China (No.:

structure, and tracking the oxidation state and environ-
tional Natural Science Foundation of China (No.:
ment change of varios er-based entably is is critical 21961142006) and the infermational Partnesship Pro-
stance, t ment change of various Fc-based eatalysts is critical

for further development in eatalysis fields. For in-

stanec, the active sites of NiFc-based OECs could be

121421kYSB20170020).

Edearly probed with the development for further development in catalysis fields. For in-

gram of Chinese Academy of Sciences (No.:

stance, the active sites of NiFe-based OECs could be

clearly probed with the development of *quasi-in-situs*

cells to *in*stance, the active sites of NiFe-based OFCs could be

clearly probed with the development of quasi-in-situ

clearly problem interface structure interface structure in the phase transformation of negative structure interfa clearly probed with the development of *quasi-in-situ*

cells to *in-situ/operando* analyze the properties of cat-

ligits in-situting liguid energy future[J]. Nature, 2012, 488(7411): 294+

situtioperando or *quasi in-si* cells to *in-situdoperundo* analyze the properties of eat-

legistre. Further development of high temperature *in*-1 [1] cau S, Majumdar A. Opportunities and challenges for a

statiological of outer development of high te alysts. Further development of high temperature *in*-

shitulogramido energy funnel]). Name, 2012, 488(7411): 294-

simulate have strained to quasit in-situ cells would greatly provident OS

The base transformation of

Te situdoper and or quasi in-situ cells would greatly pro-

sustimable energy future[)]. Nature, 2012, 488(7411): 294-

The dissocial materials, the present transformation of

The dissocial materials, the metallity event

Th mote the investigation in the phase transformation of

Text, Te-based materials. The deduces have the materials:

The address key problems, more comprehensive in-

Factivally rechurgable zincari hatteries; progress, chal-Fe-based materials.

For Leven Mark Mc, Yu and ZP, Part Mc and ZW, and Newton Mc Chan ZW

To address key proposes chal-

imperiment the active sites accurately and the variation in the space of NiFe-based catalysts under To address key problems, more comprehensive in-

lenges, and prespectives [1]. Adv. Mater, 2017, 29(7):

sinulation in the active site sale actually desired to deter-

information in [31 Zhang H W, Shen P K. Recent develo *situding* eramda techniques are highly desired to deter-

into the variation in (51) Zhang II W, Shen P K, Recent development of polymer

morphologies of NiFe-based catalysts under OER

incruditions, and those techniques mine the active sites accurately and the variation in

in [3] Zhung II W, Shen P K. Recent development of polymer

nonphologies of NiFe-based celatlysts under OER

certonicity and the context celatlysts and elec-

trafici morphologies of NiFe-based candysts under OFR

conditions, and those techniques influencing the intervalse and the combining the intervalse and the activity
external interaction between catalysts and cloc [4] Jiao K, Xuan conditions, and those techniques influencing the in-

terfacial interaction between catalysts and elec-

for Jima K, Nam J, Du Q, Bao Z M, Xie B A, Wang B W,

for Uchiele tech-

trolyte'electrodes are erucial to be invest terfacial interaction between eatalysts and elec-

feriberal to be investigated simulations (μ) and μ and trolyte/electrodes are crucial to be investigated simul-

tano Y, Fau LH, Wang HZ, Hou Z, Hou S, Brandon N

tanceusly. For example, transmission and seaming the result permetines of

electron microscopies may detect surfa taneously. For example, transmission and scanning

proton-exchange membrane fiel exhibits the act generation of

electrom interesting-structure if they can overcome the

differenties of utilizing liquid electrolytes in a clectron microscopies may detect surface reconstruction

combining membrane theic estingth. Nature, 20

difficulties of utilizing liquid electrolytes in a high

difficulties of utilizing liquid electrolytes in a high

com characterization and interface structure if they can overcome the

difficulterization 10 (soin 2, Dire A. Progress and challenges of

difficulterization of theoretical calcula-

order of the characterization techniques an difficulties of utilizing liquid cleartolytes in a high

various divention reaction reaction on transition method

various method active since the control divention reaction on transition method

catalysts have shown exce Vacuum environment. Although NiFe-based electrocal based electrocal based electrocal pappi Mater. 2021,

conflog-term stability prevents them from use in com-

of long-term stability prevents them from use in com-

(6) L catalysts have shown excellent OFR activity, but lack

of log_{12} term stability prevents them from use in com-

of log_{12} term stability prevents then from use in com-

one can be reaching a both control and will genera of long-term stability prevents them from use in com-

incredia popitations. Therefore, understabing about the maplif, Cuo M C, accent about
consequent constraining electric states to constrained the constrained variable tions.

Acknowledgements

(3), 2108541 (26 of 31)
 Exhowledgements

This work was financially supported by the Na-

mal Natural Science Foundation of China (No.:

961142006) and the International Partnership Pro-

m of Chinese Academy of Sciences 28(3), 2108541 (26 of 31)
 Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.:

21961142006) and the International Partnership Pro-

gram of Chinese Academy of 28(3), 2108541 (26 of 31)
 Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.:

21961142006) and the International Partnership Pro-

gram of Chinese Academy of 28(3), 2108541 (26 of 31)
 Acknowledgements

This work was financially supported by the Na-

tional Natural Science Foundation of China (No.:

21961142006) and the International Partnership Pro-

gram of Chinese Academy 121421KYSB20170020). 28(3), 2108541 (26 of 31)
 Acknowledgements

This work was financially supported by the Na-

tional Natural Science Foundation of China (No.:

21961142006) and the International Partnership Pro-

gram of Chinese Academy S), 2108541 (26 of 31)
 knowledgements

This work was financially supported by the Na-

al Natural Science Foundation of China (No.:

61142006) and the International Partnership Pro-

m of Chinese Academy of Sciences (No 28(3), 2108541 (26 of 31)
 Acknowledgements

This work was financially supported by the Na-

tional Natural Science Foundation of China (No.:

21961142006) and the International Partnership Pro-

gram of Chinese Academy (3), 2108541 (26 of 31)
 Electrically supported by the Na-
 Electrical Natural Science Foundation of China (No.:

61142006) and the International Partnership Pro-

n of Chinese Academy of Sciences (No.:

421KYSB2017002 (a) 3), 2108541 (26 of 31)
 knowledgements

This work was financially supported by the Na-

al Natural Science Foundation of China (No.:

61142006) and the International Partnership Pro-

n of Chinese Academy of Sciences 28(3), 2108541 (26 of 31)
 Acknowledgements

This work was financially supported by the Na-

tional Natural Science Foundation of China (No.:

21961142006) and the International Partnership Pro-

gram of Chinese Academy **Example 15**
 Example 15
 Example 18
 Example 18 knowledgements

This work was financially supported by the Na-

al Natural Science Foundation of China (No.:

61142006) and the International Partnership Pro-

n of Chinese Academy of Sciences (No.:

421KYSB20170020).
 This work was financially supported by the National Natural Science Foundation of China (No.:
21961142006) and the International Partnership Pro-
gram of Chinese Academy of Sciences (No.:
121421KYSB20170020).
References: 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (26 of 31)
structure, identifying **Acknowledgements**
termining the crystal This work was financially supported by the Na-
tion state and environ-
tional Natural Science Foundat

References:

- 303.
- 1604685.
-
- al Natural Science Foundation of China (No.:
61142006) and the International Partnership Pro-
n of Chinese Academy of Sciences (No.:
421KYSB20170020).
ferences:
Chu S, Majumdar A. Opportunities and challenges for a
susta 61142006) and the International Partnership Pro-
61142006) and the International Partnership Pro-
n of Chinese Academy of Sciences (No.:
421KYSB20170020).
ferences:
Chu S, Majumdar A. Opportunities and challenges for a
s 11.12000 Muses **Contains and Alterative Contains and Alterative Contains of Chinese Academy of Sciences (No.: 421KYSB20170020).**
 Errences:
 Errences:
 Errences:
 Errences:
 Errences:
 Errences:
 Errences:
 17 OF Chinese Academy OF Sciences (190.1)

421KYSB20170020).
 Efferences:

Chu S, Majumdar A. Opportunities and challenges for a

sustainable energy future[J]. Nature, 2012, 488(7411): 294-

303.

Fu J, Cano Z P, Park M 121421N r SB20170020).
 References:

[1] Chu S, Majumdar A. Opportunities and challenges for a

sustainable energy future[J]. Nature, 2012, 488(7411): 294-

303.

[2] Fu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W.
 ferences:
Chu S, Majumdar A. Opportunities and challenges for a
sustainable energy future[J]. Nature, 2012, 488(7411): 294-
303.
Chu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W.
Electircally rechargeable zinc-air bat **Eerences:**
Chu S, Majumdar A. Opportunities and challenges for a
sustainable energy future[J]. Nature, 2012, 488(7411): 294-
303.
Electrically rechargeable zinc-air batteries: progress, chal-
Electrically rechargeable zin Chu S, Majumdar A. Opportunities and challenges for a
sustainable energy future[J]. Nature, 2012, 488(7411): 294-
303.
Fu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W.
Electrically rechargeable zinc-air batteries: progr sustainable energy future[J]. Nature, 2012, 488(7411): 294-

2013.

[2] Fu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W.

Electrically rechargeable zinc-air batteries: progress, chal-

lenges, and perspectives [J]. Adv. 303.

Fu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W.

Electrically rechargeable zinc-air batteries: progress, chal-

lenges, and perspectives [J]. Adv. Mater., 2017, 29(7):

1604685.

Electrolyte membranes for fuel ce Fu J, Cano Z P, Park M G, Yu A, Fowler M, Chen Z W.
Electrically rechargeable zinc-air batteries: progress, chal-
lenges, and perspectives[J]. Adv. Mater., 2017, 29(7):
1604685.
Zhang H W, Shen P K. Recent development of p Electrically rechargeable zinc-air batteries: progress, chal-
lenges, and perspectives[J]. Adv. Mater., 2017, 29(7):
1604685.
Zhang H W, Shen P K. Recent development of polymer
electrolyte membranes for fitel cells[J]. Che
-
-
- lenges, and perspectives[J]. Adv. Mater., 2017, 29(7):

1604685.

[3] Zhang H W, Shen P K. Recent development of polymer

electrolyte membranes for fuel cells[J]. Chem. Rev., 2012,

112(5): 2780-2832.

[4] Jiao K, Xuan J, 1604685.

Zhang H W, Shen P K. Recent development of polymer

electrolyte membranes for fuel cells[J]. Chem. Rev., 2012,

112(5): 2780-2832.

Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W,

Zhao Y, Fan L H, Wang H Z, Ho Zhang H W, Shen P K. Recent development of polymer
electrolyte membranes for fuel cells[J]. Chem. Rev., 2012,
112(5): 2780-2832.
Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W,
Zhao Y, Fan L H, Wang H Z, Hou Z L, Huo S, electrolyte membranes for fuel cells[J]. Chem. Rev., 2012,
112(5): 2780-2832.
Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W,
Zhao Y, Fan L H, Wang H Z, Hou Z L, Huo S, Brandon N
P, Yin Y, Guiver M D. Designing the next 112(5): 2780-2832.

Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W,

Zhao Y, Fan L H, Wang H Z, Hou Z L, Huo S, Brandon N

P, Yin Y, Guiver M D. Designing the next generation of

proton-exchange membrane fuel cells[J]. N Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W,
Zhao Y, Fan L H, Wang H Z, Hou Z L, Huo S, Brandon N
P, Yin Y, Guiver M D. Designing the next generation of
proton-exchange membrane fuel cells[J]. Nature, 2021, 595
(7867) Zhao Y, Fan L H, Wang H Z, Hou Z L, Huo S, Brandon N

P, Yin Y, Guiver M D. Designing the next generation of

proton-exchange membrane fuel cells[J]. Nature, 2021, 595

(7867): 361-369.

