[Journal of Electrochemistry](https://jelectrochem.xmu.edu.cn/journal)

[Volume 28](https://jelectrochem.xmu.edu.cn/journal/vol28) Issue 10 [Special Issue on Water Electrolysis for](https://jelectrochem.xmu.edu.cn/journal/vol28/iss10) [Hydrogen Production \(](https://jelectrochem.xmu.edu.cn/journal/vol28/iss10)Ⅱ)

2022-10-28

Alkaline Water Electrolysis for Efficient Hydrogen Production

Wen-Fu Xie

Ming-Fei Shao

State Key Laboratory of Chemical Resource Engineering, College of Chemistry,Beijing University of Chemical Technology, Beijing 100029, China;, shaomf@mail.buct.edu.cn

Recommended Citation

Wen-Fu Xie, Ming-Fei Shao. Alkaline Water Electrolysis for Efficient Hydrogen Production[J]. Journal of Electrochemistry, 2022 , 28(10): 2214008. DOI: 10.13208/j.electrochem.2214008 Available at:<https://jelectrochem.xmu.edu.cn/journal/vol28/iss10/4>

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

$\frac{d}{dt}$ $\frac{d}{dt}$ も 化 学

J. Electrochem. 2022, 28(10), 2214008 (1 of 18)

DOI: 10.13208/j.electrochem.2214008 Http://electrochem.xmu.edu.cn

ectrolysis for Efficient Hydrogen Production

 $\begin{array}{rcl}\n&\text{E}_{\text{Hermo-}2022,28(10),2214008\ (1 of 18)}\\
&\text{DOL: } 10.13208\text{g,electrochem.}2214008 &\text{Hup://electrochem.xml.edu_en}\\
&\text{DOL: } 10.13208\text{g,electrochem.}2214008 &\text{Hup://electrochem.xml.edu_en}\\
&\text{A}l\text{kalin}\textbf{Water} \textbf{Electrolysis for Efficient Hydrogen Production}\\
&\text{Weneru Xie, Ming-Fei Shao*} &\text{Ghemieu Resoure Engineering, College of Chemistry,}\n\end{$ $\begin{array}{lll} \bullet & \nexists^2 & \n 2022, 28(10), 2214008 \text{ (1 of 18)}\\ \hline \end{array}$
II: 10.13208/j.electrochem.2214008 Http://electrochem.xmu.edu.cn
 Sulysis for Efficient Hydrogen Production

Wen-Fu Xie, Ming-Fei Shao*
 Exhemical Resource (State Key Laboratory of Chemical Resource Engineering, College of Chemistry,
 $\text{BUSL}^2(\text{SUSL}) = \frac{1}{2} \sum_{k=1}^{N} \frac{1}{$

 $\begin{array}{lll} \text{\#} & \text{\#} & \text{\#} \\ \text{\#} & \text{B} & \text{B} & \text{B} \end{array}$ DOI: 10.13208/j.electrochem.2214008 Http://electrochem.xmu.edu.cn

Vater Electrolysis for Efficient Hydrogen Production

Wen-Fu Xie, Ming-Fei Shao"

Key Laboratory $\begin{array}{ll} \text{d} \xi & \text{d} \xi & \text{d} \xi \\ \text{Reiroebm, 2022, 28(10), 2214008 (1 of 18)} \\ \text{D0E: 10, 13208j, electrodem, 2214008} & \text{Hity/dteetrochem, xmu, edu, cm} \\ \text{Alkaline Water Electrolysis for Efficient Hydrogen Production} \\ & \text{Wern-Fu Xic, Ming-Fci Shao'} \\ & \text{(State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China)} \\ \text{Abstract: Hydrogen production from water electrobysis is a satisfiable and environmentally being strategy in comparison with this$ **Existent**
 Existent
 **Fourtherm. 2022. 28(10), 2214008 (1 of 18)

ERENGENT DESCALE HYDROGEN. THE EXECT DANS** of the suffered hydrogen. Production
 Alkaline Water Electrolysis for Efficient Hydrogen Production
 $\frac{1$ $\frac{1}{2}$
 *L Electrochem. 2022, 28(10), 2214008 (1 of 18)
 [Review] DOI: 10.13208j electrochem.20214008
 Alkaline Water Electrolysis for Efficient Hydrogen Production

Ween-Fu Xic, Ming-Fei Shao^t

(State <i>Key La* **Herican Marine Water Electrolysis for Efficient Hydrogen Production**
 Alkaline Water Electrolysis for Efficient Hydrogen Production
 $\frac{1}{2}$ (*State Key Laboratory of Chemical Resource Engineering, College of Chemist* Examples: We are the controlled at the source Engineering, College of Chemistry,

(State Key Laboratory of Chemical Resource Engineering, College of Chemistry,

Beijing University of Chemical Resource Engineering, College Wen-Fu Xie, Ming-Fei Shao⁷

(State Key Laboratory of Chemical Resource Engineering, College of Chemistry,

Reijing University of Chemical Resource Engineering, College of Chemistry,

Reijing University of Chemical Techno (Sidde Key Laboratory of Chemical Resource Engineering, College of Chemistry,

Beijing University of Chemical Technology, Beijing 100029, China)
 Abstract: Hydrogen production from water electrolysis is a sustainable an **Example 1**
 Example 1 *Belging University of Chemical Technology, Beijing 100029, China)*
 Abstract: Ifydogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with
 Abstract: Hydrogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with

thesil thel-based hydrogen. However, this promising technique suffers from the high energy co **Abstract:** Hydrogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with

fossil fuel-based hydrogen. However, this promising technique suffers from the high energy co **Abstract:** Hydrogen production from water electrolysis is a sustainable and environmentally benign strategy in comparison with
fossil firel-based hydrogen. However, this promissing technique suffers from the high energy fossil fitel-based hydrogen. However, this promising technique suffers from the high energy consumption and unsatisfactory cost
that a timely and comprehensive review on and variety stability of electrocatalysts. To addet Ming-Fei Shao^{*}

ore Engineering, College of Chemistry,

nology, Beijing 100029, China)

inable and environmentally benign strategy in comparison with

eirs from the high energy consumption and unsatisfactory cost

y of e Ming-Fei Shao^{*}
 ce Engineering, College of Chemistry,
 nology, Beijing 100029, China)

inable and environmentally benign strategy in comparison with

ers from the high energy consumption and unsatisfactory cost
 y incered Engineering, College of Chemistry,

nology, Beijing 100029, China)

inable and environmentally benign strategy in comparison with

inshel and environmentally benign strategy in comparison with

inshel and environme mology, *Beijing 100029*, *China*)

inable and environmentally benign strategy in comparison with

ers from the high energy consumption and unsatisfactory cost

y of electrocatalysts. To address this challenge, herein, we inable and environmentally benign strategy in comparison with
ers from the high energy consumption and unsatisfactory cost
y of electrocatalysts. To address this challenge, herein, we pre-
relectrolysis that is already com ble and environmentally benign strategy in comparison with
from the high energy consumption and unsatisfactory cost
f electrocatalysts. To address this challenge, herein, we pre-
lectrolysis that is already commercialized inable and environmentally benign strategy in comparison with
ters from the high energy consumption and unsatisfactory cost
y of electrocatalysts. To address this challenge, herein, we pre-
r electrolysis that is already

near provinces, gues cristos are the restricted to be reduced on the restricted to be development of sustainable energy system to-
approach to protoke the development of sustainable energy. Hydrogen is
convincemental conc emain the these considered to be a promission state in the mission in the mission of the mission in the state dimension of the considered for the state dimension of the state dimension of the state dimension and constraine sent a timely and comprehensive review on advances in allahine wuter electrolysis that is already commectialized for large scale hy-
drogan production. The design principles and stans-giess with aiming to pronote the perfo drogen production. The design principles and strategies with airming to promote the performance of hydrogen generation are dis-
cussed from the view of electrocathyst, electrocath, reaction and system. The challenges and r ussed from the view of electrocal
stayed from the view of electrocal state and to promote the projection of hydrogen production
subsediably to provide essential distortion of the Hydrogen production
Key words: weute elec ispecially to provide essential ideas and to promote the vide application of hydrogen production.
 Acy words: water electrolysis, hydrogen production; integrated electrode; coupled reaction
 11. Introduction
 21. Intr Example 12
 Example 12 1 Introduction cation being the most dominant approaches, which
With the issues of global energy crisis and environ-
results in nearly 900 Mt of CO₂ emissions. Therefore,
mental problems, great efforts have been focus **1 Introduction**

with the issues of global energy crisis and environ-

with the issues of global energy crisis and environ-

mental problems, great efforts have been focused on

it is imperative to develop a sustainable **1 Introduction**
 Unithelies instead of the similar system to- weight in meanty 900 Mt of CO, emissions. Therefore, meantal problems, great efforts have been focused on it is imperative to develop a sustainable and ef With the issues of global energy crisis and environ-
mesults in nearly 900 Mt of CO₂ emissions. Therefore,
mental problems, great efforts have been foused on it is imperative to develop a sustainable and efficient
the d

1 Introduction cation being the most dominant approaches, which

energy conversion and carbon neutrality with the electrictly is attracting growing interest to produce
emission, and high efficiency⁵.²¹, The overall hydrogen mental-friendly and feasibility of largescale produc-
energ between the high-purity consumption and unsatisfactory cost
of electrocatalysts. To address this challenge, herein, we pre-
relectrolysis that is already commercialized for large scale hy-
g to promote the performance of h poten of electrocatalysts. To address this challenge, herein, we pre-
relectrolysis that is already commercialized for large scale hy-
g to promote the performance of hydrogen generation are dis-
m. The challenges and rela is relativelys that is already commercialized for large scale hy-

g to promote the performance of hydrogen generation are dis-

em. The challenges and related prospects are presented at last,

ion of hydrogen production.
 g to promote the performance of hydrogen generation are dis-
em. The challenges and related prospects are presented at last,
ion of hydrogen production.
electrode; coupled reaction
cation being the most dominant approaches from The challenges and related prospects are presented at last,

ion of hydrogen production.

electrode; coupled reaction

exaction being the most dominant approaches, which

results in nearly 900 Mt of CO₂ emissions. T on of hydrogen production.

electrode; coupled reaction

cation being the most dominant approaches, which

results in nearly 900 Mt of CO₂ emissions. Therefore,

it is imperative to develop a sustainable and efficient

a electrode; coupled reaction
cation being the most dominant approaches, which
results in nearly 900 Mt of CO₂ emissions. Therefore,
it is imperative to develop a sustainable and efficient
approach to produce hydrogen with extion being the most dominant approaches, which
results in nearly 900 Mt of CO₂ emissions. Therefore,
it is imperative to develop a sustainable and efficient
approach to produce hydrogen with mitigating the
environmenta cation being the most dominant approaches, which
results in nearly 900 Mt of CO₂ emissions. Therefore,
it is imperative to develop a sustainable and efficient
approach to produce hydrogen with mitigating the
environment cation being the most dominant approaches, which
results in nearly 900 M of CO₂ emissions. Therefore,
it is imperative to develop a sustainable and efficient
approach to produce hydrogen with mitigating the
environmenta results in nearly 900 Mt of CO₂ emissions. Therefore,
it is imperative to develop a sustainable and efficient
approach to produce hydrogen with mitigating the
environmental concerns.
Recently, water electrolysis powered

2214008.

fluctuation.

 $# \&E \# (J. Electrochem.) 2022, 28(10), 2214008 (2 of 18)$ the hydrogen production from water electrolysis is than AWE (~70%) and PEMWE (~72%), the high

approaching the competitiveness threshold, especial-

ly with the merit of nearly $\#E\#(J. \text{Electrochem.})$ 2022, 28(10), 2214008 (2 of 18)
the hydrogen production from water electrolysis is than AWE (~70%) and PEMWE (~72%), the high
approaching the competitiveness threshold, especial-
by with the merit of ne $#E#(J. Electron, 2022, 28(10), 2214008 (2 of 18)$ the hydrogen production from water electrolysis is

than AWE (~70%) and PEMWE (~72%), the high

approaching the competitiveness threshold, especialoperating temperature (~950 °C) E(*E*) Electrochem.) 2022, 28(10), 2214008 (2 of 18)

Production from water electrolysis is than AWE (~70%) and PEMWE (~72%), the high

proaching the competitiveness threshold, especial-

with the merit of nearly net zer $#R2\% (J. Electron) 2022, 28(10), 2214008 (2 of 18)$
the hydrogen production from water electrolysis is than AWE (~70%) and PEMWE (~72%), the high
approaching the competitiveness threshold, especialization coperating temperature (~95 the hydrogen production from water electrolysis is than AWE (~70%) and PEMWE (~72%), the high
approaching the competitiveness threshold, especial operating temperature (~950 °C) and $($ -72%), the high
approaching the comp **EVALUAT EXAMON CONDITY**
 EXAMORE THE AFORT THE AFORT CONSECUTE THE AFORT CONSECUTE THE AFORT CONSECUTE THE AFORT CONSECUTED AND THE AFORT CONSECUTED AT A THE AFORT AFORT AFORT AFORT AFORT AFORE THE AFORT AFORE THE AFORE (*Lectrochem.*) 2022, 28(10), 2214008 (2 of 18)

the hydrogen production from water electrolysis is than AWE (\sim 70%) and PEMWE (\sim 72%), the high

approaching the competitiveness threshold, especial-

by with the meri the hydrogen production from water electrolysis is than AWE (-70%) and PEMWE (-72%) , the high approaching the competitiveness threshold, especial-
operating temperature (-950 °C) and low hydrogen
ly with the merit of **Example 11**
 Example 10 The hydrogen production from water electrolysis is than AWE (-70%) and PEMWE (-72%), the high approaching the competitiveness threshold, especial operating temperature (-950 °C) and low hydrogen The end of the system of the system of the system of the system of the hydrogen production from water electrolysis is than AWF (-70%) and PEMWF (-72%), the high operation give compression the propertiveness threshold, esp **use and large-scale in the matrix of the matrix of the and production and production from water electrolysis is than AWE (-70%) and PEMWE (-72%), the high approaching the competitiveness threshold, especial-operation g** the $\frac{d_1}{d_2}$ ($\frac{d_2}{d_3}$ ($\frac{d_3}{d_3}$ ($\frac{d_4}{d_3}$ ($\frac{d_4}{d_3}$) ($\frac{d_4}{d_3}$ ($\frac{d_4}{d_3}$) ($\frac{d_4}{d_3}$) ($\frac{$ the $2^{\text{th}}(L^{\text{th}}\epsilon_{L}^{*}L$. *Ehertuchem.*) 2022, 28(10), 2214008 (2 of 18)
the hydrogen production from water electrolysis is than AWE (~70%) and PEMWE (~72%), the high
approaching the competitiveness threshold, espec the hydrogen production from wateless is than AWE (-30%) and PEMWE (-22%) , the high approaching the competitiveness threshold, aspecial-
operatrig temperature (-950 °C) and low hydrogen
ly with the merit of nearly ne proaching the competitiveness threshold, especial-
operating temperature (~950 °C) and low hydrogen
rotative the merit of meanit of Presetion Sec emissions.
The meanit of Presetion and
Presently, water electrolysis is rap Iy with the merit of nearly net zero CO₂ emissions. production rate limit its widespread application and

Presently, water clearbyist is rapidly moving to-

emmercialization currently (Figure 2d-g). After years

wards up Presently, water electrolysis is rapidly moving to-
varmercialization currently (Figure 2d-g). After years
wards upsealing and commercialization, but there re-
of development, the low-temperature water electroly-
main som wards upscaling and commercialization, but there re-

or development, the low-temperature water electroly-

main some key challenges in both basic and applied six (AWE and PEMWE) has become a mature and

researches. In add main some key challenges in both basic and applied

esi (AWF and PEMWF) has become a mature and

ecosecrelos. In addition to the aforementioned high

coset, the long-term tability of electrocatalysts needs

to be improved researches. In addition to the aforementioned high

cost the long-derm satisfy of electrocalizyts needs

to be improved for technological commercialization

(Pt-based materials for HER and Ir-based materials

(Figure 1d) cost, the long-term stability of electrocatalysts needs

to byte, PEMWE needs cxpensive electroceatalysts

to be improved for technological commercialization (P-based materials for HER and Ir-based materials

(Figure 1d) 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)

than AWE (~70%) and PEMWE (~72%), the high

operating temperature (~950 °C) and low hydrogen

production rate limit its widespread application and

commercialization currently (Figure 2d-g). Aft 28(10), 2214008 (2 of 18)

than AWE (~70%) and PEMWE (~72%), the high

operating temperature (~950 °C) and low hydrogen

production rate limit its widespread application and

commercialization currently (Figure 2d-g). Aft $28(10)$, 2214008 (2 of 18)
than AWE (\sim 70%) and PEMWE (\sim 72%), the high
operating temperature (\sim 950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)

than AWE (~70%) and PEMWE (~72%), the high

operating temperature (~950 °C) and low hydrogen

production rate limit its widespread application and

commercialization currently (Figure 2d-g). Aft 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y 28(10), 2214008 (2 of 18)
than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After y $\frac{\text{Eo(t)}\text{F2F} \cdot \text{Foto} \cdot \text{CoF}(t)}{\text{Foto} \cdot \text{CoF}}$ and PEMWE (~72%), the high operating temperature (~950 °C) and low hydrogen production rate limit its widespread application and commercialization currently (Figure 2 than AWE (~70%) and PEMWE (~72%), the high
operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After years
of development, the l operating temperature (~950 °C) and low hydrogen
production rate limit its widespread application and
commercialization currently (Figure 2d-g). After years
of development, the low-temperature water electroly-
sis (AWE an production rate limit its widespread application and
commercialization currently (Figure 2d-g). After years
of development, the low-temperature water electroly-
sis (AWE and PEMWE) has become a mature and
commercial techn commercialization currently (Figure 2d-g). After years
of development, the low-temperature water electroly-
sis (AWE and PEMWE) has become a mature and
commercial technology. With pure water as an elec-
trolyte, PEMWE need of development, the low-temperature water electroly-
sis (AWE and PEMWE) has become a mature and
commercial technology. With pure water as an elec-
trolyte, PEMWE needs expensive electrocatalysts
(Pt-based materials for HE sis (AWE and PEMWE) has become a mature and
commercial technology. With pure water as an elec-
trolyte, PEMWE needs expensive electrocatalysts
(Pt-based materials for HER and Ir-based materials
for oxygen evolution reacti commercial technology. With pure water as an electrolyte, PEMWE needs expensive electrocatalysts
(Pt-based materials for HER and Ir-based materials
for oxygen evolution reaction (OER)) and proton ex-
change membrane mater lyte, PEMWE needs expensive electrocatalysts
based materials for HER and Ir-based materials
oxygen evolution reaction (OER)) and proton ex-
mage membrane materials, which results into the
blems of high overall cost $(-1200$ $\text{E/}(\textit{J. Electrochem.}) 2022, 28(10), 2214008 (2 of 18)$

under electrolysis is than AWE (~70%) and PEMWE (~72%), the high

st threshold, especialoperating temperature (~950 °C) and low hydrogen

ero CO₂ emissions.
producti

B
 **Example the mature state state of the mature and wide devel-

Example the maturity of the mature state of the maturity EXERCY THE SOCIETY AND MANUTE CONSIDENT (SOCIET AND SURFACE SURFACES)**
 FRAME PERIME SONET IN THE SURFACE SOME AND SONET IN THE SOME AND THE PROPRED SOME IN THE SOME IN THE SOME INTERNATE AND SOME IN THE SOME INTERNATE Example 18 a method and integrating with reactions of AWE.