(51 Johnson D, Qiao Z, Djire A. Pro P, Yin Y, Guiver M D. Designing the next generation of
proton-exchange membrane fuel cells[J]. Nature, 2021, 595
(7867): 361-369.
Johnson D, Qiao Z, Djire A. Progress and challenges of
earbon dioxide reduction reaction on proton-exchange membrane fuel cells[J]. Nature, 2021, 595
(7867): 361-369.
Johnson D, Qiao Z, Djire A. Progress and challenges of
carbon dioxide reduction reaction on transition metal
based electrocatalysts[J]. ACS Appl. E [5] Johnson D, Qiao Z, Djire A. Progress and challenges of
carbon dioxide reduction reaction on transition metal
based electrocatalysts[J]. ACS Appl. Energy Mater., 2021,
4(9): 8661-8684.
Li VI, Gun Y J, Qin Y N, Zhang W carbon dioxide reduction reaction on transition metal
based electrocatalysts[J]. ACS Appl. Energy Mater., 2021,
4(9): 8661-8684.
Li Y J, Sun Y J, Qin Y N, Zhang W Y, Wang L, Luo M C,
Yang H, Guo S J. Recent advances on wat based electrocatalysts[J]. ACS Appl. Energy Mater., 2021, 4(9): 8661-8684.
Li Y J, Sun Y J, Qin Y N, Zhang W Y, Wang L, Luo M C, Yang H, Guo S J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-4(9): 8661-8684.
Li Y J, Sun Y J, Qin Y N, Zhang W Y, Wang L, Luo M C, Yang H, Guo S J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials[J]. Adv. Energy Mater., 202 Yang H, Guo S J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured
materials[J]. Adv. Energy Mater., 2020, 10(11): 1903120.
[7] Li J C, Kuang Y, Meng Y T, Tian X, Hung W H, Zh
- 573-588.
- 2882.
-

- $# \# \# (J. \nElectrochem.) 2022, 28(3), 2108541 (27 of 31)$

2019, 9(11): 9973-10011. Thu C L, Zhang L, Gong J L. Recent progress made in the much interval properties and prospective in ruthenium-based mate-

2019, 9(11): 9973-10011. [
- $\# \{\& \cong (J. \: \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \: \: \& \$ ($\frac{12}{2}$ Lyons M E G, Floctrochemical materials ($\frac{127}{2}$ Bloguet M, Eq. 23) Lies ($\frac{127}{2}$ Bloguet M, Eq. 23) Using HP, $\frac{127}{2}$ Using HP, $\frac{127}{2}$ Using HP, $\frac{127}{2}$ Using HP, $\frac{127}{2}$ Using HP, $\$ 4 $\frac{1}{2}$ (*Let Electrochemi*) 2022, 28(3), 2108541 (27 of 31)

cent advances and prospective in ruthenium-based mate-

this for electrochemical water-splitting Are-

fractis for electrochemical water-splitting Are-

2 $\begin{tabular}{ll} $\text{4E} \#C \# (L \: \textit{Electrochem}) 2022, 28(3), 2108541 (27 of 31) \end{tabular} \begin{tabular}{ll} \text{18.6\%} \end{tabular} \begin{tabular}{ll} \text{19.6\%} \end{tabular} \begin{tabular}{ll} \text{19.6\%} \end{tabular} \begin{tabular}{ll} \text{10.6\%} \end{tabular} \begin{tabular}{ll} \text{10.6\%} \end{tabular} \begin{tabular}{ll} \text{10.6\%} \end{tabular} \begin{tabular}{ll} \text{$ $#L## (L. Electrochem.) 2022, 28(3), 2108541 (27 of 31)
\ncent advances and prospective in ruthenium-based mate-
\nraise for electrochemical water splitting [J]. ACS. Call.
\nH_U C1, 2979-10011.
\nH_U C1, 20mg J, (0909, 911).
\nH_U C2019, 973-10011.
\nH_U C1, 20mg J. (0909, 12. Recent progress made in the
\nmechanism comprehension and design of electrocatalysts
\nevolution reaction[I]. Clin.$ 14 (*H*) \neq (*H*) *E* (*H*) *E* (*H*) *E* (*H*) *E* (*H*) *E* (*L*) *CO* (*L*) *S*(*C*) *CO*) *S*(*C*) *L*) *CO* (*L*) *S*(*C*) *L*) *CO* (*L*) *CO* (*L*) ent advances and prospective in ruthenium-based mate-

based catalysts for electrochemical water

rais for electrochemical water

2019, 9(11): 9973-10011.

2019, 9(11): 9973-10011.

Elu C L, Zhang L, Gong J L. Recent progr
-
-
- Synthesis and activities of rutile $IrO₂$ and $RuO₂$ nanoparti-
- RuO., IrO, and Ir.Ru.O., electrodes in aqueous acid and Adv. Mater., 2021, 33(17): 2006042.

alkaline solution[1]: Phys. Chem. Chem. Phys., 2011, 13 [25] Halogun M S, Huang Y C, Qiu W T, Yang

(12): 5314-5335. [20, Qiu WT [14] Suen N T, Hinng S F, Qum Q, Zhung N, Xu Y J, Chen II [26] Jin S. Are metal chaloogenides, nitrides, and phosphides

M. Electrocouthy si for the oxygen evolution reaction: re-

text, 2017, 46(2): 337-365.

Eev., 2017, Rev., 2017, 46(2): 337-365.

IFS Leve N, Bures F. Nine-Hom Y.

IS Leve N, Sures for exactly and Rub, analytical and the Symber ordinal in the section in the section is the Symbol of Symbol Symbols and activities of rank a
-
-
- 15444.
-
-
-

- the detect advances and prospective in ruthenium-based mate-

the detect of 31)

cent advances and prospective in ruthenium-based mate-

based catalysts for electrochemical water-splitting: A re-

rials for electrochemica the $\frac{1}{2}$ (*L Electrochemical* 2022, 28(3), 2108541 (27 of 31)

recent advances and prospective in ruthenium-based mate-

rials for electrochemical water splitting [J]. ACS Catal.,

2019, 9(11): 9973-10011.

For elec (*J. Electrochem.*) 2022, 28(3), 2108541 (27 of 31)

eent advances and prospective in ruthenium-based matebased catalysts for electrochemical water-splitting: A re-

rais for electrochemical water splitting[J]. ACS Catal thensival is the thence the multiplement and the process and prospective in ruthenium-based materials for electrochemical water-splitting: A re-

rais for electrochemical water splitting [J]. ACS Catal.

2019, 9(11): 9973 fg {*C*²²(*J. Electrochem.*) 2022, 28(3), 2108541 (27 of 31)

cent advances and prospective in ruthenium-based mate-

based catalysts for electrochemical water-splitting: A re-

reinch water splitting[J]. ACS Catal.

20 2108541 (27 of 31)
based catalysts for electrochemical water-splitting: A re-
view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.
Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma
J M. Transition metal carbides in electroc 2108541 (27 of 31)
based catalysts for electrochemical water-splitting: A re-
view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.
Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma
J M. Transition metal carbides in electroc 28(3), 2108541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

[23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carb 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elec 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elec 298. 28(3), 2108541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

[23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carb 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elec 2108541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elec 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (27 of 31)

in ruthenium-based mate-

based catalysts for electrochemical water-splitting: A re-

splitting[J]. ACS Catal.,

[23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z,
	-
- alkaline solution [1]. Phys. Chem. Chem. Phys. 2011, 13 [23] Balogau M S, Fung Y C, Qub WT, Yang H, Bi Balkaline solution[J]. Phys. Chem. Chem. Phys., 2011, 13 [23] Wang H, Zhou M S, Fung J, Chem. Chem. Chem. Chem. Phys. 2 (E) E^2 (*L Electronbera*, 2022, 28(3), 2108541 (27 of 31)

eent advances and prospective in rubterium-based mate-

miss for electrochemical water-splitting: A re-

miss for electrochemical water-splitting: A re-

en (1) $\frac{d_1}{2}$ (1) $\frac{d_2}{2}$ (1) $\frac{d_3}{2}$ (1) $\frac{d_4}{2}$ (1) $\frac{d_5}{2}$ (1) $\frac{d_6}{2}$ (1) $\frac{d_7}{2}$ (1) $\frac{d_8}{2}$ (1) $\frac{d_9}{2}$ (1) $\frac{d_9}{2}$ (1) $\frac{d_9}{2}$ (1) $\frac{d_9}{2}$ (1) $\frac{d_9}{2}$ (1) $\frac{d_9}{$ **EVALUAT CONSUMATELAT CONSUMATELY**
 EXERCTION CONSUMATELY
 EXERCTION THEORY IS CONSUMATELY AND TRIMENTAL SURFACE CONSULTIBITY AND NUMATELY AND NUMATELY CONSULTIBITY AND VALUAT CONSULTIBITY AND VALUAT CONSULTIBITY AND T (1) $\frac{1}{2}$ (*E* \mathcal{L} *Electrocheron.*) 2022, 28(3), 2108541 (27 of 31)

contradvances and prospective in nutherium-hased mate-

hased canalysts for electrochemical water-splitting; A re-

reaction reaction reaction cent advances and prospective in ruthenium-based mate-

rials for electrochemical water-splitting (J). ACS Canal,

rials for electrochemical water-splitting (J). ACS Canal,
 $(231 \text{ Nons}, 2010, 11)$. Soc. Development and th rials for electrochemical wuter splitting[J]. ACS Catal.

213) views f]]. Adv. Funct Mater, 2020, 30(1): 1906481.

219) 49(1): 9973-1001.

219) Well He C1, 7 Jang 1P, 200, 13, Dang 1P, 22m is a Deng JW. Zhang WC, Fung Y Z 2019, 9(11): 9973-10011.

ILC (2, Zhang L. Recent progress made in the Hu C. Zhang L. Recent progress made in the

Hu C. Zhang L. Recent progress made in the

H. Chang L. Recent progress made in the

ILC (2): 2020-2645.
 [23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

progress made in the UM. Transition metal carbides in electrocatalytic oxygen

and f electrocatalytis

and profession reaction[J]. Chin. Chem. Lett., 2021, 32(1): 2 Fiace C. Zhamg L., Gong J L. Recent progress made in the

mechanism comprehension and edisology of electrocatally
six orbits for other actions for the case of the spin of electrocatally
six or the signal properties for a mechanism comprehension and design of electrocatalysts

evolution reaction[J]. Chin. Chem. Lett., 2021, 32(1): 291.

12(9): 26(20-2645.

12(9): 26(20-2645.

12(9): 26(20-2645.

12) 26(20-2645.

12) 26(20-2645.

12) 2000-2 for alkaline water splitting[J]. Energy Environ. Sci., 2019,

12(2): 2020-243455. Atchination of oxygen reactions

12(2): 2020-24345. Atchination of oxygen reactions

17. Jona M, Li S, Wang Y H, Cheng C. Designing MOF

at 12(9): 2620-2645.

12(9): 2620-2645.

12(9): 2820-2645.

12(9): 2820-2645.

12(9): 2820-47 (1): 2000 ME (F. Floquet S. Mechanism of oxygen evolution at

12(1): Hencourchilectures for electrochemical veater splitting [D].
 Lyons M i: G_i, iloquet S. Mechanism of oxygen reactions

I. Hy. 2not M, Li S, Wang Y H, Cheng C. Designing MOF

at poots sciele electrockes. Part 2-Oxygen revolution at the meancachic

Ruo, IcO, and IcRu, O, electrockes at porous oxide electrodes. Part 2-Oxygen evolution at

Rudols for decertochemical water splitting [J].

Rudols for and Exp. (not have March (2001), Phys. Chen. Chem. Phys., 2011, 13

(125) Halogun M. S, Huang Y C, Qui W. alkaline solution
[17] Divys. Chem. Chem. Phys., 2011, 13

(12) Balogun M S, Humg Y C, Qiu W T, Yung H, Ji H B,

(12) s314-5355.