The background, the pressure is solvent and a state in AWE. Comprehensive comparisons of AWE, PEMWE solve is the

SOWE in terms of (d) hydrogen production rate, (ANT PERION SONE THE CHAINCE THE CONDITIONS AND PERIOD AND THE CONDITION (SONE COMPET AND THE CONDUCT IN THE CONDUCT IN THE CONDUCT INTERENT OF A WE THE CONDUCT INTERENT OF A WE INTERENT OF A WE INTERENT AND CONDUCT A COND **Eigure 2** Schematic diagrams of (a) $\triangle NWE$, the PEWWE and (c) SOWE. Comprehensive comparisons of $\triangle NWE$ in terms of (d) hydrogen production rate, (c) current density. (f) efficiency, (g) lifetime, (h) cell temperature, (**Fact Constraints** considering the prioric of AWE. The particular of the computerion of AWE from the particular of the development of AWE from the per-
summarized the development of AWE from the per-
summarized the develo

AD

20

20

AWE PEMWE SOWE

AWE PEMWE SOWE

AWE PEMWE SOWE

AWE PEMWE SOWE

(f) efficiency, (g) lifetime, (h) cell temperature, (i) energy con-

ne)

(f) efficiency, (g) lifetime, (h) cell temperature, (i) energy con-

ne) NET PERMYE SOWE THE ANCE PERMYE SOWE

FOR COMPRENSIVE SOWE AND PERMYE SOWE

FOR COMPRENSIVE CONTINUES (1) CONTINUES AND EXPREMYED THEORY (2) LIFELTIONS, (2) LIFELTIONS, (1) CONTINUES AND ARREST CONTINUES and collar-to-syst THE TRIME THE SOME SAME PERMIC SOME CONTROLL AND THE SOME SOME SOME SOME (f) efficiency, (g) lifetime, (h) cell temperature, (i) energy con-

(e)

(f) efficiency, (g) lifetime, (h) cell temperature, (i) energy con-

(e)

f AWE PEMWE SOWE

WE. Comprehensive comparisons of AWE, PEMWE sowered efficiency, (g) lifetime, (h) cell temperature, (i) energy con-

enhancing the efficiency of AWE from elec-

de-to-reaction, and cell-to-system are discu SOWE. Comprehensive comparisons of AWE, PEMWE and

(f) efficiency, (g) lifetime, (h) cell temperature, (i) energy con-

e)

for enhancing the efficiency of AWE from elec-

trode-to-reaction, and cell-to-system are discusse open. Complementary emplementary of AWE from electrode-to-reaction, (a) lifetime, (h) cell temperature, (i) energy con-
e)
for enhancing the efficiency of AWE from electrode-to-reaction, and cell-to-system are discussed.
F

 $\frac{\text{#}\{\&\cong\}(L \text{~Electrochem.})\ 2022, 28(10), 2214008\ (4 of 18)}{\text{Donitz in } 1980s, respectively (Figure 3a)^{(31)}. And the
development of appropriate electrocatalysts with suit-
gle-atom catalysts (SACs) have shown great promise
able physical and chemical properties is highly re-
in water electrolysis in recent years^[83]. For instance,
quired for water electrolysis. During the past few
nitrogen-doped graphene nanosheets supported
decades, numerous electrocatalysts, including noble
Pr-SAC was fabricated by Sun and co-workers in
metal, non-noble metal and metal-free electrocata-
2$ $\pm \ell \ell \ddot{\mp} (J. Electrochem.) 2022, 28(10), 2214008 (4 of 18)$ Donitz in 1980s, respectively (Figure 3a)⁰³¹. And the ciency and adjustable coordination structure, sin-

development of appropriate electrocatalysts with suit-

gle-ato **HEP (***L Electrochem.***) 2022, 28(10), 2214008 (4 of 18)**

Donitz in 1980s, respectively (Figure 3a)¹³¹. And the ciency and adjustable coordination structure, sin-

development of appropriate electrocatalysts with suit-
 the \mathcal{C}^* (*L. Electrochem.*) 2022, 28(10), 2214008 (4 of 18)

Donitz in 1980s, respectively (Figure 3a)⁷³¹. And the ciency and adjustable coordination structure, sin-

development of appropriate electrocatalysts w $\text{EPE}(L)$. Electrochem.) 2022, 28(10), 2214008 (4 of 18)

Donitz in 1980s, respectively (Figure 3a)¹⁰¹. And the ciency and adjustable coordination structure, sin-

development of appropriate electrocatalysts with suitthe $2(1.60)$ that $2(1.60)$ the strengthenul $2(2.2 \times 100)$, $2(14008 (4 of 18))$

Donitz in 1980s, respectively (Figure 3a)³³¹. And the ciency and adjustable coordination structure, sin-

development of appropriate electr the \mathcal{C}_2 methals for HER in 2005 via analyzing the relation-

the exchange and condination structure, since

development of appropriate electrocatalysts with suit-

gle-atom catalysts (SACs) have shown great promise
 EVALUATION
 EVALUATION
 EXECUTE: THENG, respectively (Figure 3a)¹⁹¹! And the ciency and adjustable coordination structure, sim-

Development of appropriate electrocetallysts with suit-

gle-atom catalysts (SACs) h **HER, 1998** (*Electrocalems*) 2022, 28(10), 2214008 (4 of 18)

Domitz in 1980s, respectively (Figure 3a)²⁸¹. And the circley and adjustable coordination structure, sin-

development of appropriate electrocalaylys with s $\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2}$ ($\frac{1}{2}$ $\frac{1}{2}$ The $t^2\mathcal{R}(L \tReemomen) 2022,28(10), 2214008 (4 of 18)$
Donitz in 1980s, respectively (Figure 3a)¹⁹¹. And the ciency and adjustable coordination structure, sin-
development of appropriate electrocatalysts with suit-
given cat Donitz in 1980s, respectively Figure 2017 is an
elevelopment of appropriate electrocatalysts with suit-
elevelopment of appropriate electrocatalysts with suit-
elevelopment are not algorithms are not algorithms are not al Donitz in 1980s, respectively (Figure 3a)²⁰¹. And the ciency and adjustable coordination structure, sin-
development of appropriate electrocatalysts with suit-
 q lect-atom catalysts (SACs) have shown great promise
abl development of appropriate electrocatalysts with suit-

gle-atom catalysts (SACs) have shown great promise

able physical and chemelical properties is highly re-

in water electrocatalysts, During the past few introgen-do able physical and chemical properties is highly re-

in water electrolysis in recent vearse¹⁵⁰. For instance,

duced or water electrocollysis, During the past few introgen-doped graphene manosheets supported

decades, nu quired for water electrolysis. During the past few mitrogen-doped graphene nanosheets supported
decades, numerous electrocatistys, including noble PE-SAC was finiteedited by Sum and co-workers in
metal, non-noble metal an decades, numerous electrocatalysts, including noble

metal, non-noble metal and metal-free electrocata-

1991s with single-atom, nanocluster, nanoparticle and

much high activity and stability for HFR than com-

1991s wit metal, non-noble metal and metal-free electrocata-

2016 by atomic layer deposition, which exhibited

hyans with single-atom, nanoclaster, nanoclastic and much high activity and stability for HER than com-

nanocaray stru lysts with single-atom, nanocluster, nanoparticle and
much high activity and stability for HER than com-
anaromy structure, have been widely explored for mercial PrC^{tail},
water electrolysis,^[vi]. Stimming and co-worker nanoamy structure, have been widely explored for
mercial Pt/C¹³⁰, savare electrolysis,
suledd that Pt is the better electroceatalyst than other
memoris electroceatalyst have shown promising ac-
electrocatalyst hand co-w water electrolysis^[37]. Stimming and co-workers con-

chided that Pi is the better electrolect cluded that Pt is the better electrocatalyst than other
metrics of ref. En 2005 via analyzing the relation-
this providing a complex ship between hydrogen chemisorption energies and
electrocatalyst developed by Nakamura a metals for HER in 2005 via analyzing the relation-

inity and stability for HER. For example, γ -MnO₂

ship between hydrogen chemisoprion omergies and

cortocatalyst developed by Nakamura and co-work-

enceptrocatalys ship between hydrogen chemisorption energies and

electrocatalyst developed by Nakamura and co-work-

the schange current of FIER, thus providing a theo-

ereiction function for the subsequent development of

hours¹⁶³ a the exchange eurrent of HER, thus providing a theo-
erise continuously for more than 8000
reliefal foundation for the subsequent of hereavies and evidy and PVNi-Mo electrocatalyst developed by
electrocatalyst for HER⁽³⁾ retical foundation for the subsequent development of
electrocatalyst developed by
electrocatalyst for HER^{(m}). Considering scarce and ex-
- Liu and co-workers realized an ultrahilp current den-
electrocatalyst for HER pe electrocatalyst for HFR¹⁸¹. Considering scarce and ex-

Liu and co-workers realized an ultrahigh current den-

pensive P group metals are not suitable for large sity of 2000 mA-cm³ at an overpotential of 113 mV⁶⁴,
 pensive Pt group metals are not suitable for large sity of 2000 mA·cm⁻ at an overpotential of 113 mV^{/ma},
scale applications, it is therefore crucial to find alter-
denominating the feasibility for practical vater elec scale applications, it is therefore crucial to find alter-
matrixes to the PI group chectrostatysts. Through den-
matrixes to the PI group correcteatlysts, Through density of the and co-workers prenared a
misy fonetional t natives to the Pt group electrocetal
systs. Through den-
stiy functional theory (DFT) calculations, Nörskov and
minimile:-sturctured phosphide clearcosalisy, which
is eno-workers found at MoS₂ nanoparticles supported
or sity functional theory (DFT) calculations, Nörskov and

inimetallic-structured phosphide electrocatalyst, which

co-workers found that M6S, nanoparticles supported can thibited superior HER performance in actici, alka-

o co-workers found that MoS₂ nanoparticles supported exhibited superior HFR performance in acidic, alka-
on graphic with a moderate overpotential of $0.1 \sim$ line and neutral conditions, expanding the dimension
of 20.2 vis on graphite with a moderate overpotential of 0.1 ~ line and neutral conditions, expanding the dimensione-
C2.9 V is a promising electrocatalyst for FIR/⁸⁷. Then al of both scientific and industrial fields¹⁹³. On the
C 0.2 V is a promising electrocatalyst for HER¹⁸⁹¹. Then al of both scientific and industrial fields⁽¹³⁾. On the Chockcadorff and co-workers determined that the other hand, various technologies have been well emotive an Chorkendorff and co-workers determined that the other hand, various technologies have been well em-
edge of MoS_c nanoparticles is the real active since the phosphide to reveal the catalytic mechanism of water
HFR via tu edge of MoS, nanoparticles is the real active sites for

FIRE via tuning the state/of meconomics, function electrologis and monitor the colubrino fedectrocata-

HER via tuning the size of nanoparticles, function of clothe HFR via tuning the size of nanoparticles, further electrolysis and monitor the evolution of electrocata-
providing an experimental foundation for optimizing by these in electrochemical operations besides
the intrinsic act providing an experimental foundation for optimizing lysts in electrochemical operando conditions besides
the intrinsic entirity decisteredly $\frac{1}{2}$ considering decisions of
metal-based electrocatalysts may suffer from the intrinsic activity of electrocatalyst⁶⁰. Considering designing electrocatalysts. For instance, Agnoli and metal-based electrocatalysts may suffer from corroversor selectrimed the real active sites for HER since in a

 $\# \{\nexists G \in \mathbb{R}^d : \text{L}(\text{Electrochem.}) \text{ is a 214008 (4 of 18)}\}\n\text{Donitz in 1980s, respectively (Figure 3a)^{[33]}.\n\text{And the } \text{circled a } \text{ and } \text{ adjustable coordination structure, sindevelopment of appropriate electrocatalysts with suit-} \text{gle-atom catalysts (SACs) have shown great promise able physical and chemical properties is highly re-} \text{ in water electrolysis in recent years}^{[43].\n\text{For instance, quired for water electrolysis. During the past few nitrogen-doped graphene nanosheets supported decades, numerous electrocatalysts, including noble} \text{Pt-SAC was fabricated by Sun and co-workers in the$ the velope the multiple subsective of approximation structure, sin-

Donitz in 1980s, respectively (Figure 3a)^[33]. And the ciency and adjustable coordination structure, sin-

development of appropriate electrocatalysts $\text{E} \&L^{\#}(J. Electron)$ 2022, 28(10), 2214008 (4 of 18)
Donitz in 1980s, respectively (Figure 3a)^[33]. And the ciency and adjustable coordination structure, sin-
development of appropriate electrocatalysts with suit-
gle-ato quired for water electrolysis. During the past few $28(10)$, 2214008 (4 of 18)
ciency and adjustable coordination structure, sin-
gle-atom catalysts (SACs) have shown great promise
in water electrolysis in recent years^[43]. For instance,
nitrogen-doped graphene nanosh $28(10)$, 2214008 (4 of 18)
ciency and adjustable coordination structure, sin-
gle-atom catalysts (SACs) have shown great promise
in water electrolysis in recent years^[43]. For instance,
nitrogen-doped graphene nanosh $28(10)$, 2214008 (4 of 18)
ciency and adjustable coordination structure, sin-
gle-atom catalysts (SACs) have shown great promise
in water electrolysis in recent years^[43]. For instance,
nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

ciency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

ciency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

ciency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

eiency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

eiency and adjustable coordination structure, sin-

eiency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years (10), 2214008 (4 of 18)

mey and adjustable coordination structure, sin-

atom catalysts (SACs) have shown great promise

water electrolysis in recent years^[43]. For instance,

rogen-doped graphene nanosheets supported
 28(10), 2214008 (4 of 18)

ciency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^{43}. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

ciency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^{{(8)}. For instance,

nitrogen-doped graphene nanosh 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (4 of 18)
Figure 3a)^[33]. And the ciency and adjustable coordination structure, sin-
ctrocatalysts with suit- gle-atom catalysts (SACs) have shown great promise
operties is

28(10), 2214008 (4 of 18)

eiency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

eiency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

ciency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh 28(10), 2214008 (4 of 18)

eiency and adjustable coordination structure, sin-

gle-atom catalysts (SACs) have shown great promise

in water electrolysis in recent years^[43]. For instance,

nitrogen-doped graphene nanosh **Exercisy** and adjustable coordination structure, sin-
gle-atom catalysts (SACs) have shown great promise
in water electrolysis in recent years^[43]. For instance,
nitrogen-doped graphene nanosheets supported
Pt-SAC was ciency and adjustable coordination structure, sin-
gle-atom catalysts (SACs) have shown great promise
in water electrolysis in recent years^[43]. For instance,
nitrogen-doped graphene nanosheets supported
Pt-SAC was fabr gle-atom catalysts (SACs) have shown great promise
in water electrolysis in recent years^{[43}]. For instance,
mitrogen-doped graphene nanosheets supported
Pt-SAC was fabricated by Sun and co-workers in
2016 by atomic laye in water electrolysis in recent years^{[43}]. For instance,
nitrogen-doped graphene nanosheets supported
Pt-SAC was fabricated by Sun and co-workers in
2016 by atomic layer deposition, which exhibited
much high activity an nitrogen-doped graphene nanosheets supported
Pt-SAC was fabricated by Sun and co-workers in
2016 by atomic layer deposition, which exhibited
much high activity and stability for HER than com-
mercial Pt/C¹⁴⁴.
Along with Pt-SAC was fabricated by Sun and co-workers in 2016 by atomic layer deposition, which exhibited much high activity and stability for HER than commercial Pt/C¹⁴⁴. Along with the deepening of water electrolysis, numerous 2016 by atomic layer deposition, which exhibited
much high activity and stability for HER than com-
mercial Pt/C⁽⁴⁴⁾.
Along with the deepening of water electrolysis,
numerous electrocatalysts have shown promising ac-
ti much high activity and stability for HER than com-
mercial Pt/C⁽⁴⁴⁾.
Along with the deepening of water electrolysis,
numerous electrocatalysts have shown promising ac-
tivity and stability for HER. For example, γ -MnO mercial Pt/C¹⁴⁴.

Along with the deepening of water electrolysis,

numerous electrocatalysts have shown promising ac-

tivity and stability for HER. For example, γ -MnO₂

electrocatalyst developed by Nakamura and co Along with the deepening of water electrolysis,
numerous electrocatalysts have shown promising ac-
tivity and stability for HER. For example, γ -MnO₂
electrocatalyst developed by Nakamura and co-work-
ers could operat numerous electrocatalysts have shown promising ac-
tivity and stability for HER. For example, γ -MnO₂
electrocatalyst developed by Nakamura and co-work-
ers could operate continuously for more than 8000
hours¹⁴⁵¹ and tivity and stability for HER. For example, γ -MnO₂
electrocatalyst developed by Nakamura and co-work-
ers could operate continuously for more than 8000
hours^[45] and Pt/Ni-Mo electrocatalyst developed by
Liu and co-w electrocatalyst developed by Nakamura and co-work-
ers could operate continuously for more than 8000
hours^[45] and Pt/Ni-Mo electrocatalyst developed by
Liu and co-workers realized an ultrahigh current den-
sity of 2000 ers could operate continuously for more than 8000
hours^[45] and Pt/Ni-Mo electrocatalyst developed by
Liu and co-workers realized an ultrahigh current den-
sity of 2000 mA·cm² at an overpotential of 113 mV¹⁴⁶,
demon hours^[45] and Pt/Ni-Mo electrocatalyst developed by
Liu and co-workers realized an ultrahigh current den-
sity of 2000 mA · cm⁻² at an overpotential of 113 mV¹⁴⁶,
demonstrating the feasibility for practical water el Liu and co-workers realized an ultrahigh current density of 2000 mA \cdot cm⁻² at an overpotential of 113 mV^{tes},
demonstrating the feasibility for practical water electrolysis. Meanwhile, Hu and co-workers prepared a
b catalysis^[47]. monstrating the feasibility for practical water elec-
Mysis. Meanwhile, Hu and co-workers prepared a
metallic-structured phosphide electrocatalyst, which
hibited superior HER performance in acidic, alka-
e and neutral cond trolysis. Meanwhile, Hu and co-workers prepared a
bimetallic-structured phosphide electrocatalyst, which
exhibited superior HER performance in acidic, alka-
line and neutral conditions, expanding the dimension-
al of both bimetallic-structured phosphide electrocatalyst, which
exhibited superior HER performance in acidic, alka-
line and neutral conditions, expanding the dimension-
al of both scientific and industrial fields^[15]. On the
oth exhibited superior HER performance in acidic, alka-
line and neutral conditions, expanding the dimension-
al of both scientific and industrial fields^[15]. On the
other hand, various technologies have been well em-
ployed line and neutral conditions, expanding the dimension-
al of both scientific and industrial fields^[15]. On the
other hand, various technologies have been well em-
ployed to reveal the catalytic mechanism of water
electro al of both scientific and industrial fields^[15]. On the
other hand, various technologies have been well em-
ployed to reveal the catalytic mechanism of water
electrolysis and monitor the evolution of electrocata-
lysts

other hand, various technologies have been well em-
ployed to reveal the catalytic mechanism of water
electrolysis and monitor the evolution of electrocata-
lysts in electrochemical operando conditions besides
designing e ployed to reveal the catalytic mechanism of water
electrolysis and monitor the evolution of electrocata-
lysts in electrochemical operando conditions besides
designing electrocchemical operando conditions besides
designin electrolysis and monitor the evolution of electrocata-
lysts in electrochemical operando conditions besides
designing electrocatalysts. For instance, Agnoli and
co-workers determined the real active sites for HER
via the lysts in electrochemical operando conditions besides
designing electroccatalysts. For instance, Agnoli and
co-workers determined the real active sites for HER
via the electrochemical scanning tunnelling mi-
croscopy, provi designing electrocatalysts. For instance, Agnoli and
co-workers determined the real active sites for HER
via the electrochemical scanning tunnelling mi-
croscopy, providing a powerful tool to derive accu-
rate structure-a $\frac{d}{dt}\mathcal{H}^{\#}(J. Electron) \cdot 2022, 28(10), 2214008 (5 of 18)$

Hydrothermal method, which shows remarkable activalloys, oxides, carbides, sulfides, nitrides, selenides

ity and durability for AWE (Figure 3b)^[83]. The over-

and outperforming most reported electrocatalysts. More- $\frac{\pm (E\# (J. Electrochem.) 2022, 28(10), 2214008 (5 of 18))}{\pm 0.2244008 (5 of 18)}$

by determined which shows remarkable activerially some synthesized with LDHs as pre-

potentials at the current density of 10 mA · cm² for cor-

potenti **EVALUATION THE EXAMON CONTROLLAT THE SET ALLOWS CONTROLLAT THE SET ASSEMBLY THE COP CONTROLLAT THE SET ASSEMULT AS THE SET ARRENT THE SUPPOSE THE RAD OF R WE THE SUPPOSE THE RAD OF R were 130 and 270 mV, respectively, wh** \pm *Reetrochem.*) 2022, 28(10), 2214008 (5 of 18)
hydrothermal method, which shows remarkable activ-
ity and durability for AWE (Figure 3b)⁽³³⁾. The over-
and phosphides were synthesized with LDHs as pre-
potentials a **in which FeCoP exhibited significantly enhanced ac-**
 interpretentation external method, which shows remarkable activeringly, oxides, carbides, sulfides, nitrides, selenides

ity and durability for AWE (Figure 3b¹⁵⁸¹ the mass of content and the more than the subsect of the subsect of the subsection of subsection of electrochemic strength of the americ and phosphides were synthesized with LDHs as prepotentials at the current density of \pm (E \pm Rectrocknean, 2022, 28(10), 2214008 (5 of 18)

hydrothermal method, which shows remarkable activerables, scories, carbides, sulfides, nitrides, selenides

ity and durability for AWE (Figure 3b^{1/30}. The overthe entertainment density of Electrocal method, which shows remarkable active

thydrothermal method, which shows remarkable active

in allows, oxides, carbides, sulfrides, nitrides, selenides

ity and durability for AWE **then**
 $\Phi/E^2(LElectrochem, 2022, 28(10), 2214008 (5 of 18)$

hydrothermal method, which shows remarkable activeary alloys, oxides, earbides, sulfides, nitrides, selenides

ity and durability for AWE (Figure 3b)^[81]. The over-

ac $\text{#}(R \# \langle L \text{~Electrochem.}) 2022, 28(10), 2214008 (5 of 18)$ hydrothermal method, which shows remarkable active

ity and durability for AWE (Figure 3b)⁵⁰³. The over-

and phosphides were synthesized with LDHs as pre-

potentials the $2^k(L$ *Electrodeum*.) 2022, 28(10), 2214008 (5 of 18)
thydrothermal method, which shows remarkable active alloys, oxides, carbides, sulfides, nitrides, selenides
ity and durability for AWE (Figure 3b)⁽³¹⁾. The over and restrict in the term of the theorem and the term of the structure ratios of the structure ratios is a physical central and the current density and durability for AWE (Figure 3p)²⁸¹. The over-
and phosphides were syn hydrothermal method, which shows remarkable activ-
alloys, oxides, sulfides, sulfides, rainics; selenides
ity and durability for AWF. (Figure 3)¹⁹⁹¹. The over-
orientalis at the current density of 10 mA - cm⁻² for cur

 $# \ell \neq (J. \text{Electrochem.}) 2022, 28(10), 2214008 (5 of 18)$
hydrothermal method, which shows remarkable activ-
illoys, oxides, carbides, sulfides, nitrides, selenides
ity and durability for AWE (Figure 3b)^[53]. The over-
potentials ity and durability for AWE (Figure 3b)[53]. The over- $# \&L^{\#}(L \&Electrochem.) 2022, 28(10), 2214008 (5 of 18)$

hydrothermal method, which shows remarkable activ-

alloys, oxides, carbides, sulfides, nitrides, selenides

ity and durability for AWE (Figure 3b)^[53]. The over-

and ph 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to $28(10)$, 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective rout 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to cations^[51]. 10), 2214008 (5 of 18)

bys, oxides, carbides, sulfides, nitrides, selenides

14 phosphides were synthesized with LDHs as pre-

sors through topological transformation strategy,

ich opens up an effective route to rationa 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (5 of 18)

nows remarkable activ-

alloys, oxides, carbides, sulfides, nitrides, selenides

gure 3b)^[53]. The over-

and phosphides were synthesized with LDHs as pre-

ty of

28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to 28(10), 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to $28(10)$, 2214008 (5 of 18)
alloys, oxides, carbides, sulfides, nitrides, selenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective rout $\frac{\text{gcd}(x_0, 221,000 \text{ C} \text{C} \text{F} \text{F} \text{O}}{100 \text{ s}}$ and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to rational design
and fabri alloys, oxides, carbides, sulfides, nitrides, elenides
and phosphides were synthesized with LDHs as pre-
cursors through topological transformation strategy,
which opens up an effective route to rational design
and fabric

[53]

	电化学(J. Electrochem.) 2022, 28(10), 2214008 (6 of 18)			
	Table 1 Summary of AWE performance from recently reported work			
Electrocatalyst	Overpotential/V	Stability/h	Ref.	
C: CoNiP@LDH A: CoNiP@LDH	$1.44@10 \text{ mA} \cdot \text{cm}^2$	$20@10 \text{ mA} \cdot \text{cm}^2$	$[59]$	
$C: (Ni, Fe)S_2@MoS_2$ A: (Ni,Fe)S ₂ @MoS ₂	$1.56@10 \text{ mA} \cdot \text{cm}^{-2}$	$24@10$ mA \cdot cm ⁻²	$[53]$	
C: Ni-MoN A: stainless-steel mat	$1.613@100 \text{ mA} \cdot \text{cm}^{-2}$	$100@100$ mA \cdot cm ⁻²	$[28]$	
$C: Ni(OH)2/Ni3S2$ A: $Ni(OH)2/Ni3S2$	$1.49@10 \text{ mA} \cdot \text{cm}^{-2}$	$120@20 \text{ mA} \cdot \text{cm}^{-2}$	$[24]$	
C: NF-Na-Fe-Pt A: NF-Na-Fe-Pt	$1.56@10 \text{ mA} \cdot \text{cm}^{-2}$	$12@10 \text{ mA} \cdot \text{cm}^2$	$[62]$	
C: FeCoP A: FeCoP	$1.60@10 \text{ mA} \cdot \text{cm}^{-2}$	$20(a)10$ mA \cdot cm ⁻²	$[54]$	
C: FeCoNi(S) A: FeCoNi(S)	$1.53@10 \text{ mA} \cdot \text{cm}^{-2}$	$2000(a)500 \text{ mA} \cdot \text{cm}^{-2}$	$[64]$	
C: Ni-Co-Fe-P A: Ni-Co-Fe-P	$1.46@10 \text{ mA} \cdot \text{cm}^{-2}$	100ω ₂ 100 mA \cdot cm ⁻²	[60]	
C: Ni ^m Co ⁿ Fe-O@NF A: Ni ^m Co ⁿ Fe-O@NF	$1.455@10 \text{ mA} \cdot \text{cm}^{-2}$	$100@1.53$ V	[61]	
C: CoFeP TPAs A: CoFeP TPAs	$1.47@10 \text{ mA} \cdot \text{cm}^{-2}$	$100@20$ mA \cdot cm ⁻²	$[63]$	

A: FeCoN(8)

C:N:Co-Fe-P

C:N:Co-Fe-P

A:N:Co-Fe-P

A:N:Co-Fe-P

A:N:Co-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O-Fe-P

C:N:Te-O C. Ni-Co-Fe-P

A.Ni-Co-Fe-P

A.Ni-Co-Fe-P

A.Ni-Co-Fe-P

A.Ni-Co-Fe-P

C. Ni-PCo-Fe-O@NF

1.455@10 mA·cm²

1.40@210 mA·cm²

1.60@15.53 V

161]

C. Co-fe-P TPA_A

A.Co-Fe-P TPA_A

A.Co-Fe-P TPA_A

A.Co-Fe-P TPA_A
 As NiCo-FeP

C-NiCo-FeO MAT and S6 and the most of the consideration
 Δt NiCo-FeO MAT and Δt are considered as Pranch and S6 and S6 multiplation (and S6 and S6 multiplation of C:NTCCTe-OG@NT

A:NTCOFe-OG@NT

A:CoFeP TPAs
 $A: CoFeP$ TPAs
 $A: CoFeP$ Symmetric materials at the contest process of AWE (for the the contest on the contest of the current on AC (α -Ceo PT) at an anotomic mode and a cathodo, the ohmic resistention of electrocatalysts have wincessed conside demonstraing an excellent durability. Although non-

sustained and a cathode, the ohmic resis-

moble metal electrocatalysts have winessed consider-

tance caused by clectron transfer of electrode, ions

alse progress, no demonstrating an excellent durability. Although non-

process at an anode and

noble metal electrocatalysts have witnessed consider-

ance caused by electron

ance Pr and Ru) still play an irreplaceable role in water

ele demonstrating an excellent durability. Although non-

process at an anode and a cathode, the ohmic resis-

moleh metal electrocallysts have witnessed consider-

ance caused by electron transfer of electrode, ions

alle pro ble metal electrocatalysts have winnessed consider-

trance caused by electron transfer of electrode, ions

derivated electrocatalysts (such that diffusion of electroty and membrane, and generated

the ad Ru) still play a able progress, noble metal-based electrocetallysts (such

airflusion of electrolyte and membrane, and generated

as Pr and Ru) still play an irreplaceable one in water

electrolysis. Numerous studies have shown that Pt is
 as Pt and Ru) still play an irreplaceable role in water

electrologies. Numerous surfaise have shown that Pt is Through rational designing the applied potential.

ethe chromation surfaise have shown that Pt is Through rati electrolysis. Numerous studies have shown that Pt is

the benchmarking HER electrocatalyst, while its over-

electrocatalyst, but is operator on to hy am improve the mass-loading of

full water splitting performance is st

 n^2 $12@10 \text{ mA} \cdot \text{cm}^2$ $[62]$
 n^3 $20@10 \text{ mA} \cdot \text{cm}^2$ $[54]$
 n^2 $200@500 \text{ mA} \cdot \text{cm}^2$ $[64]$
 n^2 $100@100 \text{ mA} \cdot \text{cm}^2$ $[60]$
 n^2 $100@20 \text{ mA} \cdot \text{cm}^2$ $[63]$
 n^2 $100@20 \text{ mA} \cdot \text{cm}^2$ $[63]$
 n^2 20@10 mA · cm² [54]
 n^2 2000@500 mA · cm² [64]
 n^3 100@100 mA · cm² [60]
 n^2 100@20 mA · cm² [63]
 n^2 100@20 mA · cm² [63]
 **process at an anode and a cathode, the ohmic resis-

tance caused by** $20@10 \text{ mA} \cdot \text{cm}^2$ [54]
 m^2 $2000@500 \text{ mA} \cdot \text{cm}^2$ [64]
 m^2 $100@100 \text{ mA} \cdot \text{cm}^2$ [60]
 m^2 $100@20 \text{ mA} \cdot \text{cm}^2$ [63]
 m^2 $100@20 \text{ mA} \cdot \text{cm}^2$ [63]
 process at an anode and a cathode, the ohmic resi n^2 2000@500 mA·cm² [64]
 n^2 100@100 mA·cm² [60]
 n^2 100@153 V [61]
 n^3 100@220 mA·cm² [63]
 **Process at an anode and a cathode, the ohmic resis-

tance caused by electron transfer of electrode, ions

dif** $2000\,\text{g}200\,\text{mA}\cdot\text{cm}^2$ [64]
 m^2 100@100 mA $\cdot\text{cm}^2$ [60]
 m^2 100@22 mA $\cdot\text{cm}^2$ [63]
 $\text{process at an anode and a cathode, the ohmic resis-}$

process at an anode and a cathode, the ohmic resis-

tance caused by electron transf 100@100 mA \cdot cm² [60]

² 100@1.53 V [61]

100@20 mA \cdot cm² [63]
 100 cm20 mA \cdot cm m^2 100@1.53 V [61]
 m^2 100@20 mA · cm² [63]
 **process at an anode and a cathode, the ohmic resis-

tance caused by electron transfer of electrode, ions

diffusion of electrolyte and membrane, and generated

gas bu** the more increases are more effectively, and excellent stability, and as permeability, and as permetionic and the more effective and membrane, and generated gas bubbles, further increasing the applied potential.
Through r n^2 100@20 mA·cm² [63]