[17] Humer A M, Gray H R, Muller A M. Farth-abundant here

trues deviation on the developme 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elec 28(3), 2108541 (27 of 31)

based catalysts for electrochemical water-splitting: A review[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

[23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbide 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

View H, P. Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in ele 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater, 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elect 2008541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in elec 425-451. 28(3), 2108541 (27 of 31)

based catalysts for electrochemical water-splitting: A re-

view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

[23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal car oxygent (27 of 31)

based catalysts for electrochemical water-splitting: A review[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

vevolution reaction[J]. Chin. Chem. Lett. based catalysts for electrochemical water-splitting: A review[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.
Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma
M. Transition metal carbides in electrocatalytic oxygen
evoluti based catalysts for electrochemical vater-splitting: A re-
view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.

[23] Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in electrocatalytic oxy view[J]. Adv. Funct. Mater., 2020, 30(1): 1906481.
Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma
J M. Transition metal carbides in electrocatalytic oxygen
evolution reaction[J]. Chin. Chem. Lett., 2021, 32(1): 291-
27 Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma

J M. Transition metal carbides in electrocatalytic oxygen

evolution reaction[J]. Chin. Chem. Lett., 2021, 32(1): 291-

298.

Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F J M. Transition metal carbides in electrocatalytic oxygen
evolution reaction[J]. Chin. Chem. Lett., 2021, 32(1): 291-
298.
H, Zhou M, Li S, Wang Y J, Ma T, Yang C D, Peng Y F, Zhou Z
H, Zhou M, Li S, Wang Y H, Cheng C. Des evolution reaction[J]. Chin. Chem. Lett., 2021, 32(1): 291-
298.

Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z

H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF

nanoarchitectures for electrochemical water splitti 298.

2018.

Elmag B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z

H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF

nanoarchitectures for electrochemical water splitting [J].

Adv. Mater., 2021, 33(17): 2006042.

Tong Y Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z
H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF
nanoarchitectures for electrochemical water splitting [J].
Adv. Mater., 2021, 33(17): 2006042.
Balogun M S, Huang Y C, H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF
nanoarchitectures for electrochemical water splitting [J].
Adv. Mater., 2021, 33(17): 2006042.
[25] Balogun M S, Huang Y C, Qiu W T, Yang H, Ji H B,
Tong Y X. Updates on th nanoarchitectures for electrochemical water splitting [J].
Adv. Mater, 2021, 33(17): 2006042.
Balogun M S, Huang Y C, Qiu W T, Yang H, Ji H B,
Tong Y X. Updates on the development of nanostruc-
tured transition metal nitri Adv. Mater., 2021, 33(17): 2006042.

Balogun M S, Huang Y C, Qiu W T, Yang H, Ji H B,

Tong Y X. Updates on the development of nanostruc-

tured transition metal nitrides for electrochemical energy

storage and water split Balogun M S, Huang Y C, Qiu W T, Yang H, Ji H B,
Tong Y X. Updates on the development of nanostruc-
tured transition metal nitrides for electrochemical energy
storage and water splitting[J]. Mater. Today, 2017, 20(8):
425-
	-
	-
	-
	- (12): 5314-5335.

	Trong Y X. Updates on the development of nanostnesses (Hunter BM, Groups (12): Hard Campion and Microsoften Manifolds for electroncomic lenergy

	trong recogneous water oxidation catalysts[1] Chem. Rev., Hunter B M, Gray H B, Muller A M. Earth-abundant het-

	tured transition metal attricties for electrochemical energy

	reorganeous water oxidation exalystic μ activity μ and λ . All μ and λ are λ and λ a erogeneous water coidution catalysts[J]. Chem. Rev., 2016,

	116(22): 14130-14136. 11620-14136. 11620-14146. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 1162. 116(22): 14120-14136.

	425-451.

	1622): 14120-14136.

	Sham NT, Flum S F, Quam Q, Zhang N, Xu V J, Chem H

	126] Im S. Are metal chalcogeroids, mirides, and phosphides

	M. Electrocatralysis for the oxygen evolution reaction M. Hiectrocatalysis for the oxygen evolution reaction: re-

	cent development and foliure perpetcives[7]. Chem. Soc.

	Electrocatalysts or Nifs-absoc (0xy)hydroxide cata-

	Lev, Samivich J, May K J, Perry E L, Shan-Horn Y.
 cent development and fiture perspectives[J]. Chem. Soc. 261 Schergy Lett., 2017, 2(8): 1937-1938.

	Lev 2, Sundrvich 1, May K. J. Perry E. E., Shao-Horn Y. [27] Diomigi F, Struscer, P. Nife-based (oxyhypdroxide calcuses Lee Y, Suntivish J, May K J, Perry E E, Shao-Horn Y.

	Syst for oxygen evolution reaction in non-acidic elec-

	Synthesis and acityinis of ranki bilo and Radio, anaoptris-

	Lee, for exygen evolution in acid and alkaine solu Synthesis and activities of nuile IrO₂ and RuO₂ anoparti-

	clear Ro rooggen couldnot in acid and allakines solutions [28] Grang M, Li Y G, Wang J, H₂ K, H₂ and Halcon

	(J. J. Phys. Chem. Lett., 2012, 3(3): 399-404
 Tong Y X. Updates on the development of nanostructured transition metal nitrides for electrochemical energy
storage and water splitting[J]. Mater. Today, 2017, 20(8):
425-451.
Jin S. Are metal chalcogenides, nitrides, and tured transition metal nitrides for electrochemical energy
storage and water splitting[J]. Mater. Today, 2017, 20(8):
425-451.
[26] Jin S. Are metal chalcogenides, nitrides, and phosphides
oxygen evolution catalysts or bif storage and water splitting[J]. Mater. Today, 2017, 20(8):
425-451.
Jin S. Are metal chalcogenides, nitrides, and phosphides
oxygen evolution catalysts or bifunctional catalysts? [J]
ACS Energy Lett., 2017, 2(8): 1937-1938 425-451.

	Jin S. Are metal chalcogenides, nitrides, and phosphides

	oxygen evolution catalysts or bifunctional catalysts? [J]

	ACS Energy Lett., 2017, 2(8): 1937-1938.

	Dionigi F, Strasser, P. NiFe-based (oxy)hydroxide cat Jin S. Are metal chalcogenides, nitrides, and phosphides
oxygen evolution catalysts or bifunctional catalysts? [J]
ACS Energy Lett., 2017, 2(8): 1937-1938.
Dionigi F, Strasser, P. NiFe-based (oxy)hydroxide cata-
lytsts for oxygen evolution catalysts or bifunctional catalysts? [J]
ACS Energy Lett, 2017, 2(8): 1937-1938.

	[27] Dionigi F, Strasser, P. NiFe-based (oxy)hydroxide cata-

	lyts for oxygen evolution reaction in non-acidic elec-

	troly ACS Energy Lett., 2017, 2(8): 1937-1938.

	Dionigi F, Strasser, P. NiFe-based (oxy)hydroxide cata-

	lysts for oxygen evolution reaction in non-acidic elec-

	trolytes[J]. Adv. Energy Mater., 2016, 6 (23): 1600621.

	Gong M, L Dionigi F, Strasser, P. NiFe-based (oxy)hydroxide cata-
lysts for oxygen evolution reaction in non-acidic elec-
trolytes[J]. Adv. Energy Mater., 2016, 6 (23): 1600621.
Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J
al lysts for oxygen evolution reaction in non-acidic electrolytes[J]. Adv. Energy Mater., 2016, 6 (23): 1600621.

	[28] Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J

	G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-F trolytes[J]. Adv. Energy Mater., 2016, 6 (23): 1600621.

	Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J

	G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe

	layered double hydroxide electrocatalyst for water oxida Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J
G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe
layered double hydroxide electrocatalyst for water oxida-
tion[J]. J. Am. Chem. Soc., 2013, 135(23): 8452-8455.
Sub
		-
		-
		-
- [7] J. Phys. Chean. Lett., 2012, 3(3): 399-404.

16, Wang J. Regier T, Wei F, Dai HJ. An advanced Ni-Fe

1616 Halsencer J. D., Schloren R. H. Brudvig G W.

1606 Halsence does controllarly afor weak controllarly afor the c Blakemore J D, Schley N D, Kushner-Lenboff M N, layered double hydroxide electrocanalyst for water oxida-
Winter A M, D'Souar R. Chehrer R H, Bracking G W. Comparison of amorphous infultion water-oxidaino elec-

Compariso Winter A M, D'Souza F, Crabtree R H, Brudvig G W.

Comparison of anomphous indium varte-coxidation electo-

comparison of anomphous information and Theorem A, Tripkovic D, Chame, K. C, Structure D,

Chem., 2012, 51(14): 7 Comparison of anopybons iridium wate-coidation elec-

cocanalyse preparent from soluble precument [1]. Ineng.

(121) Toionig) F. Paulism A P, Himain H, Claum C, Claum trocatalysis prepared from soluble precursors[1]. In
org. Paulikas A P, Himnsit P, Chan M, Greeley J, Stameshvie Chem, 2012, 3 (1(4): 7749-7763.

Chiech M, Pun L J, Li W X, Greeley J, Stamsser P. Intrins. H.

Unbegreenes Chem, 2012, 51(14): 7749-7763.

Unionly is Know N. Treads in activity for the water elec-

Unionly F. Zbu J. Zeng Z H, Merzdorf T, Sarodnik H,

unionly is Char, Sarodnik H,

unionly idea catalystely). Nat. Matter, 2012, 1 Dionigi F, Zhu J, Zeng Z II, Merzdorf T, Sarodnik H, tolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)

Gitelo M, Pan L, J, Li W X, Greely J, Stansser P. Intrine to side cataly
advise the electrocantaly is extremely to Gliech M, Pan L.J, Li W.X, Greeley J., Strasser P. Intrinsace controllation of respectively for except and the patel M R. A. Testure A, C. Patel M K, Patel M R. A. The state Mappa C. The association of the state of the st G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe
layered double hydroxide electrocatalyst for water oxida-
tion[J]. J. Am. Chem. Soc., 2013, 135(23): 8452-8455.
[29] Subbarama R, Tripkovic D, Chang K C, Strmenk D,
P layered double hydroxide electrocatalyst for water oxidation[J]. J. Am. Chem. Soc., 2013, 135(23): 8452-8455.
Subbaraman R, Tripkovic D, Chang K C, Strmenik D,
Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic
V, M tion[J]. J. Am. Chem. Soc., 2013, 135(23): 8452-8455.
Subbaraman R, Tripkovic D, Chang K C, Strmenik D,
Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic
V, Markovic N M. Trends in activity for the water electrolyse Subbaraman R, Tripkovic D, Chang K C, Strmenik D,
Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic
V, Markovic N M. Trends in activity for the water elec-
trolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)
oxide Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic
V, Markovic N M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)
oxide catalysts[J], Nat. Mater, 2012, 11(6): 550-557.
Mun V, Markovic N M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy) oxide catalysts[J]. Nat. Mater, 2012, 11(6): 550-557.
[30] Mushi M Z A, Tseung A C C, Parker J. The dissolution o trolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)
oxide catalysts[J]. Nat. Mater., 2012, 11(6): 550-557.
Munshi M Z A, Tseung A C C, Parker J. The dissolution
of iron from the negative material in pocket plate nick-
e oxide catalysts[J]. Nat. Mater., 2012, 11(6): 550-557.
Munshi M Z A, Tseung A C C, Parker J. The dissolution
of iron from the negative material in pocket plate nick-
el-cadmium batteries[J]. J. Appl. Electrochem., 1985, 1
	-

-
-
- (4) $\frac{1}{2}$ Girlin M, Cherne, P, A. Statistic Mathematic Section of Fe¹ F, Nian H, Goddard W. A. Synergy between Fe and

137] Mlynarck G, Paszkiewiez M, Radniecka A. The effect of Nin the optimal performance of (Ni,F H(*E*²(*L* Electrochem.) 2022, 28(3), 2108541 (28 of 31)

1. Am. Chem. See, 2017, 139(33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

Myyarek G, Pasckiewicz M, Radniecka A. The effect of Ni **reaction dynamics, faradaic charge efficiency, and the ac-

1483 Nine H, Shin H, Goddard W A. Synergy between Fe and

Mlynarck G, Paszkiewiez M, Radniecka A. The effect of Nine optimal performance of (Ni_nFe)OOH catalys ELOTE THE THE CONDUCT CONDUCT (FIGURE 1200)**

1. Am. Chem. Soc., 2017, 139(33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between ie and

Myhareke C, Prascisovez M, Radinicks A. The effect of Ni-Fe orientat electrocate in \mathbb{R} . Am. Chem. Soc., 2017, 139(3): 138(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148(18): 148 5603-5614. **EEQ-FOLE ENERTORIES (FOLE 22, 28(3), 2108541 (28 of 31)**

1. Am, Chem, Soc., 2017, 139(3): 11361-11364,

[35] Mlynacek G, Passkiewicz M, Radniecka A. The effect of **Kinis H**, Goddard W. A. Synergy between ie and

[35] Ml
- The $\frac{1}{2}$ (1), $\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{$ 19. ($E^2/(E. Electrowe, 2022, 28(3), 2108541 (28 of 51)$

3. Am. Chem, Soc., 2017, 139(33): 11361-11364.

Mlynnets C, Passievivec M, Realitoich a. The effect of Rein the optimal performance of Cs, Passievic M, Realitoich a. The effe J. Am. Chem. Soc., 2017, 139(33): 11361-11364.