Process at an anode and a cathode, the ohmic resistance caused by electron transfer of electrode, ions diffusion of electrolyte and membrane, and generated gas bubbles, further increasing the a n^2 100@20 mA cm² [63]

process at an anode and a cathode, the ohmic resistance caused by electron transfer of electrode, ions diffusion of electrolyte and membrane, and generated gas bubbles, further increasing the a

process at an anode and a cathode, the ohmic resis-
tance caused by electron transfer of electrode, ions
diffusion of electrolyte and membrane, and generated
gas bubbles, further increasing the applied potential.
Through r process at an anode and a cathode, the ohmic resis-
tance caused by electron transfer of electrode, ions
diffusion of electrolyte and membrane, and generated
gas bubbles, further increasing the applied potential.
Through r process at an anode and a cathode, the ohmic resis-
tance caused by electron transfer of electrode, ions
diffusion of electrolyte and membrane, and generated
gas bubbles, further increasing the applied potential.
Through r tance caused by electron transfer of electrode, ions
diffusion of electrolyte and membrane, and generated
gas bubbles, further increasing the applied potential.
Through rational designing the structure of current
collector diffusion of electrolyte and membrane, and generated
gas bubbles, further increasing the applied potential.
Through rational designing the structure of current
collector not only can improve the mass-loading of
electrocata gas bubbles, further increasing the applied potential.
Through rational designing the structure of current collector not only can improve the mass-loading of electrocatalyst, but also promote the desorption and diffusion o Through rational designing the structure of current
collector not only can improve the mass-loading of
electrocatalyst, but also promote the desorption and
diffusion of generated gas, which is conducive to the
progress of $\frac{16}{2}$ (*LEectrochem.*) 2022, 28(10), 2214008 (7 of 18)

using of binder can bring about severe aggregation of bubbles during AWE process can also be desorbed

electrocatalyst and limited diffusion of electrolyte, ins ation will lead to the decomposition of binder and dethe electrocatalyst and iming about severe aggregation of bubbles during AWE process can also be desorbed
electrocatalyst and limited diffusion of electrolyte, instantaneously ewing to the ordered stucture (Fig-
and thus which seriously limits its practical application. ts $\ell E^{\infty}(L$ *Electrochem*.) 2022, 28(10), 2214008 (7 of 18)
using of binder can bring about severe aggregation of bubbles during AWE process can also be desorbed
electrocatalyst and limited diffusion of electrolyte, in $\frac{\text{tfk2}^{\infty}(L\text{~Reemochem.})\cdot 2022, 28(10), 2214008 (7 of 18)}{\text{using of bindder can bring about severe aggregation of\n \n- bubble, maximumsC14008 (7 of 18)
\n
\n\n- disag of binder can bring about severe aggregation of\n
	\n- subbles
	\n- instantaneously owing to the ordered structure (Figa- and other) and following
	\n\n
\n- the harsh electrolyte environment or continuous oper-
\n
	\n- participate next cataltyic process^[38]. Moreover, the in-
	\n also the decomposition of binder and de$

 $\#E\#(J. \text{Electrochem.})$ 2022, 28(10), 2214008 (7 of 18)
using of binder can bring about severe aggregation of bubbles during AWE process can also be desorbed
electrocatalyst and limited diffusion of electrolyte, instantaneousl $\#E\#$ (*J. Electrochem.*) 2022, 28(10), 2214008 (7 of 18)
using of binder can bring about severe aggregation of bubbles during AWE process can also be desorbed
electrocatalyst and limited diffusion of electrolyte, insta $\exists \{E \neq (L \: \textit{Electrochem.})\ 2022, 28(10), 2214008 \: (\text{7 of 18})\}$ using of binder can bring about severe aggregation of bubbles during AWE process can also be desorbed electrocatalyst and limited diffusion of electrolyte, instant $\pm \frac{R}{2}(L\text{ Electrowe}, \ln 222, 28(10), 2214008 (7 of 18))$
and the margin about severe aggregation of bubbles during AWE process can also be desorbed
trocatalyst and limited diffusion of electrolyte, instantaneously owing to the or $28(10)$, 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^{[7} $28(10)$, 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^{[7} 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. 10), 2214008 (7 of 18)

bbles during AWE process can also be desorbed

tantaneously owing to the ordered structure (Fig-

24d), thus letting the active site be exposed and

ticipate next catalytic process^[72]. Moreover, $28(10)$, $2214008(7 \text{ of } 18)$
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Figure 4d), thus letting the active site be exposed and
participate next catalytic process^{[73} 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process¹⁷³. 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (7 of 18)

t severe aggregation of bubbles during AWE process can also be desorbed

ffusion of electrolyte, instantaneously owing to the ordered structure (Fig-

formance. In

EVALUATION EXAMON (Follow A step of the set of the set trodes with various nanostructures (e.g., nanorod, **EVALUATION THE UNITE (SCUPEC ALL ANTER CONDUPLE THE UNITE USE A CONDUPLE THE UNITE (SCUPET A THE ART AND A CONDUPLE THE UNITE (SCUPET A THE ART AND A CONDUPLE THE UNITE (SCUPET A THE ART AND HERE INTO A THE UNITE (SCUPET** $\frac{\#_1(E \oplus L(E) \cdot E) \cdot E) \cdot E \cdot E} {\#_1(E \oplus L(E) \cap E) \cdot E} \cdot \frac{\#_1(E \oplus L(E) \cap E) \cdot E} {\#_1(E) \cap E} \cdot \frac{\#_1(E \oplus L(E) \cap E) \cdot E} {\#_1(E) \cap E} \cdot \frac{\#_1(E) \cap E} {\#_1(E) \cap E} \cdot \frac{\#_1(E) \$ and hydrothermal methods (Figure 4c)[59, 67-70]. The inusing of binder can bring about severe agregation of bubbles during AWE process can also be desorbed
electrocatalyst and limited diffusion of electrolyte, instantaneously owing to the ordered structure (Fig-
and thus resu using of binder can bring about severe aggregation of

electrocatalyst and timited diffusion of electrotye, instantaneously owing to the ordered structure (Fig-

electrocatalyst and timited diffusion of electrolyte, insta electrocatalyst and limited diffusion of electrolyte, instantaneously owing to the ordered structure (Fig-
and thus result in inferior performance. In addition, ure 4d), thus letting the active site be exposed and
the har and thus result in inferior performance. In addition, ure 4d), thus letting the active site be exposed and
the harsh electrolyte environment or continuous oper-
participate next catalytic process^{pac}. Moreover, the in-
t 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process¹⁷³. $28(10)$, 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^{[7} 28(10), 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. $28(10)$, 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^{[7} $28(10)$, 2214008 (7 of 18)
bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^{[7} **Example 12**
 Subtismum AWE process can also be desorbed

instantaneously owing to the ordered structure (Fig-

ure 4d), thus letting the active site be exposed and

participate next catalytic process^[72]. Moreover, t bubbles during AWE process can also be desorbed
instantaneously owing to the ordered structure (Fig-
ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. Moreover, the in-
tegrated instantaneously owing to the ordered structure (Figure 4d), thus letting the active site be exposed and participate next catalytic process^[72]. Moreover, the integrated structure can also strengthen the connection betwe ure 4d), thus letting the active site be exposed and
participate next catalytic process^[72]. Moreover, the in-
tegrated structure can also strengthen the connection
between electrocatalyst and collector, and improve
the

 $\text{t}E\#(J. Electron)$
generated from the electrolyte between two elec-
trodes is decreased since the distance between two elec-
trodes is decreased since the distance between two introduces abundant oxygen vacancies on the CoAl $\text{tR} \text{#}(J. \text{Electrochem.})$ 2022, 28(10), 2214008 (8 of 18)
generated from the electrolyte between two elec-
trodes is decreased since the distance between two introduces abundant oxygen vacancies on the CoAl-
electrodes is a

in which the anodic OER can be replaced with other
easy oxidation reactions, such as organic (e.g., alco-
easy oxidation reactions, such as organic (e.g., alco-
hols, aldehydes and amines) oxidation reaction¹⁷⁹. highly-

 $# \ell \neq (L \ \text{Electrochem.}) 2022, 28(10), 2214008 (8 of 18)$ generated from the electrolyte between two electron (Figure 5b)^[57]. The *in-situ* exfoliation strategy

trodes is decreased since the distance between two introduces abu **To further accelerate** the removal of the gas products abundant oxygen vacancies on the CoAlectrodes is almost the same thickness during AWE, the gas diffusion layer is integrated with the R^2 (*J. Electrochem.*) 2022, 28(10), 2214008 (8 of 18)
generated from the electrolyte between two elec-
tion (Figure 5b)¹⁵⁷. The *in-situ* exfoliation
trodes is decreased since the distance between two introduces $\pm \frac{2.3}{2}$ Coupling with Organic Oxidation process is well as much in the referable energy expected from the electrodyte between two electrom (Figure 5b)^[37]. The *in-situ* exfoliation strategy trotes is decreased si \pm (EF $Electrochem$) 2022, 28(10), 2214008 (8 of 18)

nerated from the electrolyte between two elec-

tion (Figure 5b)^[57]. The *in-situ* exfolution strategy

des is decreased since the distance between two elec-

tiroduces **E** *(Electrochem.*) 2022, 28(10), 2214008 (8 of 18)

generated from the electrolyte between two electron (Figure 5b)⁵⁹¹. The *in-situ* exfoliation strategy

trodes is decreased since the distance between two electron i **EVALUATION 1908**
 EXALUATION 1908 (8 of 18)
 Examplemented from the electrolyte between two electron (Figure 5b)¹⁵⁷. The *in-situ* exfoliation strategy

trodes is decreased since the distance between two introduces seriously restricts the hydrogen production efficiency **Example 12**
 Example 12 $\frac{\ln\{\mu^{\omega}(t, L \text{letermeden})\ 2022, 28(10), 2214008 (8 of 18)}{\text{corrected}}\n\text{for the electrowe} \text{ to the discrete tree} \quad \text{for (Figure 5b)}^{[181]} \text{ The } in-situ \text{ exclusion strategy} \text{ trotes is almost the same thickness of membrane. } \text{LDH}, \text{ which regulates the electron is structure of the first time, and the difference between two introduces subundant oxygen vacancies on the CoAl-heletodes is almost the same thickness of membrane. } \text{LDH}, \text{ which regulates the adsorption and oxidation during AWF, the gas diffusion layer is integrated with the model of the gas products. } \text{LDH}, \text{ and facilitates the adsorption$ **EXALLE 1999**
 Example 10 The electroids in the electronic state of the distance between two electronic state accords is decreased since the distance between two introduces abundant roxygen vacancies on the CoAlectrodes the $2\pi (f. Riem)$ and the electrolyte between two elec-
tion (Figure 5b)¹⁷³. The *in-situ* exfoliation strategy
trodes is decreased since the distance between two elec-
tion (Figure 5b)¹⁷³. The *in-situ* exfoliation str generated from the electrolyte between two elec-

ion (Figure 5b)¹⁷³. The *in-situ* exfoliation strategy

trodes is decreased since the distance between two

introduces abundant oxygen vacancies on the CoAl-

electrodes generated from the electrolyte between two elec-

trols is decreased since the distance between two introduces abundant oxygen variancies on the CoAl-

relectrodes is almost the same thickness of membrane. LDH, which regu trodes is decreased since the distance between two introduces abundant oxygen vacancies on the CoAl-
electrodes is almost us smallent ance formerlane. LDH, which regulates the electronic structure of
To further accelerate electrodes is almost the same thickness of membrane. LDH, which regulates the electronic structure of
To furthe accelerate the removal of the gas products

LDHs, and facilitates the ealergation and oxidation

during AWE, To further accelerate the removal of the gas products

aduration species of HMF, to gas advitain and oxidation

during AWE, the gas diffusion layer is integrated with process of HMF. As a result, the E-CoAl-LDH-NSA

the b during AWF, the gas diffusion layer is integrated with

choopse plate (Eigenve 4g).
 2.3 Coupling with Organic Oxidation

2.3 Coupling with Organic Oxidation

2.3 Coupling with Organic Oxidation

2.7 Coupling with Organ the bipolar plate (Figure 4g).
 Calcupling with Organic Oxidation of HMF to 2,5-diramidearboxylis aid (FDCA) with a
 CALCUPE (FIGUS CONFIRMET CONDITION (FOR THE TO THE TOOL) with a

undergo a complex four-electron rea **2.3 Coupling with Organic Oxidation** of HMF to 2,5-furandicarboxylic scid (FDCA) with a
During AWE process, the anoito CBR needs to low potential of 1.30 V vs. RHE at 10 mA cm³ as
undergo a complex four-clearon reactio During AWF process, the anodic OFR needs to

low potential of 1.30 V vs. RHE at 10 mA - cm² as

undergo a complex four-electron reaction process well as much high Faradice efficiency (*FE*) for FDC-

and consumes more t undergo a complex four-electron reaction process

well as much high Faradaic efficiency (FF) for FDCA

and consumes more than 90% input energy, which (99.4%) even at 1.52 V vs. RHE, which are the high-

series the hydro and consumes more than 90% input energy, which (99.4%) even at 1.52 V vs. RHF, which are the high-
scriously restricts the hydrogen production efficiency est level compared with the reported electrocatalysts
of the cathod estiously restricts the hydrogen production efficiency
of the value-addot the reported electrocatalysts.

of the cahood. In additional gas separation HMF exidadion coupled hydrogen generation system

operator GOER (Og) ne of the cathode. In addition, the low value-added Based on the F-CoAl-LDH-NSA, we constructed
product of OER (O) necess additional gas separation μ HMF oxidation coupled hydrogen generation system
retegs further increas product of OER (O₂) needs additional gas separation 1 HMF oxidation coupled hydrogen generation system
tiens further increasing the cost of hydrogen produc-
for a new cleared cell, which exhibited a low voltage
ation. steps further increasing the cost of hydrogen produc-
in a two-electrode cell, which exhibited a low voltage
dion. Therefore, how to reduce the overpotential of of 1.74 V to reach 50 mA - en², high H₂ yield of
anodic tion. Therefore, how to reduce the overpotential of of 1.74 V to reach 50 mA - em², high H₂ yield of another eaction and achieve efficiently *in-stim* anse of $44.16 L + h¹ m²$ ef 4 times higher than overall v anodic reaction and achieve efficiently *in-situ* use of $44.16 \text{ L} \cdot \text{h}^4 \cdot \text{m}^2$ (4 times higher than overall water
generated oxygen is very important for the develop-
splitting) gas well as excellent rashing. A hi generated oxygen is very important for the develop-
splitting) as well as excellent stability. A hierarchical
ment of hydrogen production from AWF. Recently, CoNi-LDHs with abundant Ni vacancies (VNi-CoNi-
we proposed a c ment of hydrogen production from AWE. Recently, CoNi-LDHs with abundant Ni vacencies (VNi-CoNi-
we reposed a concept of electrochemical hydrogen LDH) was reported by our group, which exhibited
evolution coupled with altern we proposed a concept of electrochemical hydrogen

covibility alternative oxidation (EHCO), superior activity for both anodic COFR and be related with other those in which the anodic COFR can be replaced with other those evolution coupled with alternative oxidation (EHCO), superior activity for both anodic HMFOR and ca-
in which the modic OER can be replaced with other thoic HER⁽¹⁹⁾. The EHCO based on VNi-CoNi-LDH
in which the correlati y oxidation reactions, such as organic (e.g., alcosare successfully realized the continuous synthesis of s, aldehydes and amines) oxidation reaction ¹⁷⁹. In large EIECO route not only reduces the anodic oxida-

imply-pu hols, aldehydes and amines) oxidation reaction^[28]. highly-pure FDCA and enhanced hydrogen production time EHCO route not only reduces the andio exida-
tion overpotential and improves the enficiency of hy-
bifunctional The EHCO route not only reduces the anodic oxida-

tion (49.25 L·m⁻²·h⁻¹). In order to further enhance the

dion overpotential and improves the efficiency of hy-

bimentional activity of LDH-hased electrocatalyst for
 tion overpotential and improves the efficiency of hy-

bifunctional activity of LDH-hased electrocatalyst for

drog proporteion at the canhod, but also obtains the both HMPOR and HER, we prepared a bifunctional

high valu drogen production at the cathode, but also obtains the

both HMFOR and HER, we prepared a bifunctional

high value-added chemicals and further reduces the

cost of hydrogen production, which is expected to

via a phosphid high value-added chemicals and further reduces the CoNiP nanosheet integrated electrode (CoNiP-NIE)
cost of hydrogen production, which is expected to via a phosphidation process has
ed on LDHS, which
provide a new idea fo $28(10)$, 2214008 (8 of 18)
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorpt $28(10)$, 2214008 (8 of 18)
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorpt $28(10)$, 2214008 (8 of 18)
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorpt 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the adsorpt 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the adsorpt 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the adsorpt 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the adsorpt $28(10)$, $2214008 (8 \text{ of } 18)$
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorp $28(10)$, $2214008 (8 \text{ of } 18)$
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorp 28(10), 2214008 (8 of 18)
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorption 28(10), 2214008 (8 of 18)
tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorption 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDH, which regulates the adsorpti 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the adsorpt 28(10), 2214008 (8 of 18)

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the alsorpt 28(10), 2214008 (8 of 18)

tion (Figure 5b)¹⁵⁷⁾. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDH, which regulates the alsorpti **Example 18.16**

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

introduces abundant oxygen vacancies on the CoAl-

LDH, which regulates the electronic structure of

LDHs, and facilitates the adsorption and ox e 5b)^[57]. The *in-situ* exfoliation strategy
abundant oxygen vacancies on the CoAl-
ch regulates the electronic structure of
f facilitates the adsorption and oxidation
HMF. As a result, the E-CoAl-LDH-NSA
outstanding p tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy
introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorption and oxidation
process of H introduces abundant oxygen vacancies on the CoAl-
LDH, which regulates the electronic structure of
LDHs, and facilitates the adsorption and oxidation
process of HMF. As a result, the E-CoAl-LDH-NSA
exhibited outstanding p LDH, which regulates the electronic structure of LDHs, and facilitates the adsorption and oxidation process of HMF. As a result, the E-CoAl-LDH-NSA exhibited outstanding performance for the oxidation of HMF to 2,5-furandi LDHs, and facilitates the adsorption and oxidation
process of HMF. As a result, the E-CoAl-LDH-NSA
exhibited outstanding performance for the oxidation
of HMF to 2,5-furandicarboxylic acid (FDCA) with a
low potential of 1. process of HMF. As a result, the E-CoAl-LDH-NSA
exhibited outstanding performance for the oxidation
of HMF to 2,5-furandicarboxylic acid (FDCA) with a
low potential of 1.30 V vs. RHE at 10 mA \cdot cm² as
well as much hi exhibited outstanding performance for the oxidation
of HMF to 2,5-furandicarboxylic acid (FDCA) with a
low potential of 1.30 V vs. RHE at 10 mA \cdot cm² as
well as much high Faradaic efficiency (FE) for FDCA
(99.4%) eve of HMF to 2,5-furandicarboxylic acid (FDCA) with a
low potential of 1.30 V vs. RHE at 10 mA \cdot cm² as
well as much high Faradaic efficiency (FE) for FDCA
(99.4%) even at 1.52 V vs. RHE, which are the high-
est level c low potential of 1.30 V vs. RHE at 10 mA \cdot cm² as
well as much high Faradaic efficiency (FE) for FDCA
(99.4%) even at 1.52 V vs. RHE, which are the high-
est level compared with the reported electrocatalysts.
Based o 30 V vs. RHE at 10 mA \cdot cm² as

Faradaic efficiency (FE) for FDCA

2 V vs. RHE, which are the high-

with the reported electrocatalysts.