Mynarck G, Paszkiewicz M, Radniecka A. The effect of

Min the optimal performance of (Ni,Fe9OOH catalyses for

ferric ions on the behavior of a nickelons hydroxide of the ox J. Am. Chem, Soc., 2017, 139(33): 11361-11364.

Myannel G., Passicrocions (Michardel A. Therefore of colineration (Michardel A. The role of this in the optimal performance of (NicPo)ODI etanly

Myannel G., Passicrosic Mic Mlynarck G, Paszkiewicz M, Radniecka A. The effect of Nin in equinal performance of (Ni,Fe)OOH catalysis for

decircologly). J. Appl. Electrochem, 1984, 14(2): 145-149. U.S.A., 2018, 115(23): 5872-5877.

Trotochand L, You Firite ions on the behaviour of a nickelous hydroxide the oxygen column reaction [1]. Pronc. Natl. Acad. Sci.

1363, Tronchand I, Young S1, Roumey JR, Bottelen SW. [46] Corrigan D A, Conell R S, Fierro C A, Schenson D A.
 electrode(J). J. Appl. lelectrochem., 1994, 14(2): 145-149.

Hockhard D, Young 1 D. A. Cosl 8, 15(22): 872-5877.

Trolectron(II, Now The R, Gray H B. Decembent and incident and incident and the stellar incomponents of the Trotochaud L. Young S L. Ramney J K. Boottcher S W. [46] Corride M Section (1 A, Scheen D A, Corride Intermediate in non-

Nextite-line of *Intermediate in non-* increduced in the subset of the subset of the subset of the Nickel-iron oxyhydroxide oxygen-evolution electrocata-

Institute Mossbauer study of redox

1618, 2018, 2141, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 201 lysts: the role of intentional and inicidental iron interved of the and nickel[1]. J. Phys. Chem, 1987,

Tail (1)-1. A.m. Chem, Soc, 2014, 184(18): 6744-6753.

[41) Cosini M, Chem, P, de Anaioj J. F, Reiser T, Desp S, [47 ration[1]. J. Am. Chem. Soc., 2014, 136(18): 6744-6753.

Grafit M, Chemer P, Pass (311-18) (19): 5009-5011. N. Ling H F, BiW L, Greher J B, Grafit M, Chemer P, Red Amily of P, Reizer T, Droep S, [47] Chem J V C, Dang L N. Gignia M, Chemev P, de Anajoi J F, Riser T, Deep S, [47] Chem J V C, Durag LN, Liamel II, Kinetics of Nie-Ramburg C (Risepa coolumn Jin S, Alp E. Stataly S. Corkers of Nie-Ramburg Chemecking and K, Kinetics of Nie-Ramburg Paul B, Krahner R, Dau H, Strasser P. Oxygen evolution

Fe oxygen/splayide electrocanalysis for water oxiduion

reaction of the S. Ape E S. Spain & S. Operation analysis of Ni-Fe oxide water splitting

incertion of Fe¹ reaction dynamics, fortadic charge efficiency, and the ac-

to explorate decision of Fe⁴ by Missbauer spectroscopy[J], J. Am.

electrocatalysts[J], J. Am. Chem. Soc., 2016, 138(17):

S600-5614.

S600-5614.

S600-5614.
 tive metal redox states of Ni-Fe oxide water splitting

lencetion of 127 by Missbauer spectroscopy[1]. J. Am.

electrocating in The Channel Sec., 2015, 1374(8): 1390-15093.

S603-5614.

S603-5614.

S603-5614.

S603-56 chectrocoatingsts[1]. J. A. An. Chem. Stoc., 2016, 138(17):

Star Tao II B, Xu V H, Humg X, Chen J G, Ei J, Zhung J

Star Chem. Star, Schement R, Dans H, Bernsmoler D, Dresp

Structure P, Krachent R, Dan H, Star Chem. Ass 5603-5614.

485 and H, Xu Y H, Huang X, Chenn J G, Liu

Gotin M, de Artafo JF, Schmies H, Bernsmeier D, Dresp

8. Giliceh M, Jusys Z, Chemev P, Krachnert R, Dau H,

8. Giliceh M, Jusys Z, Chemev P, Krachnert R, Dau H,

8. [38] Gorlin M, de Arasjo J F, Schmies H, Bernsmeier D, Dresp

S, Gitchen M, Jussey A, Chemerov P, Karchen R, Dan H, Southen R, Dan H, Schmies and Frequenties are persisten in the Fan Mil-Fe oxylogitation space of the syl
-
-
- Effects of Fe electrolyte impurities on Ni(OH)₂/NiOOH [52] Timoshenko J, Cuenya B R. In situ/operando electrocata-
- electrocatalysts: the role of catalyst support and electrolyte as precission or a

prima Soc. 2017, 139(5): 2007-2082.

Hunter BM, Thompson N B, Müller A M, Rossman G R, and Chem. Soc., 2018, 140(36): 11286-1

Hunter BM,
- (HIJ). J. A.m. Chem, Soc., 2017, 139(5): 2070-2082.

Hill M G, Winders DM, Hollstein of H, Wossen atoms for oxygen evolution reaction[1]. J. A.m.

Hill M G, Winders PM, Hollstein A, M, Rossen and G H, Weight water-splitte Hunter B M, Thompson N B, Muller A M, Rossman G R,

Heil N G, Winder J, Rossey and troon (V)

Them. Soc. 2018, 140(36): 11286-11282

Hill M G, Winder J R, Grow HB. The Traping and troon products are therefore

2018, 240(5 Hill M G, Winkler J R, Gray H B. Trapping an iron(VI)

You Camin. Succide Separat A T, Takanabe K. Insight

value-sepiting intermediation in omnapseus medial)! Joule,

2018, 24(k): "47-763.

2018, 24(k): "47-763.

2018, 2 water-splitting intermediation in ontaqueous media $[1]$. Joul₂ com Table alongs are a commute of the subsect of the state intervalse of the state intervalse of 2018, 2(4): 747-763.

Alth B. Shard A. Surface interrogation seanning elec-

decircoctatalytic for energy conversion[IJ], Sci. Rep., 2015,

treedemical microscopy of N₁, Fe,(ODH (0 < x = 0.27) ox

science in Surface of Ahn H S, Bard A J. Surface interrogation scanning elec-

strategy of Ni₁Tex₁COM (0 < x < 0.27) axes Ti BROL

1980 revelopment in the exact splitter splitter and CO₁ reduction reactions in

1. Am. Chem. Soc., 2016, 1 trochemical microscopy of Ni_u,Fe,OOH (0 < x < 0.27) ox

1511) Deng Y 1, Yeo B S. Characterization of electrocaralytic

15. Among canchos as the "finite intensity and CO_E reduction reactions using in

1441] Ellicals C, ygen evolving eatalyst: Kinetics of the "fast" inn sites[1]. And Change in the solution reactions using in A. Am. Chem. See, 2016, 138(1): 313-31. Am. Chem. See, 2016, 138(1): 313-31. Am. Chem. See, 2016, 138(1): 313-3. S J. Am. Chem. Soc., 2016, 138(1): 313-318.

Khus S, Cai Y, Uosteo MW, Trotochuad L., Bell A T.

Khus S, Cai Y, Louis M W, Trotochuad L., Bell A T.

Eiffests of Fe electrotyte impurities on Ni(OH)/NiOOH

strathing Ferms bet Klaus S, Cai Y, Iouie M W, Trotochand 1, Hell A T.

Efficies of Fe detertolyte imputinis on NiOH)NNOOH

States of Fe detertolytic imputinis on NiOH)NNOOH

States of Fe detertochano, Inc. 2020, 121(2): 882-961.

C, 2015, 1 Effects of Fe electrolyte impurities on Ni(OH)₂NiOOH structure and oxygen revolution activity[J]. J. Phys. Chem.

Sci., 2015, 119(13): 7243-7254.

C, 2015, 119(13): 7243-7254.

Zou S H, Burke M S, Kast M G, Fan J, Danil
-
- the the Hall (*J. Electrochem.*) 2022, 28(3), 2108541 (28 of 31)

J. Am. Chem. Soc., 2017, 139(33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

Mlynarek G, Paszkiewicz M, Radniecka A. The effect $# \&L \ncong (J. \n Eulercohem.) 2022, 28(3), 2108541 (28 of 31)$

J. Am. Chem. Soc., 2017, 139(33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

[35] Młynarek G, Paszkiewicz M, Radniecka A. The effect of Ni in Ferric ions on the behavior of a nickelous hydroxide (148) Xiao H, Shin H, Goddard W A. Synergy between Fe and

Mynarek G, Paszkiewicz M, Radniecka A. The effect of Niin the optimal performance of (Ni,Fe)OOH catalysts for
 electrochem.) 2022, 28(3), 2108541 (28 of 31)

J. Am. Chem. Soc., 2017, 139(33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

Mlynarek G, Paszkiewiez M, Radniecka A. The effect of Niin the optima [36] Trotochaud L, Young S L, Ranney J K, Boettcher S W. $\frac{d}{dt}\left\{\frac{L}{t}^{2}(\textit{J. Electronchem.})\ 2022, 28(3), 2108541 (28 of 31)\right\}$

1. Am. Chem. Soc., 2017, 139(33): 11361-11364.

Mynarek G, Pazkiewicz M, Radniecka A. The effect of Nii metoprimal performance of (Ni_iCoOH catalysts for M **EET (Electrochem.)** 2022, 28(3), 2108541 (28 of 31)
 J. Am. Chem. Soc., 2017, 139(33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

Mynarek G, Paszkiewicz M, Radniecka A. The effect of Nin th 28(3), 2108541 (28 of 31)
[45] Xiao H, Shin H, Goddard W A. Synergy between Fe and
Ni in the optimal performance of (Ni,Fe)OOH catalysts for
the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.
U.S.A., 2018, 115(23): 5 (28 of 31)

Niao H, Shin H, Goddard W A. Synergy between Fe and

Ni in the optimal performance of (Ni,Fe)OOH catalysts for

the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci.

U.S.A., 2018, 115(23): 5872-5877.

Corr (2008), 2108541 (28 of 31)

Xiao H, Shin H, Goddard W A. Synergy between Fe and

Ni in the optimal performance of (Ni,Fe)OOH catalysts for

the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

U.S.A., 2018, 115(23): 5 (2008), 2108541 (28 of 31)

Xiao H, Shin H, Goddard W A. Synergy between Fe and

Ni in the optimal performance of (Ni,Fe)OOH catalysts for

the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

U.S.A., 2018, 115(23): 5 28(3), 2108541 (28 of 31)

[45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

Ni in the optimal performance of (Ni,Fe)OOH catalysts for

the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

U.S.A., 2018, 115(23 (2108541 (28 of 31)

Xiao H, Shin H, Goddard W A. Synergy between Fe and

Ni in the optimal performance of (Ni,Fe)OOH catalysts for

the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci.

U.S.A., 2018, 115(23): 5872-58 ite hydroxides of S11 (28 of 31)

Xiao H, Shin H, Goddard W A. Synergy between Fe and

Ni in the optimal performance of (Ni,Fe)OOH catalysts for

the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

U.S.A., 2018, 115(电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (28 of 31)

33): 11361-11364. [45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

adniecka A. The effect of Ni in the optimal performance of (Ni,Fe)OOH catalysts for

or
	-
	- **ELACTE (Example 19.22, 28(3), 2108541 (28 of 31)**
 J. Am. Chem. Soc., 2017, 139(3): 11361-11364. (48) Xiao iH, Shin H, Goddard W A. Synergy between Fe and

	MMynarek G, Paszkiewicz M, Radniceka A. The effect of iterati (2108541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(23): 5872-587 28(3), 2108541 (28 of 31)

	[45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(2 (2008541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(23): 5872-587 (2008541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(23): 5872-587), 2108541 (28 of 31)
Xiao H, Shin H, Goddard W A. Synergy between Fe and
Ni in the optimal performance of (Ni,Fe)OOH catalysts for
the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.
U.S.A., 2018, 115(23): 5872-5877.), 2108541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reactio 28(3), 2108541 (28 of 31)

	[45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(0, 2108541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of $(N_iFe)OOH$ catalysts for

	the oxygen evolution reaction [1]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(23): 5872-5 108541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(23): 5872-5877. 1, 2108541 (28 of 31)

	Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(23): 5872-5 26(3), 2106341 (26 01 31)

	[45] Xiao H, Shin H, Goddard W A. Synergy between Fe and

	Ni in the optimal performance of (Ni,Fe)OOH catalysts for

	the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci.

	U.S.A., 2018, 115(Xiao H, Shin H, Goddard W A. Synergy between Fe and
Ni in the optimal performance of (Ni,Fe)OOH catalysts for
the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.
U.S.A., 2018, 115(23): 5872-5877.
Corrigan D A, Conell Ni in the optimal performance of (Ni,Fe)OOH catalysts for
the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.
U.S.A., 2018, 115(23): 5872-5877.
Corrigan D A, Conell R S, Fierro C A, Scherson D A.
In-situ Moessbauer the oxygen evolution reaction[J]. Proc. Natl. Acad. Sci.
U.S.A., 2018, 115(23): 5872-5877.
Corrigan D A, Conell R S, Fierro C A, Scherson D A.
In-situ Moessbauer study of redox processes in a composite hydroxide of iron U.S.A., 2018, 115(23): 5872-5877.

	Corrigan D A, Conell R S, Fierro C A, Scherson D A.
 In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel[J]. J. Phys. Chem., 1987,

	91(19): 5009-5011 [46] Corrigan D A, Conell R S, Fierro C A, Scherson D A.
 In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel[J]. J. Phys. Chem., 1987,

	91(19): 5009-5011.

	[47] Chen J Y C, Dang L N, *In-situ*. Moesbauer study of redox processes in a composite hydroxide of iron and nickel[J]. J. Phys. Chem., 1987, 91(19): 5009-5011.
Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B, Jin S, Alp E E, Stahl S S. Operan ite hydroxide of iron and nickel[J]. J. Phys. Chem., 1987,
91(19): 5009-5011.
Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B,
Iin S, Alp E E, Stahl S S. Operando analysis of NiFe and
Fe oxyhydroxide electrocatalysts f 91(19): 5009-5011.

	Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B,

	Jin S, Alp E E, Stahl S S. Operando analysis of NiFe and

	Fe oxyhydroxide electrocatalysts for water oxidation:

	Detection of Fe^t by Müssbauer sp [47] Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B,

	Jin S, Alp E E, Stahl S S. Operando analysis of NiFe and

	Fe oxyhydroxide electrocatalysts for water oxidation:

	Detection of Fe^{tt} by Mössbauer spectroscopy[J].
		-
	- S, Giech M, Jusys Z, Chernev P. Krachaert R, Dau II, evolution immemizant at eigensure p. Canaly, 1998.

	Strasser P. Trasking caliby stook states and reaction decision of a subsect or and its set in Ni-Fe oxyley
devices a Stranser P. Tracking cutatyst redox states and reaction dy-

	and Y-2002, AOP 1499-1399. AD. (1499-1399, AD. 1499-1399, AD. 1499-1399, AD. 1499-139, AD. 1499-139, AD. 1499-139, AD. 1499-149, AD. Clearly and the relocation namics in Ni-Fe oxyhydroxide oxygen evolution rateion

	electrocealabysis gupon *A.C.* warg 1, 2no *A.C.* warg 1, 2no *A.C.* warg 1, 2no *A.C.* warg 1, 2no *A.C.* Wargen and electrocealabysis: Activation of

	electrocealaby Jin S, Alp E. E, Stahl S S. Operando analysis of NiFe and
Fe oxyhydroxide electrocatalysts for water oxidation:
Detection of Fe⁴⁺ by Mössbauer spectroscopy[J]. J. Am.
Chem. Soc., 2015, 137(48): 15090-15093.
Tao H B, Xu reaction analysis of NiFe and
Operando analysis of NiFe and
atalysts for water oxidation:
bauer spectroscopy[J]. J. Am.
15090-15093.
X, Chen J Z, Pei L J, Zhang J
neneral method to probe oxygen
operating conditions [J]. Jo Fe oxyhydroxide electrocatalysts for water oxidation:
Detection of Fe⁴⁺ by Mössbauer spectroscopy[J]. J. Am.
Chem. Soc., 2015, 137(48): 15090-15093.
Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J
M, Chen J G G, Li Detection of Fe^t by Missbauer spectroscopy[J]. J. Am.
Chem. Soc., 2015, 137(48): 15090-15093.
Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J
M, Chen J G G, Liu B. A general method to probe oxygen
evolution intermed **EXECTS:** Chem. Soc., 2015, 137(48): 15090-15093.

	[48] Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J

	M, Chen J G G, Liu B. A general method to probe oxygen

	evolution intermediates at operaring conditions [J]. Jo Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J
Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J
M, Chen J G G, Liu B. A general method to probe oxygen
evolution intermediates at operating conditions[J]. Joule,
20 M, Chen J G G, Liu B. A general method to probe oxygen
evolution intermediates at operating conditions [J]. Joule,
2019, 3(6): 1498-1509.
Su X Z, Wang Y, Zhou J, Gu S Q, Li J, Zhang S. Operan-
do spectroscopic identificat Example 10.13 (4) Example 2.13 A, Cai W Z, Liu S, Liu B, Liu Worken and S, Capital Monday and S, Capital Chem. Soc., 2018, 140(36): 11286-11292.

	[50] 2019, 3(6): 1498-1509.

	Su X Z, Wang Y, Zhou J, Gu S Q, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe

	prussian blue analogues as electrocatalysts: Activation of

	oxygen atoms for oxygen evo Electrochemical reactions for energy conversion[J]. Small Methods, 2018, 2(6) L17, Bung Y, Zhou J, Gu S Q, Li J, Zhang S. *Operan-do* spectroscopic identification of active sites in NiFe prussian blue analogues as electro do spectroscopic identification of active sites in NiFe
prussian blue analogues as electrocatalysts: Activation of
oxygen atoms for oxygen evolution reaction[J]. J. Am.
Chem. Soc., 2018, 140(36): 11286-11292.
Shinagawa T,
		- Example 10. Alternative and parameterization of the disclosure and Methods, 2018, 140(36): 11286-11292.

		[50] Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous ele oxygen atoms for oxygen evolution reaction[J]. J. Am.
Chem. Soc., 2018, 140(36): 11286-11292.
Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight
on Tafel slopes from a microkinetic analysis of aqueous
electrocatalysis fo Chem. Soc., 2018, 140(36): 11286-11292.

		Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight

		on Tafel slopes from a microkinetic analysis of aqueous

		electrocatalysis for energy conversion[J]. Sci. Rep., 2015,

		5: 13801.
		-
		-
		-
		-
		- 3-318.

		and L, Bell A T.

		and Marina pertoscopy[J]. ACS Catal., 2017,

		chand I, Bell A T.

		11): 7873-7889.

		[52] Timosheako J, Cuenya B R. In situ/operando electrocata-

		tyl characterization by X-ray absorption spectroscop Shinagawa T, Gracia-Esparza A T, Takanabe K. Insight

		Shinagawa T, Gracia-Esparza A T, Takanabe K. Insight

		on Tafel slopes from a microkinetic analysis of aqueous

		electrocatalysis for energy conversion[J]. Sci. Rep., 201 on Tafel slopes from a microkinetic analysis of aqueous
electrocatalysis for energy conversion[J]. Sci. Rep., 2015,
5: 13801.
[51] Deng Y L, Yeo B S. Characterization of electrocatalytic
water splitting and CO₂ reduction electrocatalysis for energy conversion[J]. Sci. Rep., 2015,
5: 13801.
Deng Y L, Yeo B S. Characterization of electrocatalytic
water splitting and CO₂ reduction reactions using in
situloperando Raman spectroscopy[J]. ACS 5: 13801.

		S: 13801.

		Deng Y L, Yeo B S. Characterization of electrocatalytic

		water splitting and CO₂ reduction reactions using in

		situloperando Raman spectroscopy[J]. ACS Catal., 2017,

		7(11): 7873-7889.

		Timoshenko J Deng Y L, Yeo B S. Characterization of electrocatalytic
water splitting and CO₂ reduction reactions using *in*
situ/operando Raman spectroscopy[J]. ACS Catal., 2017,
7(11): 7873-7889.
Timoshenko J, Cuenya B R. *In situ/o* water splitting and CO₂ reduction reactions using *in* situ/operando Raman spectroscopy[J]. ACS Catal., 2017, 7(11): 7873-7889.
Timoshenko J, Cuenya B R. *In situ/operando* electrocata-
lyst characterization by X-ray abs *situloperando* Raman spectroscopy[J]. ACS Catal., 2017,

		7(11): 7873-7889.

		[52] Timoshenko J, Cuenya B R. *In situloperando* electrocata-

		lyst characterization by X-ray absorption spectroscopy[J].

		Chem. Rev., 2020, 12 7.11): 7873-7889.

		Timoshenko J, Cuenya B R. *In situ/operando* electrocata-

		lyst characterization by X-ray absorption spectroscopy[J].

		Chem. Rev., 2020, 121(2): 882-961.

		Li X N, Wang H Y, Yang H B, Cai W Z, Liu S, Liu Timoshenko J, Cuenya B R. *In situloperando* electrocata-
lyst characterization by X-ray absorption spectroscopy[J].
Chem. Rev., 2020, 121(2): 882-961.
Li X N, Wang H Y, Yang H B, Cai W Z, Liu S, Liu B. *In
situloperando*
			-

- (a) Ether, Res., 2015, 48(11): 2976-2983.

Echem. Res., 2015, 48(11): 2976-2983.