CoAl-LDH-NSA, we constructed

pled hydrogen generation system

ell, which exhi well as much high Faradaic efficiency (FE) for FDCA
(99.4%) even at 1.52 V vs. RHE, which are the high-
est level compared with the reported electrocatalysts.
Based on the E-CoAl-LDH-NSA, we constructed
HMF oxidation coup (99.4%) even at 1.52 V vs. RHE, which are the highest level compared with the reported electrocatalysts.
Based on the E-CoAl-LDH-NSA, we constructed HMF oxidation coupled hydrogen generation system in a two-electrode cell est level compared with the reported electrocatalysts.
Based on the E-CoAl-LDH-NSA, we constructed
HMF oxidation coupled hydrogen generation system
in a two-electrode cell, which exhibited a low voltage
of 1.74 V to reach Based on the E-CoAl-LDH-NSA, we constructed HMF oxidation coupled hydrogen generation system
in a two-electrode cell, which exhibited a low voltage
of 1.74 V to reach 50 mA ·cm², high H₂ yield of
44.16 L·h¹·m² (4 HMF oxidation coupled hydrogen generation system
in a two-electrode cell, which exhibited a low voltage
of 1.74 V to reach 50 mA · cm², high H₂ yield of
44.16 L·h¹·m² (4 times higher than overall water
splitting) in a two-electrode cell, which exhibited a low voltage
of 1.74 V to reach 50 mA \cdot cm², high H₂ yield of
44.16 L \cdot h¹ \cdot m² (4 times higher than overall water
splitting) as well as excellent stability. A hierar of 1.74 V to reach 50 mA \cdot cm², high H₂ yield of 44.16 L \cdot h¹ \cdot m² (4 times higher than overall water splitting) as well as excellent stability. A hierarchical CoNi-LDHs with abundant Ni vacancies (VNi-CoNi-LD 44.16 L·h⁻¹·m² (4 times higher than overall water splitting) as well as excellent stability. A hierarchical CoNi-LDHs with abundant Ni vacancies (VNi-CoNi-LDH) was reported by our group, which exhibited superior activ splitting) as well as excellent stability. A hierarchical
CoNi-LDHs with abundant Ni vacancies (VNi-CoNi-
LDH) was reported by our group, which exhibited
superior activity for both anodic HMFOR and ca-
thodic HER^[79]. Th CoNi-LDHs with abundant Ni vacancies (VNi-CoNi-
LDH) was reported by our group, which exhibited
superior activity for both anodic HMFOR and ca-
thodic HER^[79]. The EHCO based on VNi-CoNi-LDH
successfully realized the co LDH) was reported by our group, which exhibited
superior activity for both anodic HMFOR and ca-
thodic HER^[79]. The EHCO based on VNi-CoNi-LDH
successfully realized the continuous synthesis of
highly-pure FDCA and enhan superior activity for both anodic HMFOR and ca-
thodic HER^[79]. The EHCO based on VNi-CoNi-LDH
successfully realized the continuous synthesis of
highly-pure FDCA and enhanced hydrogen produc-
tion (49.25 L·m²·h⁻¹). thodic HER^[79]. The EHCO based on VNi-CoNi-LDH
successfully realized the continuous synthesis of
highly-pure FDCA and enhanced hydrogen produc-
tion (49.25 L·m²·h⁻⁾. In order to further enhance the
bifunctional acti successfully realized the continuous synthesis of
highly-pure FDCA and enhanced hydrogen produc-
tion (49.25 L·m²·h⁻⁾. In order to further enhance the
bifunctional activity of LDH-based electrocatalyst for
both HMFOR highly-pure FDCA and enhanced hydrogen production (49.25 L·m²·h⁻¹). In order to further enhance the bifunctional activity of LDH-based electrocatalyst for both HMFOR and HER, we prepared a bifunctional CoNiP nanosheet tion (49.25 L·m²·h⁻⁾. In order to further enhance the
bifunctional activity of LDH-based electrocatalyst for
both HMFOR and HER, we prepared a bifunctional
CoNiP nanosheet integrated electrode (CoNiP-NIE)
via a phosph bifunctional activity of LDH-based electrocatalyst for
both HMFOR and HER, we prepared a bifunctional
CoNiP nanoshect integrated electrode (CoNiP-NIE)
via a phosphidation process based on LDHs, which
shows the enhanced HE In activity of LDH-based electrocatalyst for
OR and HER, we prepared a bifunctional
uosheet integrated electrode (CoNiP-NIE)
phidation process based on LDHs, which
enhanced HER performance compared
LDH, while maintains it $g \cdot h^{-1} \cdot m^{-2}$). The EHCO system even can be driven by 1 HMFOR and HER, we prepared a bifunctional
siP nanosheet integrated electrode (CoNiP-NIE)
a phosphidation process based on LDHs, which
ws the enhanced HER performance compared
1 CoNi-LDH, while maintains its HMFOR perfor CoNiP nanosheet integrated electrode (CoNiP-NIE)
via a phosphidation process based on LDHs, which
shows the enhanced HER performance compared
with CoNi-LDH, while maintains its HMFOR perfor-
mance (Figure 5c)^[89]. The o 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (8 of 18)
 e between two elec-

tion (Figure 5b)^[57]. The *in-situ* exfoliation strategy

distance between two introduces abundant oxygen vacancies on the CoAl-

ickness o

efficiency.

 $# \# \# (J. \text{Electrochem.}) 2022, 28(10), 2214008 (9 of 18)$
so lar-to-FDCA and 5.5% of solar-to-H₂ conversion most reported electrocatalysts. Based on above
efficiency.
In addition to electrochemical hydrogen evolution pled with gly ^{EL}{*E\\iffer CLU*} Exectrochemical 2022, 28(10), 2214008 (9 of 18)

Iar-to-FDCA and 5.5% of solar-to-H₂ conversion most reported electrocatalysts. Based on above re-

iciency.

In addition to electrochemical hydrogen **E(E)** *Electrochem*.) 2022, 28(10), 2214008 (9 of 18)

so lar-to-FDCA and 5.5% of solar-to-H₂ conversion most reported electrocatalysts. Based on above re-

efficiency.

In addition to electrochemical hydrogen evoluti **EMPECA** and 5.5% of solar-to-H₁ conversion and the set allows (9 of 18)

so lar-to-FDCA and 5.5% of solar-to-H₁ conversion most reported electrocatalysts. Based on above re-

efficiency.

In addition to electrochemi the the constructed and 5.5% of solar-to-H) conversion
solar-to-FDCA and 5.5% of solar-to-H₂ conversion most reported electrocatalysts. Based on above re-
efficiency.
In addition to electrochemical hydrogen evolution a **EVACUTE 1200** Retraction, and carrier of CNS and state of the supported CoPt supported CoPt nanoparticles (CNS@CoPt and divious of the nanoparticle coupled with HMF oxidation, our group further de-
sults, we then constru **EVALUATION EXAMORET CONSTRANS (FIGURE ALTER)**
 EVALUAT SOMET AND SOLUTE SOME ALTER CONSTRANS (FOR ALTER)
 EVALUAT SOMET AND SOLUTE ACT CONSTRANS (FIGURE ALTER)
 EVALUAT AND CONSTRANS COPER CONSTRANS (FIGURE ALTER)
 $\text{\textbf{E.}}(X, Electrowe, \textit{in}) \xspace{120} \text{C.} (X, \textit{in}) \xspace{120} \text{C.}$ to fit *F* is *n* to reach a current density of 19.1 m in the references and a current density of 19.1 m/s and a current density of \mathbb{R} must a current density of \mathbb{R} and the reach a current density of \mathbb{R} $\pm \frac{1}{2}$ for $\pm \frac{1}{2}$ for $\pm \frac{1}{2}$ for $\pm \frac{1}{2}$ for $\pm \frac{1}{2}$ and small onter the reference of the small on the reference of the small on the potential photon to electrochemical hydrogen evolution countinuo **respectively,** *Electrochem*, 2022, 28(10), 2214008 (9 of 18)

so lar-to-FDCA and 5.5% of solar-to-H₂ conversion most reported electrocatalysts. Based on above re-

efficiency,

In addition to electrochemical hydrogen 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly, 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly 28(10), 2214008 (9 of 18)

most reported electrocatalysts. Based on above re-

sults, we then constructed a hydrogen evolution cou-

pled with glycerol oxidation system with CNs@CoPt

as a bifunctional electrode. Surprisi 28(10), 2214008 (9 of 18)

most reported electrocatalysts. Based on above re-

sults, we then constructed a hydrogen evolution cou-

pled with glycerol oxidation system with CNs@CoPt

as a bifunctional electrode. Surprisi 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly atalysts. Based on above re-
ted a hydrogen evolution cou-
ation system with CNs@CoPt
de. Surprisingly, this coupling
matically enhanced hydrogen
 $^{-1} \cdot m^{-2}$) in a cathode, larger than
ng system $(27 \text{ L} \cdot \text{h}^{-1} \cdot m^{-2})$ 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly above re-

blution cou-

CNs@CoPt

is coupling

d hydrogen

, larger than

⁻¹·m⁻²), and

¹·m⁻²) in an

ig approach

and hydro-

and hydro-

thensity at 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly m above re-

olution cou-

CNs@CoPt

his coupling

ed hydrogen

e, larger than
 $n^{-1} \cdot m^{-2}$), and
 $n^{-1} \cdot m^{-2}$ in an

mg approach

s and hydro-

nt density at

orductivity. $28(10)$, $2214008 (9 \text{ of } 18)$
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surpris 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly 28(10), 2214008 (9 of 18)
most reported electrocatalysts. Based on above re-
sults, we then constructed a hydrogen evolution cou-
pled with glycerol oxidation system with CNs@CoPt
as a bifunctional electrode. Surprisingly 28(10), 2214008 (9 of 18)

most reported electrocatalysts. Based on above re-

sults, we then constructed a hydrogen evolution cou-

pled with glycerol oxidation system with CNs@CoPt

as a bifunctional electrode. Surprisi $\frac{\text{d} \mathcal{H}}{\text{d} \mathcal{H}}$ (*J. Electrochem.*) 2022, 28(10), 2214008 (9 of 18)
solar-to-H₂ conversion most reported electrocatalysts. Based on above results, we then constructed a hydrogen evolution cou-
all hydrogen ev

 $\# \ell \#$ (*J. Electrochem.*) 2022, 28(10), 2214008 (10 of 18)
Given that, Duan and co-workers synthesized a coop-
orative electrocatalyst of Au nanoparticles supported
production from water electrolysis. Meanwhile, sun-
o $#E\# (J. Electrochem.) 2022, 28(10), 2214008 (10 of 18)$

Given that, Duan and co-workers synthesized a coop-

tric nanogenerator (TENG), thus realizing hydrogen

erative electrocatalyst of Au nanoparticles supported

production from th $\&$ (*L Electrochem.*) 2022, 28(10), 2214008 (10 of 18)

Given that, Duan and co-workers synthesized a coop-

tric nanogenerator (TENG), thus realizing hydrogen

erative electrocatalyst of Au nanoparticles supported ^{EL}^{{{}}}(*J. Electrochem.*) 2022, 28(10), 2214008 (10 of 18)

Given that, Duan and co-workers synthesized a coop-

tric nanogenerator (TENG), thus realizing hydrogen

erative electrocatalyst of Au nanoparticles supporte hol oxidation at high current density (Figure 5e)[81] $\frac{E}{E}$ (*L Electrochem.*) 2022, 28(10), 2214008 (10 of 18)

Given that, Duan and co-workers synthesized a coop-

trie nanogenerator (TENG), thus realizing hydrogen

erative electrocatalyst of Au nanoparticles support riched at Au/CoOOH interface, thus is easily oxi- $4E\%$ (*L Electrochem.*) 2022, 28(10), 2214008 (10 of 18)

Given that, Duan and co-workers synthesized a coop-

tric nanogenerator (TENG), thus realizing hydrogen

erative electrocatalyst of Au nanoparticles supported

p **EVALUATION EXAMORE (EXAMORENT:** The dimension of t **HEVALUA** Electroshem.) 2022, 28(10), 2214008 (10 of 18)

Given that, Duan and co-workers synthesized a coop-

tric nanogenerator (TENG), thus realizing hydrogen

erative electrocatalyst of Au nanoparticles supported

pro $\#E\mathcal{F}(L\text{ *Electrochem.}) 2022, 28(10), 2214008 (10 of 18)*$
Given that, Duan and co-workers synthesized a coop-
trie nanogenerator (TENG), thus realizing hydrogen
erative electrocatalyst of Au nanoparticles supported
production 1.3V and 1.5 V vs. RHE, respectively, representing **EVALUATI EVALUATIVE CONTING (FOR A SET ALCONS** (10 of 18)
 EGIVED INTEREV (FOR A THE analogon and co-workers supported and coop-

intermal external temperature electrophysis. Meanwhile, summand

conduction filter analo $\frac{1}{2}$ ($\frac{1}{2}$, $\pm \frac{1}{2}E \neq (LEertochem.)$ 2022, 28(10), 2214008 (10 of 18)
Given that, Duan and co-workers synthesized a coop-
rative electrocatalyst of Au nanoparticles supported
production from water electrolysis. Meanwhile, sun-
on cobalt drogen production rate reached 3.19 mmol \cdot cm² \cdot h⁻¹ spectively, resulting a STH efficiency of ~13% and a Given that, Duan and co-workers synthesized a coop-

Firstive electrocatalyst of Au nanoparticles supported

on cobalt oxyhydroxide nanosheets (Au/CoOOH), light, low-grade waste heat

which realizes superior performance f Given that, Duan and co-workers synthesized a coop-
tric nanogenerator (TENG), thus realizing hydrogen
entire electrocatalyst of Au ananoparties supported
on costal coxyhytroxide nanosheets (Au/CoOOH), light, low-grade wa erative electrocatalyst of Au nanoparticles supported

production from water electrolysis. Meanwhile, sun-

on coolal oxyhytoxide nanoshests (AAU^COOOH), light, low-grade waste heat or natural temperature

which realizes on cobalt oxyhytroxide nanosheets (Au/CoOOH), light, low-grade waste heat or natural temperature
which realizes superfor preformance for benzyl alco-
chemicalizes superfor performance for benzyl alcohol is en-
electrocity which realizes superior performance for benzyl alco-

bota coidation at high current density (Figure 5)^[16]. electricity(TE₂), offering an alternative external enci-

Deep studies reveal that the benzyl dicolol is enhol oxidation at high current density (Figure 5e)^{na}. electricity (TE), offering an alternative external encre-
Deep studies reveal that the benzyl alcohol is en-

gy to powered at AuCoGOH interface, thus is easily oxi-
 Deep studies reveal that the benzyl alcohol is en-

gy to power water electrophysis.

reched at Au/CoOOH interface, thus is easily oxi-

duction diverse ligine and reflection and reaction of the state of the state of the riched at Au/CoOOH interface, thus is easily oxi-

drong various green energy powered water electrocoly

drop the electrophilic OHF generated on CoOOH corresponds, solar powered water electroly

with low reaction barrier, dized by the electrophilic OH* generated on CoOOH trolysis systems, solar powered water electrolysis systems
with low reach the hard or hard of the mat have been widely designed and applied owing
than pure Au. The Au/CoOO

units were also reformed to benzoate and adipate

win high yields (91.271 V) was employed to power

with high yields (91.2%). AME coll, compassion (SDM)

2.4 Integrating with Renewable Energy

2.4 Integrating with Renewab

28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity b $28(10)$, $2214008(10 \text{ of } 18)$
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electri $28(10)$, $2214008(10 \text{ of } 18)$
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electri 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity b 28(10), 2214008 (10 of 18)

tric nanogenerator (TENG), thus realizing hydrogen

production from water electrolysis. Meanwhile, sun-

light, low-grade waste heat or natural temperature

changes can be converted to electrici $28(10)$, 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electric (10), 2214008 (10 of 18)

c nanogenerator (TENG), thus realizing hydrogen

oduction from water electrolysis. Meanwhile, sun-

ht, low-grade waste heat or natural temperature

amges can be converted to electricity by thermo 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity b 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (10 of 18)

rs synthesized a coop-

inconsisted a coop-

inconsisted by the moderator (TENG), thus realizing hydrogen

inconsitions are production from water electrolysis. Mean

The converties suppression of the managementator (TENG), thus realizing hydrogen
of Au nanoparticles supprediction from water electrolysis. Meanwhile, sun-
of Au nanoparticles supprediction from water leetrolysis. Meanwhi with low reaction barrier, leading to higher activity
them have been widely designed and applied owing
than pure Au. The Au/CoOM exhibited the current to their convenience, simplicity and high stability.
densities of 340 than purc Au. The Au/CoOOH exhibited the current to their convenience, simplicity and high stability.

densities of 340 and 540 mA - cm² at potential of However, the hydrogen production from this technol-

1.3V and 1.5V densities of 340 and 540 mA \cdot cm² at potential of However, the hydrogen production from this technol-
1.3V and 1.5 V vs. RHE, respectively, representing ogy is still limited by price and efficiency factors.

Moreover, 1.3V and 1.5 V vs. RHE, respectively, representing ogy is still limited by price and efficiency fa

the highest current density value reported so far. Currently, the efficiencies of industrial AWE sy

Moreover, the benefi the highest current density value reported so far. Currently, the efficiencies of industrial AWE systems
Moreover, the benzyl alcohol conversion rate and hy-
end mainstrams nolar parals are -70% and -18%, re-
drogen produ or
cover, the benzyl alcohol conversion rate and hy-

and mainstream solar panels are -70% and -18%, re-

18% renewable contained 3.19 mmol - m² - hy spectively, are the potential

117.9 mL - cm² - hy respectively, at drogen production rate reached 3.19 mmol·cm²·h¹ spectively, resulting a STH efficiency of ~13% and a

and 11.3.9 mL-cm²·h², respectively, at the potential hydrogen cost of ~10S-kg¹. Based on this, Zhao and

of 1 and 117.9 mL - cm² - h¹, respectively, at the potential hydrogen cost of -10S - kg⁻. Based on this, Zhao and f1.3 V vs. RHE, which is 26- and 28-5-0d higher co-workers presented a direct solar power
than that of Al. of 1.3 V vs. RHE, which is 26- and 28-fold higher
co-workers presented a direct solar powered AWE
than that of Au. Furthermore, Duan and co-workers system through coupling NiMo hydrogen evolution
developed a MnCoOOH elect than that of Au. Furthermore, Duan and co-workers

eystem through coupling NiMo hydrogen evolution

developed a MnCoOH electrocatalyst and the effectence day end evolution

depending of lignin-derived secondary alcohols o developed a MnCoOOH electrocatalyst for efficient electrocatalyst and NiFe-hased oxygen evolution
upgrading of lignin-deviced secondary alcohols or ke- electrocatalyst with high-performance peroveskite-Si
tones into earbo upgrading of lignin-derived secondary alcobols or ke-
electrocatalyst with high-performance perovskite-Si
conscinto carboxylates coupling with hydrogen pro-
tandem cells (Figure 6b^{jm2}). The vyield and operational 10 on
 tones into carboxylates coupling with hydrogen pro-

tandem cells (Figure 6b)⁹⁹¹. The overpotential to drive

duction (Figure 5f)⁹⁹¹. The yield and operational 10 mA - cm³ over NiMo electrocatalyst was only 6

ducti duction (Figure 5f)⁽⁸⁰⁾. The yield and operational 10 mA -cm² over NiMo clectrocatalyst was only 6
stability for acloobis and kctons to corresponding mV. After coupling with Nife-based oxygen colu-
carboxylates over M stability for alcohols and ketones to corresponding

mV. After coupling with NiFe-based oxygen evolu-

can box of Coro Corol could reach to 64% ~ to not cletrocalizy the potential of orien's

99% and 200 h. As proof of co earboxylates over MnCoOOH could reach to 64% - tion electrocatalyst, the potential to drive 10 mA \cdot com-
29% and 200 h. As proof of concept, diverse lignin was 1.48 V and the stability for overall wate split-
around 99% and 200 h. As proof of concept, diverse lignin was 1.48 V and the stability for overall water split-
aromatics and KA oil featuring C(OH)-C and C(O)-C imp reached 100 h. A perovskite solar cell with high aromatics and aromatics and KA oil featuring C(OII)-C and C(O)-C

ing reached 100 h. A perovskite solar cell with high

units were also reformed to benzonte and adipate

with high yields (91.3% and 64.2%).
 2.4 Integrating with Renewa 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity b 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity 28(10), 2214008 (10 of 18)

tric nanogenerator (TENG), thus realizing hydrogen

production from water electrolysis. Meanwhile, sun-

light, low-grade waste heat or natural temperature

changes can be converted to electric 28(10), 2214008 (10 of 18)

tric nanogenerator (TENG), thus realizing hydrogen

production from water electrolysis. Meanwhile, sun-

light, low-grade waste heat or natural temperature

changes can be converted to electric 28(10), 2214008 (10 of 18)
tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity Lettry, 221 Noo (1.0 a.16)

tric nanogenerator (TENG), thus realizing hydrogen

production from water electrolysis. Meanwhile, sun-

light, low-grade waste heat or natural temperature

changes can be converted to electri tric nanogenerator (TENG), thus realizing hydrogen
production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity by thermo-
electricity (TE) production from water electrolysis. Meanwhile, sun-
light, low-grade waste heat or natural temperature
changes can be converted to electricity by thermo-
electricity (TE), offering an alternative external energy
to power light, low-grade waste heat or natural temperature
changes can be converted to electricity by thermo-
electricity (TE), offering an alternative external ener-
gy to power water electrolysis.
Among various green energy pow changes can be converted to electricity by thermo-
electricity (TE), offering an alternative external ener-
gy to power water electrolysis.
Among various green energy powered water electrolysis systems
have been widely de electricity (TE), offering an alternative external energy to power water electrolysis.

Among various green energy powered water electrolysis systems have been widely designed and applied owing to their convenience, simpl gy to power water electrolysis.

Among various green energy powered water electrolysis systems, solar powered water electrolysis systems have been widely designed and applied owing to their convenience, simplicity and hig Among various green energy powered water electrolysis systems, solar powered water electrolysis systems have been widely designed and applied owing to their convenience, simplicity and high stability. However, the hydroge trolysis systems, solar powered water electrolysis sys-
tems have been widely designed and applied owing
to their convenience, simplicity and high stability.
However, the hydrogen production from this technol-
ogy is stil to their convenience, simplicity and high stability.
However, the hydrogen production from this technol-
ogy is still limited by price and efficiency factors.
Currently, the efficiencies of industrial AWE systems
and main However, the hydrogen production from this technology is still limited by price and efficiency factors.
Currently, the efficiencies of industrial AWE systems and mainstream solar panels are $\sim 70\%$ and $\sim 18\%$, respec ogy is still limited by price and efficiency factors.
Currently, the efficiencies of industrial AWE systems
and mainstream solar panels are ~70% and ~18%, re-
spectively, resulting a STH efficiency of ~13% and a
hydrogen Currently, the efficiencies of industrial AWE systems
and mainstream solar panels are ~70% and ~18%, re-
spectively, resulting a STH efficiency of ~13% and a
hydrogen cost of ~10\$ ·kg⁻¹. Based on this, Zhao and
co-worke and mainstream solar panels are ~70% and ~18%, respectively, resulting a STH efficiency of ~13% and a hydrogen cost of ~10\$ ·kg⁻¹. Based on this, Zhao and co-workers presented a direct solar powered AWE system through c spectively, resulting a STH efficiency of ~13% and a
hydrogen cost of ~10\$ ·kg⁻¹. Based on this, Zhao and
co-workers presented a direct solar powered AWE
system through coupling NiMo hydrogen evolution
electrocatalyst a hydrogen cost of ~10\$ · kg⁻¹. Based on this, Zhao and
co-workers presented a direct solar powered AWE
system through coupling NiMo hydrogen evolution
electrocatalyst and NiFe-based oxygen evolution
electrocatalyst with co-workers presented a direct solar powered AWE
system through coupling NiMo hydrogen evolution
electrocatalyst and NiFe-based oxygen evolution
electrocatalyst with high-performance perovskite-Si
tandem cells (Figure 6b) system through coupling NiMo hydrogen evolution
electrocatalyst and NiFe-based oxygen evolution
electrocatalyst with high-performance perovskite-Si
tandem cells (Figure 6b)⁸⁸⁾. The overpotential to drive
10 mA \cdot cm⁻ electrocatalyst and NiFe-based oxygen evolution
electrocatalyst with high-performance perovskite-Si
tandem cells (Figure 6b)⁸⁸¹. The overpotential to drive
10 mA ·cm⁻² over NiMo electrocatalyst was only 6
mV. After co electrocatalyst with high-performance perovskite-Si
tandem cells (Figure 6b)⁸⁸¹. The overpotential to drive
10 mA \cdot cm² over NiMo electrocatalyst was only 6
mV. After coupling with NiFe-based oxygen evolu-
tion elec tandem cells (Figure 6b)⁸⁸³. The overpotential to drive 10 mA \cdot cm² over NiMo electrocatalyst was only 6 mV. After coupling with NiFe-based oxygen evolution electrocatalyst, the potential to drive 10 mA \cdot cm² was 10 mA \cdot cm² over NiMo electrocatalyst was only 6
mV. After coupling with NiFe-based oxygen evolu-
tion electrocatalyst, the potential to drive 10 mA \cdot cm²
was 1.48 V and the stability for overall water split-
ting mV. After coupling with NiFe-based oxygen evolution electrocatalyst, the potential to drive 10 mA·cm² was 1.48 V and the stability for overall water splitting reached 100 h. A perovskite solar cell with high open circui n electrocatalyst, the potential to drive 10 mA \cdot cm²
s 1.48 V and the stability for overall water split-
g reached 100 h. A perovskite solar cell with high
en circuit voltage (1.271 V) was employed to power
WE cell, was 1.48 V and the stability for overall water split-
ting reached 100 h. A perovskite solar cell with high
open circuit voltage (1.271 V) was employed to power
AWE cell, exhibiting a high solar-to-hydrogen (STH)
efficien ting reached 100 h. A perovskite solar cell with high
open circuit voltage (1.271 V) was employed to power
AWE cell, exhibiting a high solar-to-hydrogen (STH)
efficiency (20.01%) and fulfilling the 2020 DOE tar-
get. The open circuit voltage (1.271 V) was employed to power
AWE cell, exhibiting a high solar-to-hydrogen (STH)
efficiency (20.01%) and fulfilling the 2020 DOE tar-
get. The STH efficiency could be increased to 25%
after optimiz

 $\mathbb{E} \mathcal{H} \cong (L \text{ Electrochem.}) 2022, 28(10), 2214008 (11 of 18)$
which effectively resolve the conflicts between solar mL·min⁻¹, with the spinning speed of TENG reaching
cells and electrocatalysts. Based on this, Zhou and 600 r then the discrete matrices and the discrepancy of TENG reaching
which effectively resolve the conflicts between solar mL·min⁻¹, with the spinning speed of TENG reaching
cells and electrocatalysts. Based on this, Zhou an the \mathcal{C}_L Electrochem.) 2022, 28(10), 2214008 (11 of 18)

which effectively resolve the conflicts between solar

co-workers proposed a TE device composed of multi-min⁻¹, with the spinning speed of TENG reaching

co-**EVALUATION**
 EVALUATION
 EVALUATION (Figure 6d)[95]. The Ni nanosheets array grown on the $\frac{4E\#(I. Electrow, B)}{4E}$ and detrocatalytis. Based on this, $2022, 28(10), 2214008 (11 of 18)$

which effectively resolve conflicts between solar mL-min⁻¹, with the spinning speed of TENG reaching

cells and electrocatalysts. $\#E\#(L \text{ Alexanderm})$ 2022, 28(10), 2214008 (11 of 18)
which effectively resolve the conflicts between solar mL-min⁻¹, with the spinning speed of TENG reaching
cells and electrocatalysts. Based on this, Zhou and 600 r-min⁻¹ **ENALA THE SET AS THE CONDUCT THE THE SET AND THE SET AN THE SET AND THE SET EVALUATION 1989**
 EVALUATION (11 of 18)
 EVALUATION CHECT TRIG TENG TERRIFIES by the conflicts between solar

and this, Zhou and 600 r-min^4 , Mortower, the TENG could be driven by

co-workers proposed a TE device c **EVALUATION THE SET ALTERT CONSTRANT (THE SET ALTERT ALTERT AND THE SET ALTERT AND THE SET ALTERT AND THE SET AND EXALUATE (1. Electrocheme**) 2022, 28(10), 2214008 (11 of 18)

which effectively resolve the conflicts between solar mL-min⁴, with the spinning speed of TENG reaching

cells and electrocatalysts. Based on this, Zhou and **EVALUAT Example 10.12** (*B. B.Coronchem,* 2022, 28(10), 2214008 (11 of 18)

which effectively resolve the conflicts between solar mL-min¹, with the spinning speed of TENG reaching

cells and electrocatalysts. Based on the $\frac{1}{2}$ the $\frac{1}{2}$ (*LE-terrochem*, 2022, 28(10), 2214008 (11 of 18)

which effectively resolve the conflicts between solar mt. min⁻¹, with the spinning speed of TFNG reaching

cells and electrocatalysts. Based mmol · h⁻¹. Furthermore, Bowen and co-workers uti- $\frac{10}{2}$ (Electrocal be complicated and the simulate production of a TENG reaching speed of TENG reaching
dectrocatalysts. Based on this, Zhou and 600 r·min⁻¹, with the spinning speed of TENG reaching the feltroceatal **EVALUAT THE CONSERVAL CONSERVALUAT THE CONSERVALUAT THE SET (FREQUEST).** Which effectively resolve the conflicts between solar mL-min¹, with the spinning speed of TENG reaching cells and electrocatalysts. Based on this which effectively resolve the condities between solar

which effectively resolve the condities between solar

cells and electrocatalysts. Based on this, Zhou and

600 r-min⁺, whit the spinning speed of TENG reaching

co which effectively resolve the conflicts between solar mL-min², with the spinning speed of TENG reaching
ecl. Solar decletrocatally as. Based on this; Zhou and 600 r-min². Moreover, the TENG could be thiven by
eo-worke cells and electrocatalysts. Based on this, Zhou and 600 r·min⁻¹. Moreover, the TFNG could be driven by
co-workers proposed a TE device composed of multi-
the flow of normal tap water, demonstrating the fluid
fractional N co-workers proposed a TF. device composed of multi-
the flow of normal tap water, demonstrating the fully
finductional Ni nanosheets array to power AWE system self-powered equability. The above works have initi-
firigure functional Ni nanosheets array to power AWE system self-powered capability. The above works have initi-
(Figure 60^{ym}): The Ni annoshests array grown on the and a research direction in the field of TENG-driven
bot side o (Figure 6d)⁸⁶¹. The Ni nanosheets array grown on the ated a research direction in the field of TENG-drive
of the side of photosthermore with a rate are all to the photosthermore difference and conversion layer to provid tinuous hydrogen with a rate of 0.655 μ mol \cdot h⁻¹. The performance of AWE for hydrogen production t side of TE device can play the role of photother-

a conversion layer to provide temperature different entities

ce for TE, and active electroceatalysts for HER. As

type the world, and exploring water electrolysis for
 mal conversion layer to provide temperature differ-
accessor and **Outlooks**
core for Fig. and active electrocatalysts for HER. As a Hydrogen has received extensive attention from all
a result, the Ni manosheets array exhi ence for TF, and active electrocatalysts for HFR. As

are result, the Yin marsheets array exhibited a low

overpotential of 173 mV at a current density of 10

overpotential of 173 mV at a current density of 10

mA \cdot cm a result, the Ni nanosheets array exhibited a low over the world, and exploring water electrolysis for overgrotential of 173 mV at a current density of 10 industrial hydrogen production is one of the most overgretental of overpotential of 173 mV at a current density of 10

mdustrial hydrogen production is one of the mest

mA - em² and superior stability of 20 h. The TE promising works today. In this review, we present a

movered AWE syst mA \cdot cm² and superior stability of 20 h. The TF
promising works today. In this review, we present a
powered AWE from the
delivered as high hydrogen production rate of 1.818
perpections of electrocatalyst, reaction an