(b) Catala L, Mallah T. Nanoparticles of Prussian blue

Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue

(and related coordination pol $\label{eq:R26} \begin{tabular}{ll} $\# \& $\#$ (J. Electrochem.)$ 2022, 28(3), 2108541 (29 of 31)$ \end{tabular} \begin{tabular}{ll} \textbf{Chem. Res., 2015, 48(11): 2976-2983.} \end{tabular} \begin{tabular}{ll} \textbf{Chem. Res., 2015, 48(11): 2976-2983.} \end{tabular} \end{tabular} \begin{tabular}{ll} \textbf{[57]} All-Laytry H, Louis- and related coordination polymers: From information and related coordination polymers: From information storage to biomedical applications [J]. Good. Chem$ (*H*) (*H*) (*H*) (*H*) (*H*) (*H*) (*H*) (*H*) (*H*) (*G*) (*S*) (*G*) (*A*lalah *I*, Mallah *T*. Nanoparticles of Prussian blue analogs

Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue and related coordination poly ig (*k*)#(*k*, *Electrochem.*) 2022, 28(3), 2108541 (29 of 31)

Chem. Res., 2015, 48(11): 2976-2983. [68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs

Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue an electrocatalyst for the oxygen evolution reaction[J]. J. Phys. [68] Catala L. Mallah T. Nanoparticles of Prussian blue analogs

Ali-Löytty H. Louie M W, Singh M R, Li L, Casalongue and related coordination polymers: From (*H*/*E²* (*L Electrochem.*) 2022, 28(3), 2108541 (29 of 31)

Chem. Res., 2015, 48(11): 2976-2983. [68] Catala L, Mallah T. Nanoparticles of Prussian bl

Ali-Läytty H, Louie M W, Singh M R, Li L, Casalongue and relat
- **EVALUATION 1989**
 EXALUAT CONTING (EXALUAT COLOR) (68) Catala L, Mallah T. Nanoparticles of Prussian blue analogs

[57] Ali-Litytty H, Louie M W, Singh M R, Li L, Casalongue and related coordination polymes: From infor $\text{LCEM}, \text{RSEM}, \text{LSEM}, \text$ H, *H* (*E* $\frac{1}{2}$ Cher, Res., 2015, 48(11): 2976-2983.

Chern, Res., 2015, 48(11): 2976-2983. [68] Catala I, Mallah T. Nanoparticles of Prussian blue analogs

Ali-Löytty H, Louic M W, Singh M R, Li L, Casalongue and **EVALUATION 1997** (68) Catala I, Mallah T. Nanoparticles of Prussian blue analogs

Ali-Laytty H, Louie M W, Singh M R, Li I, Casalongue and related coordination polymers: From information

Ali-Laytty H, Louie M W, Singh M neous catalysts [1]. Appl. Catal. B-Environ., 2018, 224:

1683 Catala L, Malluh T. Nanoparticles of Prassium blue unalogs

Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue

268 Catala L, Malluh T. Nanoparticles of Pra 518-532. **EVALUATION (EVALUATION 1992, 28(3), 2108541 (29 of 31)**

Chem. Res., 2015, 48(11): 2976-2983.

[68] Citalia L. Mallah T. Namparticles of Prussian blue analogos

[57] Ali-Loytty H. Louis M. W. Singh M.R. Li L. Casalongue
 4 (*E-*F/2. *Electrochem.*) 2022, 28(3), 2108541 (29 of 31)

Chem. Res., 2015, 48(11): 2976-2983.

468). Catala L. Mallah T. Nampatricles of Prussian blue analogs

4H G K, Ogasavara H, Crumlin F. J, 1ia Z, baslongue and **EQUEST (1. Electrochem.**) 2022, 28(3), 2108541 (29 of 31)

[68] Catala L, Mallah T. Nineparticles of Prussian blue analogs

[57] Ali-13ytty H, Louis M W, Singh M R, Li I, Casalongue
 EQUEST ADisology and relaxed coordin Eq. 22 (*L. Electrochem.*) 2022, 28(3), 2108541 (29 of 31)

Chem. Res., 2015, 48(11): 2976-2983,

168] Catala L. Mallah T. Nanopatricles of Pressian blue analogs

1H G s, Ogseawarn H. Crumlin E J, Liu Z, Bell A T, Nils-Chem. Res., 2015, 48(11): 2976-2983.

(Ali-Lúytty H, Louis M.W., Singh M.R, Li L. Casalongue

and related coordination polymes: From information

H G S, Ogasawara H, Crumlin E.J, Liu Z, Bell A T, Nils-

songe to biomedica H G S, Ogasawara H, Crumlin E J, Liu Z, Bell A T, Nils-

storage to biomedical applications[J]. Coc

storage to biomedical applications[J]. Coc

electrocatalyst for the oxygen evolution reaction[J] J. Phys.

1903 Zakaria Chem. C, 2016, 120(4): 2247-2253.

Li X N, Zhu K Y, Pang J F, Tian M, Liu J Y, Rykov A I,

the and Prussian blue andlog

II N N, 201 K Y, Pang X D, Zhu K, F, Huang Y Q, Liu B,

Nang J H, Yang X D, Zhu X F, Huang Y Q, Liu
- 124-143.
-
-
-
-
-
-
- cations[M]. Deutschland: Springer, 2010.

Chen H M, Jiang J C, Yu Q

Wang J H, Jin C, Z, Liu X, Liu D R, Sam H, Wei F F, Zhang

I. in B. Unveiling the in sithe control of S. Khasamov A, Khasamov A, Hawaver

1. Nevers J G,
-
- 28(3), 2108541 (29 of 31)
[68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
[69] 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 2008541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 28(3), 2108541 (29 of 31)

[68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs

and related coordination polymers: From information

storage to biomedical applications[J]. Coord. Chem. Rev.,

2017, 346: 32-61.
 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (29 of 31)
6-2983. [68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs
gh M R, Li L, Casalongue and related coordination polymers: From information
E J, Liu Z, Bell
	-
	- 2008541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 28(3), 2108541 (29 of 31)

	[68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs

	and related coordination polymers: From information

	storage to biomedical applications[J]. Coord. Chem. Rev.,

	2017, 346: 32-61.
 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi $28(3)$, 2108541 (29 of 31)

	[68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs

	and related coordination polymers: From information

	storage to biomedical applications[J]. Coord. Chem. Rev.,
 2017 , 34 , 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, moparticles of Prussian blue analogs
tion polymers: From information
applications[J]. Coord. Chem. Rev.,
w T. Recent advances in Prussian
analogues: Synthesis and thermal
Chem. Rev., 2017, 352: 328-345.
ura M, Mibu K, Tsuj 2108541 (29 of 31)

	Catala L, Mallah T. Nanoparticles of Prussian blue analogs

	and related coordination polymers: From information

	storage to biomedical applications[J]. Coord. Chem. Rev.,

	2017, 346: 32-61.

	Zakaria M B 2008541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi 2108541 (29 of 31)
Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chi
	-
- Chem. Res., 2015, 48(11): 2976-2983.

[68] Catala L. Mallah T. Nanoparticles of Prussian blue analogs

[67] Aki-Lem, Ether M, Singh M, R, Li L, Casalongue and related coordination polymers: From information

som, Zriebel Ali-Laytty H, Louie M W, Singh M R, 1 i I, Casalongue and related coordination polymers: From information

H G S, Ogsawara H, Charalis J, Liu Z, Bell A, T, Nils-

Son A, Friebet D. Ambient-pressure XTS study of a Ni-Fe

el son A, Friedel D. Ambiel pressure XPS study of a Ni-Fe

electrocatalys for the experiment reaction (J. J. Phys. (9) Leaden M. B. Chiloyov T. Recent subvances in Prassian

Chen. C, 2016, 120(4): 2247-2253. [51 K) K), Zbu K electrocotalyst for the oxygen evolution reaction(JJ, J. Phys. [69] Zakaria M B, Chikyow T. Recent advances in Prussim

Chem. Rev, 2016, 1204(): 2247-2253.

LANS, Zhu K Y, Pang J F, Tian M, Iui J Y, Rykov A I,

Theng M Y, [58] Li X N, Zhu K Y, Pung J F, Tian M, Liu J Y, Rykov A I

Zheng M Y, Wang Y D, Zhor, Rhung Y Q, Li B, Thua, Beli A A, Imay N, Rhung M A, Imay M, Nielo K, Naugar M, Yang Y, Nigin Now K, Thua, Nielo K, Naugar Secondy in a Theng M Y, Wang X D, Zhu X F, Huang Y Q, Liu B,

Vlong HI, Ning K, Payimenta Y, Van-

Wang J H, Vang V S, Zhung E, Unique role of Mossburer musics in X. Symbesis of superparament

metal chemistry: Fundamental chemistry: F Wang J H, Yang W S, Zhang T. Unique role of Missbauer

spectroscopy in sacessing structural features of heteroges

spectroscopy in saces call particle and the cordination polymers [J]. Chem. Matter, 2012,

S18.532.

S18.5 spectroscopy in assessing structural features of heterogo-

iron oxide particles with hollow interiors by using pras-

518-532,

518-532,

518-532,

524, Ahoshauger R.L. Kernesonanz/Hoursteen/von gummastr-

524, 142, 2698 neous candlysis [J]. Appl. Catal. B-Environ., 2018, 224:

S18.532.

S18.532.

S18.532.

Mossbauer R 1.. Kenwesonan/fluoresoen von gammaster-

T/1 is X N, Vang 2, H, Zhang B, Rykov A I, Ahmed M A,

oldus in 1191[J]. Zeisesh 518-532.

Mossbauer R. L. Kennessonanzfluoreszenz von gammastr-

Mossbauer R. L. Kennes ZH, Zhang E. R. Wang 2H, Zhang E. R. Wang 2H, Expectroscopy databases derived from nanoscale

124. IAM as the spectroscopy in heter-
 Mossbuur R L. Kemresonant/Iluorescenz von gammastr-

1711 Li X N, Wang 2 H, Zhang B, Rykov A I, Ahm

111-11911 Li X Eco, 2012, 2014 Li Eco, 2013, 2012

11. Fig. Co. 2013, 2012 Li X, Rykov A I, Wang J H, Zhang T. Recent adv ablum in Physik, 1958, 151(2): Wong J H. Fe,Co, O, nanocages derived from nanoscale

[60] Liu K, Rykov A I, Wang J H, Zhang T. Recent advances are thrown of peroxymonoscalite(IJ). Appl. Catal. B-Elvisin in the application 124-143.

Liu K, Rykov A I, Wung J H, Zhung T. Recent advances

Liu K, Rykov A I, Wung J H, Zhung T. Recent advances

geneous catalysis[J]. Adv. Catal, 2021 S. S. S. S. Hen are the state in the state analysis[J]. Adv. Ca Liu K, Rykov A I, Wang J H, Zhang T. Recent advances

activation of peroxymonosulfate[J]. Ap

in the application of Missbauer spectroscopy in hetro-

room, 2016, 181: 788-799.

Kramm U I, Ni L M, Wagner S. ⁸⁷Fe Missbaue in the application of Missbauer spectroscopy in hetero

[72) Li X N, Cas (81: 788-799)

[66] Knmm U I, Ni L A, Wagner S. ^{Ti}ce Missbauer spectroscopy characterization of electrocetally
self) A characterization of Eeche C geneous catalysis(1). Adv. Catal., 2015, 58: 1-142.

Knomn UL Ni L N, Lik N, V, Agvis N, La V N, Agvis N, The Missolanus Catalysis (30 S) As B, Yang H B, H N Z H, Wang H H, Zhou Misson S, Xi B B, Xi B I, The Way H H, The [68] Catala L, Mallah T. Nanoparticles of Prussian blue analogs

and related coordination polymers: From information

storage to biomedical applications[J]. Coord. Chem. Rev.,

2017, 346: 32-61.

[69] Zakaria M B, Chikyow Catala L, Mallah T. Nanoparticles of Prussian blue analogs
and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.