 $8(10)$, 2214008 (11 of 18)
mL·min⁻¹, with the spinning speed of TENG reaching
600 r·min⁻¹. Moreover, the TENG could be driven by
the flow of normal tap water, demonstrating the fully
self-powered capability. The abov $8(10)$, 2214008 (11 of 18)
mL·min⁻¹, with the spinning speed of TENG reaching
600 r·min⁻¹. Moreover, the TENG could be driven by
the flow of normal tap water, demonstrating the fully
self-powered capability. The abov $8(10)$, 2214008 (11 of 18)

mL \cdot min⁻¹, with the spinning speed of TENG reaching

600 $\rm{r} \cdot \rm{min}^{-1}$. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered cap $s(10)$, 2214008 (11 of 18)

mL · min⁻¹, with the spinning speed of TENG reaching

600 r · min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capability. $\frac{8(10)}{2214008(11 \text{ of } 18)}$

mL · min⁻¹, with the spinning speed of TENG reaching

600 r · min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capabilit $8(10)$, 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capability. The $8(10)$, 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capability. The 0, 2214008 (11 of 18)
 L -min⁻¹, with the spinning speed of TENG reaching

0 r·min⁻¹. Moreover, the TENG could be driven by
 $\frac{1}{2}$ flow of normal tap water, demonstrating the fully
 $\frac{1}{2}$ flowered capability. x_{N} (10), 2214008 (11 of 18)

mL · min⁻¹, with the spinning speed of TENG reaching

600 r· min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capabi 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (11 of 18)

conflicts between solar mL ·min⁻¹, with the spinning speed of TENG reaching

sed on this, Zhou and 600 r ·min⁻¹. Moreover, the TENG could be driven by

vi

 $8(10)$, 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the filly

self-powered capability. The $8(10)$, 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the filly

self-powered capability. The (10) , 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capability. The a $8(10)$, 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capability. The $8(10)$, 2214008 (11 of 18)

mL·min⁻¹, with the spinning speed of TENG reaching

600 r·min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capability. The $\frac{8(10)}{2214008}$ (11 of 18)

mL · min⁻¹, with the spinning speed of TENG reaching

600 r · min⁻¹. Moreover, the TENG could be driven by

the flow of normal tap water, demonstrating the fully

self-powered capabilit mL \cdot min⁻¹, with the spinning speed of TENG reaching
600 \cdot \cdot min⁻¹. Moreover, the TENG could be driven by
the flow of normal tap water, demonstrating the fully
self-powered capability. The above works have init mL·min⁻¹, with the spinning speed of TENG reaching
600 r·min⁻¹. Moreover, the TENG could be driven by
the flow of normal tap water, demonstrating the fully
self-powered capability. The above works have initi-
ated a re 600 $r \cdot min^{-1}$. Moreover, the TENG could be driven by
the flow of normal tap water, demonstrating the fully
self-powered capability. The above works have initi-
ated a research direction in the field of TENG-driven
AWE in the flow of normal tap water, demonstrating the fully
self-powered capability. The above works have initi-
ated a research direction in the field of TENG-driven
AWE in general.
3 Conclusions and Outlooks
Hydrogen has r (1) If-powered capability. The above works have initi-
d a research direction in the field of TENG-driven
ME in general.
Conclusions and Outlooks
Hydrogen has received extensive attention from all
er the world, and explo ided a research direction in the field of TENG-driven
WE in general.
Conclusions and Outlooks
Hydrogen has received extensive attention from all
er the world, and exploring water electrolysis for
dustrial hydrogen produc AWE in general.
 3 Conclusions and Outlooks

Hydrogen has received extensive attention from all

over the world, and exploring water electrolysis for

industrial hydrogen production is one of the most

promising works to **3 Conclusions and Outlooks**

Hydrogen has received extensive attention from all

over the world, and exploring water electrolysis for

industrial hydrogen production is one of the most

promising works today. In this revi Hydrogen has received extensive attention from all
over the world, and exploring water electrolysis for
industrial hydrogen production is one of the most
promising works today. In this review, we present a
comprehensive re over the world, and exploring water electrolysis for
industrial hydrogen production is one of the most
promising works today. In this review, we present a
comprehensive review on advances in AWE from the
perspectives of el industrial hydrogen production is one of the most
promising works today. In this review, we present a
comprehensive review on advances in AWE from the
perspectives of electrocatalyst, reaction and system.
Despite many impo

powered AWE system was then constructed, which

comprehensive review on advances in AWE from the

delivered a high hydrogen production rate of 1.818

mmol·h¹_i Furthermore, Bowen and co-workers uti-

Despite many import delivered a high hydrogen production rate of 1.818

memory hrv Eurothermote, Bowen and co-workers uti-

Einzel irrange image important developments of hydrogen

lized lead zirconate titanate as an external charge

go in th mmol ·h³. Furthermore, Bowen and eo-workers uti-
lizely lead riveonate times as an external charge production from AWE, there are still a long way to
isource to generate tinestate as an external charge groduction from A lized lead ziroonate titanate as an external charge

production from AWE, there are still a long way to

source to generate electricity through undergoing

so in the view of industrial applications because of

folo-cold t source to generate electricity through undergoing

go in the view of industrial applications because of

bot-cold thermal cycles, which exhibited an anximum high production cost and low energy efficiency. In

bot-cold the hot-cold thermal cycles, which exhibited a maximum

high production cost and low energy efficiency. In

voltage of 2.34 V and micro-level current of $\sim 7 \mu \Lambda$ order to promote the development of AWE, attention

relige of voltage of 2.34 V and micro-level current of \sim 7 μA order to promote the development of AWE, attention (Figure 6e^{yes)}. Then, an AWE, system powered by py-

reaching the position and the following spectes:

(Figure 6 (Figure 6c)^{ns4}. Then, an AWE system powered by pyschould be paid to the following aspects:

realocterins was constructed, which can preduce con-

tinuous hydrogen with a rate of 0.655 µmol-h¹. The performance of AWE f roclearins was constructed, which can produce con-

(1) Electrocatalyst/electrode

imaxis hydrogen production

imaxis hydrogen production

imaxis hydrogen production

imaxis important for the morphological structures of e tinuous hydrogen with a rate of 0.655 μ mol-h³.

The performance of AWE for hydrogen production

ment to power water electrolysis is important for the

more stable green energy from environment to power water electrol 6.9685 μ L·min⁻¹ when the wind speed was 10 m·s⁻¹, of electrocatalyst preparation, despite various synthet-Harvesting more stable green energy from environ-

nent to power value of morphological structures of electronical yields in importing

meta to power value relectronical structure

Voltagence and phytopical protocological ment to power water electrolysis is important for the morphological structures of electrocatalyst. Through wides
preach application of hydrogen production. designing the appropriate surface interfacial structure
Compared widespread application of hydrogen production.

colorgandge to solar energy, wind energy is independent and hydrophilic properties of integrated electrode, the

Compared to solar energy, wind energy is independent of the Compared to solar energy, wind energy is independented and hydrophilic properties of integrated electrode, the helm of time, and even can generate electrivity 24 reaction efficiency and durability can be further im-
chour dent of time, and even can generate electricity 24 reaction efficiency and durability can be further im-
hours a day. Herein, Fan and co-workers employed a proved. However, the universal structure-activity re-
coaxial rot hours a day. Herein, Fan and co-workers employed a

nowed. However, the universal structure-activity re-

consided rotatory freestanding trivodectoric nanogener-

ator (CRF-TFNG) to harvest wind energy for hydro-

practic promising works today. In this review, we present a
comprehensive review on advances in AWE from the
perspectives of electrocatalyst, reaction and system.
Despite many important developments of hydrogen
production from AWE comprehensive review on advances in AWE from the
perspectives of electrocatalyst, reaction and system.
Despite many important developments of hydrogen
production from AWE, there are still a long way to
go in the view of i perspectives of electrocatalyst, reaction and system.
Despite many important developments of hydrogen
production from AWE, there are still a long way to
go in the view of industrial applications because of
high production Despite many important developments of hydrogen
production from AWE, there are still a long way to
go in the view of industrial applications because of
high production cost and low energy efficiency. In
order to promote t production from AWE, there are still a long way to
go in the view of industrial applications because of
high production cost and low energy efficiency. In
order to promote the development of AWE, attention
should be paid go in the view of industrial applications because of
high production cost and low energy efficiency. In
order to promote the development of AWE, attention
should be paid to the following aspects:
(1) Electrocatalyst/electr high production cost and low energy efficiency. In
order to promote the development of AWE, attention
should be paid to the following aspects:
(1) Electrocatalyst/electrode
The performance of AWE for hydrogen production
c order to promote the development of AWE, attention
should be paid to the following aspects:
(1) Electrocatalyst/electrode
The performance of AWE for hydrogen production
can be enhanced via regulating the electronic and
mor should be paid to the following aspects:

(1) Electrocatalyst/electrode

The performance of AWE for hydrogen production

can be enhanced via regulating the electronic and

morphological structures of electrocatalyst. Thro (1) Electrocatalyst/electrode
The performance of AWE for hydrogen production
can be enhanced via regulating the electronic and
morphological structures of electrocatalyst. Through
designing the appropriate surface interfa The performance of AWE for hydrogen production
can be enhanced via regulating the electronic and
morphological structures of electrocatalyst. Through
designing the appropriate surface interfacial structure
and hydrophilic can be enhanced via regulating the electronic and
morphological structures of electrocatalyst. Through
designing the appropriate surface interfacial structure
and hydrophilic properties of integrated electrode, the
reacti morphological structures of electrocatalyst. Through
designing the appropriate surface interfacial structure
and hydrophilic properties of integrated electrode, the
reaction efficiency and durability can be further im-
pro designing the appropriate surface interfacial structure
and hydrophilic properties of integrated electrode, the
reaction efficiency and durability can be further im-
proved. However, the universal structure-activity re-
la and hydrophilic properties of integrated electrode, the reaction efficiency and durability can be further im-
proved. However, the universal structure-activity re-
lationship to guide the electrocatalyst design is im-
prac reaction efficiency and durability can be further im-
proved. However, the universal structure-activity re-
lationship to guide the electrocatalyst design is im-
practical and contradictory. In addition, most report-
ed el proved. However, the universal structure-activity relationship to guide the electrocatalyst design is im-
practical and contradictory. In addition, most report-
ed electrocatalysts are unable to meet the require-
ments of

Figure 6 (a) Schematic illustration of weter splitting powered by various green energy systems. (b) Schematic illustration, J-F curve of solar powered AWE system.³⁰. Reproduced with permission of Ref. 81. Corporation Example 18 and the commercialization of water apliting persones are energy systems. (b) Schematic illustration of water splitting persones thy various grees are gy systems. (b) Schematic flustration of θ . In addition, Figure 6 (a) Schematic illustration of water splitting powered by various green energy systems. (b) Schematic illustration, *H* various
and LSV eure of solar powered AWE systemⁱⁿ. Reproduced with permission of Ref. 85, **Thursday and the system of the system of the system (a)** Schematic illustration of water splitting powered by various green energy systems. (b) Schematic illustration, *IV* curve of Schematic illustration of Her Space (s **Figure 6** (a) Schematic illustration of water splitting powered by various green energy systems. (b) Schematic illustration, *I-F* urve
and I-SV euroc of solar powered AWE system^{per}, Reproduced with permission of Ref. 8 **Figure 6** (a) Schematic illustration of water splitting powered by various green energy systems. (b) Schematic and LSV curve of solar powered AWE system¹⁶¹. Reproduced with permission of Ref. 85, copyright Wiley. (c) S pare 6 (a) Schematic illustration of water splitting powered by various green energy systems. (b)

LISV curve of solar powered AWE system^(ss). Reproduced with permission of Ref. 85, copyright

He fifticiney of solar powe

LSV curve of solar powered AWE system⁶⁸. Repords covidt permission of Ref. S5, opyright Wiley: (e) Comparison in the conyright Newiro (e) Schematic of pyrocelectric as a external source of AWE system¹⁸⁹. Reproduced wi STH efficiency of solar parental AWF system. (A) flustration of TF paveced AWF system¹⁰. Reproduced with permission of Ref.

95, copyright Electic: (c) Schematic of pyroeletric as an external source for AWE system¹⁰. R 57, copyright Lissevarc, (c) Schematic di perolestion is an external source for AWE system." Reproduced with permission of Ref. 79, copyright Elsevier, (c) Schematic diagram of CRF-TENG wind energy harvester drives at fro on, copyright range and mother than the relativity wantered and model in the performance of the formulation of Ref. 97, copyright Elsevier. (g) Schematic illustration of self-powered AWE system using a water-flow-driven i TENG^{PP}, Reproduced with permission of Ref. 98, copyright Wiley, (color on line)
TENGP^{PP}, Reproduced with permission of Ref. 98, copyright Wiley, (color on line)
automnated preparation process to realize the con-
contro For the set of the surface of the surface of the surface of the set of the set of the reaction of Ref. 85, copyright Wiley. (c) Comparison of Ref. powered AWE system⁸⁹. Reproduced with permission of Ref. ourse for AWE sy **Example 19 and an** experiment of Ref. 85, copyright Wiley. (c) Comparison of Ref. 85, copyright Wiley. (c) Comparison of Ref. ource for AWE system¹⁸⁹. Reproduced with permission of Ref. cource for AWE system¹⁸⁹. Repro CONTRIDUATION (CONTRIGUEST)

ions green energy systems. (b) Schematic illustration, J-V curve

powered AWE system¹⁶⁹. Reproduced with permission of Ref.

ource for AWE system¹⁶⁹. Reproduced with permission of Ref.

er **Example 12 Consumers**

ious green energy systems. (b) Schematic illustration, J-V curve

permission of Ref. 85, copyright Wiley. (c) Comparison in the

powered AWE system⁸⁰. Reproduced with permission of Ref.

curve **Example 18 and the surface of the surface increases the surface interaction of Ref.** 85, copyright Wiley. (c) Comparison in the powered AWE system¹⁶⁹. Reproduced with permission of Ref.
Ergy harvester driven surface of ious green energy systems. (b) Schematic illustration, J-V curve
permission of Ref. 85, copyright Wiley. (c) Comparison in the
powered AWE system¹⁸⁹. Reproduced with permission of Ref.
outre for AWE system¹⁸⁹. Reproduc ious green energy systems. (b) Schematic illustration, J-V curve
permission of Ref. 85, copyright Wiley. (c) Comparison in the
powered AWE system¹⁸⁹. Reproduced with permission of Ref.
ource for AWE system¹⁸⁹. Reproduc permission of Ref. 85, copyright Wiley. (c) Comparison in the
powered AWE system¹⁶⁹¹. Reproduced with permission of Ref.
ource for AWE system¹⁶⁹¹. Reproduced with permission of Ref.
ergy harvester driven self-powered A powered AWE system¹⁸⁹. Reproduced with permission of Ref.
ource for AWE system¹⁸⁹. Reproduced with permission of Ref.
ergy harvester driven self-powered AWE system¹⁸⁷. Reproduced
ration of self-powered AWE system usi ource for AWE system^{1,61}. Reproduced with permission of Ket.
ergy harvester driven self-powered AWE system¹⁰⁷. Reproduced
attion of self-powered AWE system using a water-flow-driven
color on line)
cult to match cathodi showled a web system Considered Awe system Comprometer and a model considered. Awe system is a water-flow-driven color on line)
color on line)
color on line)
consider to improve the activity and selectivity of anodic oxi-
 ndom of ser-powered AWE system dang a water-now-antent
color on line)
color on line)
color on the activity and selectivity of anodic oxi-
dation reaction and match the reaction efficiency of
both cathodic and anodic reacti

 $\frac{dE}{dt}$ (*L Electrochem.*) 2022, 28(10), 2214008 (13 of 18)

should be deeply studied. In order to improve the re-

action efficiency of the electrolysis system and the

yield of the target product, researchers should action efficiency of the electrolysis system and the $\# \{\&\cong (J. \nEletonehem.)\ 2022, 28(10), 2214008 (13 of 18)$

should be deeply studied. In order to improve the re-
 $\begin{bmatrix} 3 \end{bmatrix}$ Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

action efficiency of the electrolysis system the We'in (*Leetrochem.*) 2022, 28(10), 2214008 (13 of 18)

should be deeply studied. In order to improve the re-

ight Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

action efficiency of the electrolysis system and $#E\# (L\ \text{Electrochem.}) 2022, 28(10), 2214008 (13 of 18)$

should be deeply studied. In order to improve the re-

[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

action efficiency of the electrolysis system and the

Peng B $\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d}{dt}\left\{\frac{d}{dt}\left\{f\right\}\right\}=\frac{d$ to improve production efficiency, the in-situ separation and purification of products also require special

(5) $\frac{1}{2}$ (3) $\frac{1}{2}$ (1) $\frac{1}{2$ attention. $\#/k \neq (J. Electrochem.) 2022, 28(10), 2214008 (13 of 18)$ build be deeply studied. In order to improve the re-