Zakaria M B, Chikyow T. Recent ad and related coordination polymers: From information
storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chikyow T. Recent advances in Prussian
blue and Prussian blue analogues: Synthesi storage to biomedical applications[J]. Coord. Chem. Rev.,
2017, 346: 32-61.
Zakaria M B, Chikyow T. Recent advances in Prussian
blue and Prussian blue analogues: Synthesis and thermal
treatments[J]. Coord. Chem. Rev., 2017 2017, 346: 32-61.

Zakaria M B, Chikyow T. Recent advances in Prussian

blue and Prussian blue analogues: Synthesis and thermal

treatments[J]. Coord. Chem. Rev., 2017, 352: 328-345.

Hu M, Belik A A, Imura M, Mibu K, Tsuj Zakaria M B, Chikyow T. Recent advances in Prussian
blue and Prussian blue analogues: Synthesis and thermal
treatments[J]. Coord. Chem. Rev., 2017, 352: 328-345.
Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Ya-
mauchi Y. 3440-3454. treatments[J]. Coord. Chem. Rev., 2017, 352: 328-345.

[70] Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y. Synthesis of superprarangentic nanoporous

iron oxide particles with hollow interiors by using prus-
 Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Ya-
mauchi Y. Synthesis of superparamagnetic nanoporous
iron oxide particles with hollow interiors by using prus-
sian blue coordination polymers[J]. Chem. Mater., 2012,
24(14
- Kramm U I, Ni L M, Wagner S. "Fe Massbauer spectors, Ni S B, Yang H B, Huang J H, Zhuang T, Chaopy characted noise decretoconshystelf). Not, No E E, iron (or the electrocal control of the state with a Machimia Coreal Control of Fig. Now You also that the SC 1019, 113, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 1201-13, 120 ien, 2019, 31(31): 1805623.

Yaio II, Humg Y Q, Li J, Zhang T, Liu B, Identification

if Fischer N, Classy M. In since 2018, the since the specific increase for each symple, $\frac{3(20)(20)(300)(11)}{25(20)(20)(20)(20)(20)(20)(20)(20)($ Fischer N, Claeys M. In situ characterization of Fischer

of the electronic and structural dynamics

Tropscheadlyss. A review[J], J. Phys. D-Appl. Phys. 2020,

3440-3454.

Gatlich P, Bill E, Trautwein A.X. Missbauer spect Tropach can by the U.S. Apple Phys. D-Apple Phys. 2020, center in single-1e-atom material[J]. Chem, 2020, 6(12):

[63] Gratich P., Bill E, Trautwein A X. Müssbauer spectoscopy [73] Li X N, Zeng Y Q, Tung C W, Lu Y R, Bask 34(20): 230001.

HAC ISIIE. Transformation of Mossburer spectroscopy [73] Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskaran S, Gottic P. Bill E. Transformation Syries and ransformation of metal-organic metal-organic frame-

an Gatlich P, Bill E, Trautwein A X. Miassbauer spectroscopy [73] Li X N. Zeng Y Q. Tung S F, Nu C Q. Waug S F, Nu C A Li X T S, Its C C A Waug S H, Nu and tansiion metal chemistry: Fundamentals and appli

and S. F. Wang S. F., Wang S. F., Wang J. C. (N. P. Alman (N. 1992) C. (N. 2017, Ethn (N. 2019)

11. (N. 2018) C. (N. 2018) C. (N. 2019)

11. (N. 2019) C. (N. 2020) C. mauchi Y. Synthesis of superparamagnetic nanoporous
iron oxide particles with hollow interiors by using prus-
sian blue coordination polymers[J]. Chem. Mater., 2012,
24(14): 2698-2707.
Li X N, Wang Z H, Zhang B, Rykov A I, iron oxide particles with hollow interiors by using prus-
sian blue coordination polymers [J]. Chem. Mater., 2012,
24(14): 2698-2707.
Li X N, Wang Z H, Zhang B, Rykov A I, Ahmed M A,
Wang J H. Fe,Co₅₄Q₁ ananogas deriv sian blue coordination polymers[J]. Chem. Mater., 2012,
24(14): 2698-2707.
Li X N, Wang Z H, Zhang B, Rykov A I, Ahmed M A,
Wang J H. Fe,Co₃,O₄ nanocages derived from nanoscale
netal-organic frameworks for removal of b 24(14): 2698-2707.

Li X N, Wang Z H, Zhang B, Rykov A I, Ahmed M A,

Wang J H. Fe,Co₂,O₄ nanocages derived from nanoscale

metal-organic frameworks for removal of bisphenol A by

activation of peroxymonosulfate[J]. A 698-2707.

Wang Z H, Zhang B, Rykov A I, Ahmed M A,

H. Fe,Co₃,O₄ nanocages derived from nanoscale

ganic frameworks for removal of bisphenol A by

1 of peroxymonosulfate[J]. Appl. Catal. B-Envi-

6, 181: 788-799.

2a 7301. Wang J H. Fe,Co₂₆,O₄ nanocages derived from nanoscale
metal-organic frameworks for removal of bisphenol A by
activation of peroxymonosulitate[J]. Appl. Catal. B-Envi-
roi, 2016, 181: 788-799.
T2] Li X N, Cao C S, Hung metal-organic frameworks for removal of bisphenol A by
activation of peroxymonosulfate[J]. Appl. Catal. B-Envi-
ron., 2016, 181: 788-799.
Li X N, Cao C S, Hung S F, Lu Y R, Cai W Z, Rykov A I,
Miao S, Xi S B, Yang H B, Hu activation of peroxymonosulfate[J]. Appl. Catal. B-Environ., 2016, 181: 788-799.
Li X N, Cao C S, Hung S F, Lu Y R, Cai W Z, Rykov A I, Miao S, Xi S B, Yang H B, Hu Z H, Wang J H, Zhao J
Y, Alp E E, Xu W, Chan T S, Chen H ron., 2016, 181: 788-799.
Li X N, Cao C S, Hung S F, Lu Y R, Cai W Z, Rykov A I,
Miao S, Xi S B, Yang H B, Hu Z H, Wang J H, Zhao J
V, Alp E E, Xu W, Chan T S, Chen H M, Xiong Q H,
Xiao H, Hung Y Q, Li J, Zhang T, Liu B. Miao S, Xi S B, Yang H B, Hu Z H, Wang J H, Zhao J

Y, Alp E E, Xu W, Chan T S, Chen H M, Xiong Q H,

Xiao H, Huang Y Q, Li J, Zhang T, Liu B. Identification

of the electronic and structural dynamics of catalytic

center Y, Alp E E, Xu W, Chan T S, Chen H M, Xiong Q H,

Xiao H, Huang Y Q, Li J, Zhang T, Liu B. Identification

of the electronic and structural dynamics of catalytic

centers in single-Fe-atom material[J]. Chem, 2020, 6(12):
 Xiao H, Huang Y Q, Li J, Zhang T, Liu B. Identification
of the electronic and structural dynamics of catalytic
centers in single-Fe-atom material[J]. Chem, 2020, 6(12):
3440-3454.
Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskar of the electronic and structural dynamics of catalytic
centers in single-Fe-atom material[J]. Chem, 2020, 6(12):
3440-3454.
Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskaran S,
Hung S F, Wang S F, Xu C Q, Wang J H, Chan T S,
Ch centers in single-Fe-atom material[J]. Chem, 2020, 6(12):
3440-3454.
Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskaran S,
Hung S F, Wang S F, Xu C Q, Wang J H, Chan T S,
Chen H M, Jiang J C, Yu Q, Huang Y Q, Li J, Zhang T,
Liu 3440-3454.

(73) Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskaran S,

Hung S F, Nang S F, Xu C Q, Wang J H, Chan T S,

Chen H M, Jiang J C, Yu Q, Huang Y Q, Li J, Zhang T,

Liu B. Unveiling the *in situ* generation of a monov Li X N, Zeng Y Q, Tung C W, Lu Y R, Baskaran S,
Hung S F, Wang S F, Xu C Q, Wang J H, Chan T S,
Chen H M, Jiang J C, Yu Q, Huang Y Q, Li J, Zhang T,
Liu B. Unveiling the *in situ* generation of a monovalent
Fe(1) site in t Hung S F, Wang S F, Xu C Q, Wang J H, Chan T S,
Chen H M, Jiang J C, Yu Q, Huang Y Q, Li J, Zhang T,
Liu B. Unveiling the *in situ* generation of a monovalent
Fe(I) site in the single-Fe-atom catalyst for electrochem-
Fe(I
	- Chen H M, Jiang J C, Yu Q, Huang Y Q, Li J, Zhang T,
Liu B. Unveiling the *in situ* generation of a monovalent
Fe(I) site in the single-Fe-atom catalyst for electrochem-
ical CO₂ reduction[J]. ACS Catal., 2021, 11(12): 7
	-
	-

原位 5Fe 穆斯堡尔光谱技术及其在 Ni-Fe 基析氧反应电催化剂中的应用 1963/1 Electrochem.) 2022, 28(3), 2108541 (30 of 31)

Jafar Hussain Shah¹, 谢起贤², 匡智崇¹,格日乐¹, 周雯慧¹, 刘朵绒¹,

Jafar Hussain Shah¹, 谢起贤², 匡智崇¹, 格日乐¹, 周雯慧¹, 刘朵绒¹,

Alexandre I. Rykov¹, 李旭宁¹, 罗景山², 电化学(*L Electrochem.*) 2022, 28(3), 2108541 (30 of 31)
 位 ⁵⁷Fe 穆斯堡尔光谱技术及其在
 Fe 基析氧反应电催化剂中的应用

sain Shah¹, 谢起贤?, 匡智崇!, 格日乐!, 周雯慧!, 刘朵绒!,

Alexandre I. Rykov[!], 李旭宁!, 罗景山?, 王军虎!*
^{中国科学院大连化学物理研究所,大连 116023; 2. 南开大学,} <sub>电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (30 of 31)

 \bf{Fe} 穆斯堡尔光谱技术及其在</sub>

,谢起贤2,匡智崇1,格日乐1,周雯慧1,刘朵绒1, ,李旭宁!,罗景山?,王军虎!*

(1. 中国科学院大连化学物理研究所, 大连 116023; 2. 南开大学, 天津 300350)

有效: 有效: 有效: 502-2502-28(3), 2108541 (30-6731)
 原位『Fe 穆斯堡尔光谱技术及其在

Ni-Fe 基析氧反应电催化剂中的应用

Jafar Hussain Shah!, 谢起贤?, 匡智棠!, 格日乐!, 周变慧!, 刘朵线!,

Alexandre I. Rykov!, 李旭宁!, 罗景山?, 王军虎!

(1. 中国学院大连任物理研究所, 大道 116023; 2. 南开大学, 利用可再生能源存储系统和水分解生产清洁氢能燃料的重大障碍。OER 过程涉及四电子、四质子耦合并形成氧-氧(O-O)键,因此动力学上进程缓慢。为提升其在水分解产氢及二氧化碳还原反应中的应用,需要开发高效催化 剂,降低 OER 过电位,以减轻能量转换过程中固有的能量损失。研究表明,IrO2 和 RuO2 具有较低析氧过电位,但 储量低、价格昂贵,大大限制了其在析氧反应中的大规模应用。而 Ni-Fe 基析氧催化剂在碱性水分解反应中展现 了优异的性能,其在水分解过程中的催化机制仍有待进一步研究。

为了解决 Ni-Fe 基催化剂在析氧反应过程中反应位点及催化反应机制等关键问题。迫切需要更先进的原位 技术来准确表征,原位追踪催化剂形态变化与电解质/电极之间的界面相互作用的影响。光谱与电化学结合的原 位技术可以监测析氧反应过程催化剂自身的变化。目前,已有大量原位光谱技术与电化学进行结合,揭示 Ni-Fe 基催化剂在 OER过程中的反应机理及活性位点, 包括原位表面增强拉曼光谱、原位同步辐射 X 射线吸收光谱、原 位紫外-可见光谱、原位扫描电化学显微镜及原位穆斯堡尔光谱等。其中,原位拉曼技术可以观察 Ni-Fe 催化剂的 振动,可以在电解液中施加测试电压条件下监测电化学反应过程中的中间体,从而提供实时反应信息,有助于追 踪电化学驱动反应是如何发生的。原位同步辐射技术可以研究OER 过程中 Ni-Fe 催化剂材料的电子结构和局部 几何结构的信息,但目前的研究中更多的是探究 Ni 的价态变化,对 Fe 的研究信息较少。原位紫外-可见光谱也主 要是针对 Ni(OH)2 的变化展开研究,逐渐提高施加电位, Ni(OH)2 会向着 NiOOH 逐渐变化, 紫外-可见技术可以追 踪 Ni-Fe 基电催化剂中的金属氧化过程。众多电化学原位光谱技术中,"Fe 穆斯堡尔谱因具有超高的能量分辨率, 是确定催化剂相结构、鉴定活性位点、阐明催化机理以及确定催化活性与催化剂配位结构之间关系的最佳手段。 此外,原位穆斯堡尔光谱技术基于原子核和核外电子的超精细相互作用而给出的同质异能移、四极矩分裂以及有 效磁场等针对催化剂中的 Fe 位点的氧化态、电子自旋构型、对称性和磁性信息进行研究、为 Ni-Fe 基催化剂在析 氧反应中的应用提供强有力的支持。 ¹⁹⁵⁷ ^年袁德国科学家鲁道夫窑路德维希窑穆斯堡尔渊Rudolf Ludwig M觟ssbauer冤在其 ²⁷ 岁时袁发现作为晶格谐

振子的原子在发射或吸收 γ 射线时以一定的概率不会改变它们的量子力学状态, 而这一 γ 射线的核共振吸收现 象于 1961 年获得诺贝尔物理学奖,不久后被命名为穆斯堡尔效应。穆斯堡尔效应是来自于无反冲的 γ 射线吸收 和发射的核共振现象,能量 E。处于激发态的原子核(Z 质子和 N 中子)通过产生能量为 E_y 的 p 射线跃迁到能量 为 E_g 的基态, γ 射线可能会被处于基态的另一个相同类型的原子核(相同的 Z 和 N)吸收 ,从而转变为能量 E_e 的 激发态。只有当发射线和吸收线足够重叠时,才能看到共振吸收。

原位穆斯堡尔谱在 Ni-Fe 催化剂析氧反应中应用,首先需要搭建 SFe 穆斯堡尔谱仪与电化学工作站联用。标 准的穆斯堡尔光谱仪主要由放射源(通常是 SCo 在 Rh 或 Pd 金属基质中用于 SFe 穆斯堡尔光谱)、速度传感器、 速度校准装置、波形发生器和同步器、y射线检测系统、多通道分析仪、计算机,并且可选配低温恒温器或高温烘 箱,以控制测量过程处于适宜温度。实际测试过程中,穆斯堡尔谱可以通过速度扫描方法生成,利用移动驱动器 或速度传感器以特定速度重复移动源或样品(所谓的多普勒运动),同时 γ 射线连续传输或发射穿过样品并计数 在同步通道上。获得穆斯堡尔谱图后,基于穆斯堡尔谱数据库(https://medc.dicp.ac.cn/,由中国科学院大连化学研 究所穆斯堡尔效应数据中心从全世界收集的穆斯堡尔谱样品数据).对 ⁵Fe 穆斯堡尔谱进行分析拟合, 对含 Fe 基 材料的物相、价态、自旋态和配位结构进行归因和分析。数据分析拟合主要利用 MossWinn 数据分析和拟合软件 (http://www.mosswinn.com/)。以 Ni-Fe 氢氧化物催化剂为例,对于原始催化剂,其仅存在一种 Fe3+ 物种,当该催化 剂参与 OER 过程后,可能会存在 Fe*,在双峰基础上, 拟合结果中则会出现肩峰向负侧移动现象, 可以确认高价

Fe 的存在,例如 Fe4+。为充分证明高价 Fe 的存在,对于 Ni-Fe 基催化剂的穆斯堡尔谱测试,还需在工况条件下进 行原位测试。

20 世纪 80 年代后期, 非贵金属氧化物和氢氧化物代替贵金属氧化物阳极催化剂的电解水研究开始受到关 注。Corrigan 等通过将 Fe 杂质引入 NiO 阳极, 测试过程中发现 OER 活性会增加, 但后续的研究中对于 Fe 究竟如 何改变 Ni基催化剂的 OER 性能仍旧不清晰。尔后,原位穆斯堡尔谱的引入逐渐揭开 Fe 在 Ni-Fe 电催化水分解析 氧反应中的作用。为提高测试准确性并保证穆斯堡尔谱信号的稳定,本实验室对原位穆斯堡尔谱装置做了开发和 改进。主要包括三部分:(1) 穆斯堡尔光谱仪, (2) 电化学工作站, 以及(3) 自主设计的原位 OER 电化学反应池。在 我们的实验室中袁使用了具有 14.4 keV ^级 ^酌 射线的单线57Fe 穆斯堡尔谱放射源 57Co渊Rh冤袁可以减少电解液中的信 电化学(*J. Electrochem.*) 2022, 28(3), 2108541 (31 of 31)
Fe 的存在,例如 Fe*。为充分证明高价 Fe 的存在,对于 Ni-Fe 基催化剂的德斯堡尔谱测试, 还需在工民条件下进
行业处理论。
生长Corrigat 等通过有限,非费金属氧化物和氢氧化物代替要金属氧化物和限能化剂的研究中对下 Pe 预靠的 Fe 化工作器 2011年30 年代后期,非费金属氧化物和氢氧化物分类原理和 行测试,测试前首先用 a-Fe 对穆斯堡尔谱仪进行多普勒速度校准, 在进行原位穆斯堡尔谱-OER 实验之前, 电解 液用氮气或氩气饱和以去除溶解的氧气。为了保证测试信号的准确性,实验中所使用的电解池不含任何 Fe 杂质, 因此采用了 Teflon 材料。为避免测试过程中产生的 O2 气泡对信号产生干扰,可以采用蠕动泵循环电解液,并且 保证测试过程中局部的微反应环境的一致性。对于普通 OER 测试,仅需要少量催化剂,但对于原位 SFe 穆斯堡尔 谱测试,只有保证 Ni-Fe 催化剂中 STe 含量充足的条件下,才可以获得高质量信号。但 OER 过程中,不建议催化 剂载量过高,催化过程中主要是表面催化剂在反应,当样品过厚时,深层样品无法参与析氧反应过程,可能会有部 分 Fe 仍旧维持 Fe³⁺状态。通常,对于常规 ⁵Fe 穆斯堡尔光谱测量的催化剂,若在制备中使用普通 Fe 源,则需要 Fe 含量在 5 ~ 10 mg窑cm-2 Fe 含量在 5~10 mg·cm².这其中仅有~2.2%的自然丰度 ^sFe同位素,需要长时间监测才可以采集到信号。为保证 实验的顺利进行,可以在样品制备过程中直接使用 5Fe 源, 方便快捷采集高质量信号。为了保证样品测试的准确 性,在 OER开始前,我们可以在同一电解液中,在开路电位(OCP)下,对其进行测试,这一原始样品的测试可与后 续施加电位的 Ni-Fe 催化剂测试结果进行对比。有外加电压测试时,需要保证催化剂处于稳定状态下进行测试, 整个测试过程中保持电流密度稳定,这不仅可以保证催化剂的稳定性,还有助于确定催化剂的真实结构。 氣反应中的作用、为接高割近准确,用于原证检验整治措置与销检信息、本实验室室的原位数据维生素,正常是监管管理、开关性能、指标、提供性能、有效性。其他是当前一般性能、相关性能够、对应当性能够的。其他是当前,但是当前进行的,其他是当前进行的。
我们的实验室中"海川"(1月每14年以前模式的电位学生标准,以及的直接数约GKS (2013)、可以成少事情来了。
我们的实验室中"奥斯塔的单位 1.22 V 的类的单线下的、对应当放射器 2.22 V 我们的实金中,使用了具有14年以下,使用我的"按照整备增强系指数的需求需要提高系指数。"我们的实验室,从时间的实验,不是一种需要的。
行为就让新活动首先用品+2 被爆炸器分离性后程的方式,或者使用的使用需要量量,但CB 基层,则是,则是,可以使用的变化,需要是可以,进行可以表明的要求,而且,所以,进行可以使用的时间,不同时,其时间的是应对数据的事件。我们可以按照时间,我们可以按照时间,我们可以按照时间,我们可以按照时间,我们可以按照时间, 号資源并承得全大層金的信噪比。兩臂空間和6.45 mm程序,对于常规的 OER 测试,在鉴温 298 K条件下进
传统进入测试商品,在多效率增强的需求增强性化学生性化学生性化学性化学性化学生性化学验与所 -0.15 mm -0.25 mm -含量逐渐增加^遥 ^在OER 过程中袁施加电位 1.42 V vs. RHE ^时袁Fe4+ 含量 ~ 12%^遥 当施加的电势达到 1.57 V ^时袁催化 电化学渊J. Electrochem.^冤 2022, 28(3), 2108541 (31 of 31)

利用原位 ^sTe 穆斯堡尔谱, 我们对通过 Ni-Fe 普鲁士蓝类似物原位拓扑转换获得的 Ni-Fe 羟基氧化物电催 化剂进行了测试。基于原位拉曼技术,我们发现在阳极电位下,Ni-Fe 催化剂中 α-Ni(OH), 相会不可逆转变为 NiFe_{0.7}-O.H. 中仅处于 +3 氧化态, 其光谱结果与开路电位下 NiFe_{0.7}-O.H. 谱图相似, 其中只有一个双峰, 两个峰的 $^{\text{-1}}$,可以归属为 Fe $^{\text{4+}}$ 。随着电压的逐渐增加 ,催化剂中的 Fe $^{\text{4+}}$ 剂中 Fe⁴⁺ 的含量进一步增加到约 40%。这一实例充分展现了原位 Spe 穆斯堡尔谱与 Ni-Fe 催化 OER 过程的应 用,也体现了 NiFe0.2-O,H,催化剂原位产生的 Fe⁴⁺ 物种的量与其水氧化反应性能呈正相关,进一步加深了对 Ni-Fe 水氧化催化机理的理解。

Ni-Fe 基催化剂因其价格低廉, 电催化析氧性能优异, 因此成为碱性水分解析氧过程的理想候选者。虽然 Ni-Fe 基电催化剂表现出优异的 OER 活性,但缺乏长期稳定性阻碍了其在商业中的应用。因此,充分了解 Ni-Fe 催化剂的衰减机理,包括形态、组成、晶体结构和活性位点数量的变化,对于设计稳定和高效 Ni-Fe 催化材料非常 重要,充分了解 Ni-Fe 催化剂在 OER 过程中的电子结构及其与析氧反应中间体的相互作用尤为重要。原位拉曼 及原位紫外-可见光谱可以对 Ni-Fe 催化剂中的 Ni(OH)2 到 NiOOH 的变化进行深入探究,而原位 5Fe 穆斯堡尔 谱测试则可以揭示 Ni-Fe 基催化剂中 Fe 的电子环境及其电子的、结构的和磁性的变化。穆斯堡尔光谱为研究 Ni-Fe 催化剂中 Fe 的局部电子结构、局部配位、键合和氧化态的提供了强大技术支撑。最近,穆斯堡尔光谱在电 催化领域获得了越来越多的关注,它对于检测不同铁基催化材料中的主要活性位点有着重要作用。

关键词: 析氧反应: Ni-Fe 羟基氧化物电催化剂:原位电化学穆斯堡尔光谱技术: Ni-Fe 普鲁士蓝类似物:关键中 间物表征