[3] Huang C Q, Zhou J Q, D

build be deeply studied. In order to improve the re-

[3] Huang C Q, Zhou J Q, D

build of t H₁(E²²)(*L Electrochem.*) 2022, 28(10), 2214008 (13 of 18)

uld be decply studied. In order to improve the re-

[3] Humg C Q, Zhou J Q, Duan D S, Zhou Q C, Wung J M,

on efficiency of the electrolysis system and t **lb** (*k*)²⁶ (*k*) *k* (*k*)²⁶ (*k*)²⁶ (*k*)²⁶ (*k*)²⁶ (*k*)²⁶ (*k*)²⁶ (*k*) (*k* **EVALUATION THE CONFIDENTIFY**
 EVALUATION CONTROV (13 of 18)
 EVALUATION CONTROV (13 of 18)
 EVALUATION CONTROV (13 of 18)
 EVALUATION CONTROV (FOR ECONTROVIDUS SYSTEM IN THE POWER DURING THE PART DAMONG SYSTEM (I **4.6 (***Learning* 4.6 (*Learning* 2022, 28(10), 2214008 (13 of 18)

and the deeply studied. In order to improve the re-

and the $\frac{1}{2}$ CQ. Zhou J Q, Duan D S, Zhou Q C, Wang J M,

are time certificiting of the cleart **EVAPUAL ENERGY (D. ENERGY (D. ENERGY AND A 2000 (13 of 18)**
 EVAPUAL A CONSTRAND A CONS

should be deeply studied. In order to improve the relations \sim Fig. 1000 13 (N and D 5, Zhou 0 C, Wang J M,
action efficiency of the clearchlysis system and the
region P and V at N, Yu I, Yu Y. Roles of heteroutoms in e should be deeply studied. In order to improve the re-

action of Ficing Co, Zhou J Q, Dum D S, Zhou Q C, Wang J M,

action efficiency of the clearbyisis system and the energy W, V at I, W. Note of hectomological of the ta action efficiency of the electrolysis system and the

yield of the transportant in electrom

via the transportant intermittent epitating to reversion and interminimally if the method (intermittent electrolysis). At the sa yield of the target product, researchers should imno-

tale reaction mechanism).¹¹ Chinese J. Coint, $\frac{1}{2}$ Chinese Scotting to avoid side reactions) and the clettrolysis

feeding to avoid side reactions) and the cle vate the way of feeding reactams (undersaturated

reaction mechanism)¹]. Chinese J. Catal., 2022, 43(8):

Flexibles reactions) and the electrolysis At the same time,

method (intermittent clertolysis). At the same time, feeding to avoid side reactions) and the electrolysis

in the space in the space CoP (intermitted telectrolysis). At the same time,

impact on propose control (intermitted telectrolysis). At the same time,

tic.OF betrost method (intermittent electrolysis). At the same time,

in proper act, and y , taking v, room and prification of products also require special

tion and purification of products also require special

tion and purification to improve production efficiency, the *in-situ* separa-

idential pH-universal hydrogen evolution electrocalabysis

detation.

attention, or of the factors that limits the [21], AN-Find, Maps X, Na 1 F, Meng X, Na 1 Y, Na tion and purification of products also require special

(5)]. Adv. Funct. Mater., 2019, 29(6): 1807976.

(5) System/device

(5) System/device

(3) System/device

(3) System/device

Currently, one of the factors that limit attention.

(5) Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H.

(3) System/device

Corrently, one of the factors that limits the

derived from ZIF-8/IJ, AW, Furt. Mater, 2019, 29(34):

large-scale application of AWE (3) System/device Simuli-responsive DNA-gard annovate porous carbon

Currently, one of the factors that limits the 190237 .

Large-scale application of AWE is the high cost of fly

drogen production. Integrating AWE with Currently, one of the factors that limits the derived from ZIF-8(1), Adv. Funct. Mater., 2019, 29(34):

Impossed application of AWE is the high cost of hy-

drogen production. Integrating AWF with renewable $\begin{bmatrix} 109.23$ large-scale application of AWE is the high cost of hy-

for Wur YP. Zhou W, Zhuo J, Dong W W, Lun YQ, Li D S,

drog n production. Inlegenting AWE with renewable

and clean energy is the key to reduce the cost of Sum C: H, drogen production. Integrating AWE with renewable

Sun C H, Bu X H. Surfacture stassed plase-selective sy-

and clear energy is the key to reduce the cost of

be considered in the sycketive sy-

by drogen production. Howe drogen production. However, the low conversion uses of reactive both control extent extent

dictiony of renew about a model of the properties of the state o efficiency of renewable energy to electricity greatly

int. Ed., 2017, 56(42): 13001-13005.

Interaction in AWE. In addition, some re-

[7] Tang (2, Gian L F, Zhung N, Lu W, B, Jimg N, Lu W, B, Jimg N, Lu W, B, Jimg N, E. hinders its application in AWE. In addition, some re-

Encyclosic mergines with intermittent and easternal and accounts are the method of the China Post-China Post-China Post-China Post-China Post-China Post-China Post-Ch newable energies with intermittent and seasonal na-

ture, including solar and wind energy, are easily in-

ture, including solar and wind energy, are easily in-

determental impact on power grid. Hence, exploring

determ detrimental impact on power grid. Hence, exploring

new renewable energy to achieve local utilization of [8] He YM, Lia IR, Zbu C, Cous S, Tona IR, Koo B, Tona

orper vis expected to promote the widespread devel-

orper v renewable energy to achieve local utilization of

Y AL Eu LE N. Lim J. R. Zhuo C, Guo S S, Golani P. Koo B, Tame X

y giv is expected to promote the widespread devel-

w N. Shi z D. Zhuo Z, Van J. Nessges M, Danish Achiel **EXAMULTER CONSERVATION CONTROV**

FOR SECTE AND THE SECTE CONDUCT TO A SURVENTIFIEM AND INTERFERENT ON THE STAND IN THE STAND IN CH Expected to provide the studient of Chem. 2001 Medicine and the studient of AWE. One other thing to note is that tech

economic analysis (TEA) should be employed to

wang 0 J. Zhang 2 H, Liat Z. Amorphizing noble metal

ma Example that were might on the time term and the term and the state of the space of the scheme of the space of the sp no-cononic analysis (1EX) should be employed to V wang Q J, Zhang Z H, Liu Z, Amorphizing noble meal

estimate the Ensibility for the system of renewable

energy powered AWE. In addition to electricity, the

dealengemen

Acknowledgements:

References:

-
-
- 8(10), 2214008 (13 of 18)

[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanis (exp.), 2214008 (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J (13 of 18)

(13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. C (13), 2214008 (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. 2091-2110. 8(10), 2214008 (13 of 18)

[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanis (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Ca (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Ca (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Ca 8(10), 2214008 (13 of 18)

[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanis), 2214008 (13 of 18)
Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,
Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-
catalysts for alkaline water splitting: A review focusing on
the reaction mechanism[J]. Chines (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Ca $8(10)$, 2214008 (13 of 18)

[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mec (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

reading with a L, Yu V. Roles of heterotoms in electro-

eatalysts for alkaline water splitting: A review (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Ca (13 of 18)

Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Ca Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,
Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-
eatalysts for alkaline water splitting: A review focusing on
the reaction mechanism[J]. Chinese J. Catal., 2022, 43([3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

catalysts for alkaline water splitting: A review focusing on

the reaction mechanism[J]. Chinese J. Catal., 2 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (13 of 18)

order to improve the re-

[3] Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M,

rolysis system and the Peng B W, Yu L, Yu Y. Roles of heteroatoms in electro-

sea
	-
	- 1902237.
	- Peng B W, Yu L, Yu Y. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism[J]. Chinese J. Catal., 2022, 43(8): 2091-2110.

	Boppella R, Tan J, Yang W, Moon J. H catalysts for alkaline water splitting: A review focusing on
the reaction mechanism[J]. Chinese J. Catal., 2022, 43(8):
2091-2110.
Boppella R, Tan J, Yang W, Moon J. Homologous CoP/
NiCoP heterostructure on N-doped carbon the reaction mechanism[J]. Chinese J. Catal., 2022, 43(8):
2091-2110.
Boppella R, Tan J, Yang W, Moon J. Homologous CoP/
NiCoP heterostructure on N-doped carbon for highly effi-
cient and pH-universal hydrogen evolution el 2091-2110.

	Boppella R, Tan J, Yang W, Moon J. Homologous CoP/

	NiCoP heterostructure on N-doped carbon for highly effi-

	eient and pH-universal hydrogen evolution electrocatalysis

	[J]. Adv. Funct. Mater., 2019, 29(6): 18
	-
	- [4] Boppella R, Tan J, Yang W, Moon J. Homologous CoP/

	NiCoP heterostructure on N-doped carbon for highly effi-

	cient and pH-universal hydrogen evolution electrocatalysis

	[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
 NiCoP heterostructure on N-doped carbon for highly effi-
cient and pH-universal hydrogen evolution electrocatalysis
[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H.
Stimul cient and pH-universal hydrogen evolution electrocatalysis
[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H.
Stimuli-responsive DNA-gated nanoscale porous carbon
derived fr [J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H.
Stimuli-responsive DNA-gated nanoscale porous carbon
derived from ZIF-8[J]. Adv. Funct. Mater., 2019, 29(34):
1902237.
Su Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H.

	Stimuli-responsive DNA-gated nanoscale porous carbon

	derived from ZIF-8[J]. Adv. Funct. Mater., 2019, 29(34):

	1902237.

	Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li Stimuli-responsive DNA-gated nanoscale porous carbon
derived from ZIF-8[J]. Adv. Funct. Mater., 2019, 29(34):
1902237.
Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S,
Sun C H, Bu X H. Surfactant-assisted phase-selective derived from ZIF-8[J]. Adv. Funct. Mater., 2019, 29(34):
1902237.
Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S,
Sun C H, Bu X H. Surfactant-assisted phase-selective syn-
thesis of new cobalt MOFs and their efficient e 1902237.

	[6] Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S,

	Sun C H, Bu X H. Surfactant-assisted phase-selective syn-

	thesis of new cobalt MOFs and their efficient electro-

	catalytic hydrogen evolution reaction [J Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S,
Sun C H, Bu X H. Surfactant-assisted phase-selective syn-
thesis of new cobalt MOFs and their efficient electro-
catalytic hydrogen evolution reaction[J]. Angev. Chem.
Int Sun C H, Bu X H. Surfactant-assisted phase-selective syn-
thesis of new cobalt MOFs and their efficient electro-
catalytic hydrogen evolution reaction[J]. Angew. Chem.
Int. Ed., 2017, 56(42): 13001-13005.
Tang C, Gan L F, thesis of new cobalt MOFs and their efficient electro-
catalytic hydrogen evolution reaction[J]. Angew. Chem.
Int. Ed., 2017, 56(42): 13001-13005.
Tang C, Gan L F, Zhang R, Lu W B, Jiang X E, Asiri A
M, Sun X P, Wang J, Ch catalytic hydrogen evolution reaction [J]. Angew. Chem.
Int. Ed., 2017, 56(42): 13001-13005.
Tang C, Gan L F, Zhang R, Lu W B, Jiang X E, Asiri A
M, Sun X P, Wang J, Chen L. Temary Fe, $Co_{1x}P$ nanowire
array as a robust h Int. Ed., 2017, 56(42): 13001-13005.

	[7] Tang C, Gan L F, Zhang R, Lu W B, Jiang X E, Asiri A

	M, Sun X P, Wang J, Chen L. Temary Fe, Co_{1a},P nanowire

	array as a robust hydrogen evolution reaction electrocata-

	lyst wit ang C, Gan L F, Zhang R, Lu W B, Jiang X E, Asiri A

	4, Sun X P, Wang J, Chen L. Ternary Fe<sub>,CO_{1^{3}P} nanowire

	rray as a robust hydrogen evolution reaction electrocata-

	syst with Pt-like activity: experimental and theo</sub></sub> 4, Sun X P, Wang J, Chen L. Ternary Fe_sCo_{1₃P} nanowire
rray as a robust hydrogen evolution reaction electrocata-
ist with Pt-like activity: experimental and theoretical in-
ight[J]. Nano Lett, 2016, 16(10): 6617-6621 rray as a robust hydrogen evolution reaction electrocata-
jest with Pt-like activity: experimental and theoretical in-
ight[J]. Nano Lett., 2016, 16(10): 6617-6621.
PY, Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wany X
Y, Zh yst with Pt-like activity: experimental and theoretical in-
ight[J]. Nano Lett., 2016, 16(10): 6617-6621.

	le Y M, Liu L R, Zhu C, Guo S S, Golani P, Koo B, Tang

	Y, Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wang X

	V, Shi sight[J]. Nano Lett, 2016, 16(10): 6617-6621.

	[8] He Y M, Liu L R, Zhu C, Guo S S, Golani P, Koo B, Tang

	P Y, Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wang X

	W, Shi Z D, Zheng L, Yang J F, Shin B, Arbiol J, Duan H

	G, D Ie Y M, Liu L R, Zhu C, Guo S S, Golani P, Koo B, Tang
Y, Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wang X
V, Shi Z D, Zheng L, Yang J F, Shin B, Arbiol J, Duan H
i, Du Y H, Heggen M, Dunin-Borkowski R E, Guo W L,
Vang Q J, P. Y. Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wang X
V, Shi Z D, Zheng L, Yang J F, Shin B, Arbiol J, Duan H
i, Du Y H, Heggen M, Dunin-Borkowski R E, Guo W L,
Vang Q J, Zhang Z H, Liu Z. Amorphizing noble metal
halcogeni V, Shi Z D, Zheng L, Yang J F, Shin B, Arbiol J, Duan H

	5, Du Y H, Heggen M, Dunin-Borkowski R E, Guo W L,

	Vang Q J, Zhang Z H, Liu Z. Amorphizing noble metal

	halcogenide catalysts at the single-layer limit towards hy-

	-
- mate the Eeasibility for the system of renewable

chaloegenide catalysts at the single-layer limit towards hy-

drog through proceed AWE. In addition to electricity, the change preductionally P.M. Caul, 2022, 5(3): 212-22 rgy powered AWE. In addition to electricity, the drogen production[1]. Nat. Catal., 2022, 5(3): 212-221.

of riput chemicals, product separation, installan-

activity (3.6). Also, a Y. Kino K, Chon C, Dong C L, Link R,

a i, Du Y H, Heggen M, Dunin-Borkowski R E, Guo W L,
Vang Q J, Zhang Z H, Liu Z. Amorphizing noble metal
halcogenide catalysts at the single-layer limit towards hy-
rogen production[J]. Nat. Catal., 2022, 5(3): 212-221.
hang Wang Q J, Zhang Z H, Liu Z. Amorphizing noble metal

chalcogenide catalysts at the single-layer limit towards hy-

drogen production[J]. Nat. Catal., 2022, 5(3): 212-221.

[9] Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, halcogenide catalysts at the single-layer limit towards hy-
rogen production[J]. Nat. Catal., 2022, 5(3): 212-221.
hang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S,
Ian C P, Li Y D, Gogotsi Y, Wang G X. Single platinum rogen production[J]. Nat. Catal., 2022, 5(3): 212-221.
hang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S,
fan C P, Li Y D, Gogotsi Y, Wang G X. Single platinum
toms immobilized on an MXene as an efficient catalyst
12):
	-
	-

 $MoS₂$ via co-confining selenium in surface and cobalt in

- $\# \{\nmid \text{if } 1. \text{ Electrochem.}\} 2022, 28(10), 2214008 (14 of 18)$ MoS₂ via co-confining selenium in surface and cobalt in thigh current[J]. Appl. Catal. B

inner layer[J]. Nat. Commun., 2020, 11(1): 3315. [20559.

Liu W, Wang X T,
-
- 4 (*H*) *H*(*H*) *E*_{*H*} *Electrochem.*) 2022, 28(10), 2214008 (14 of 18)

1MoS₂ via co-confining sclenium in surface and cobalt in

11 at high current[J]. Appl. Cat

100559.

Liu W, Wang X T, Wang F, Du K F, Zhang Z Jiang K, Liu B Y, Luo M, Ning S C, Peng M, Zhao Y, Lu

21): 140.

Y R, Chang T S, de Groot F M F, Tam Y W. Single plat

inum atoms embedded in nanoporous oboth selecite as

enectrocatalyst for accelerating hydrogen evolut
-
-
-
-
- Tian F Y, Geng S, He L, Huang Y R, Fauzi A, Yang W

Mater., 2021, 31(21): 2010367

W, Liu Y Q, Yu Y S. Interface engineering: PSS-PPy

127] Nairan A, Linag C W, Chiang S

14217. Nairan A, Linag C W, Chiang C

1417: 129232 Gupta S, Patel N, Miotello A, Kothari D C. Cobalt-boride:

nan fitient and robust lectercocallyst for hydrogen evo-

lution reaction[I]. J. Power Sources, 2015, 279: 620-625.

IVu L. B, Zinang F H, Song S W, U. B, Zinang F Iution reaction(J.J., J. Power Sources, 2015, 279: 620-625.

Signe N, Dig (1, Gio G H, Chen Z Y, Zhou Q C, Xing X X, Tong T,

Signe N, Dig (1, More N, Dig (1, More N, Big IM, More Lessine and

signe walled cattoon nanothe Gio R, Dai Q B, Du F, Yan D P, Dai L M. C60-adsorbed

Singley-walled carbon manoloko as metal-force, ph-landing the valericise waler hydrogen evolution by a nancod-

single wall diffuse the phosphorus of the compact stabl
-
-

120559.

- $\label{eq:21} \begin{aligned} \n\text{#L#(J. Electrochem.)}\ 2022, 28(10), 2214008\ (14 of 18) \\\\ \text{via co-confining selenium in surface and cobalt in} \quad &\text{at high current}[J].\ \text{Appl. Catal.}\ \text{B Environ.,}\ 2021, 298: \\\ \n\text{aver}[J].\ \text{Nat. Commun.}\ 2020, 11(1): 3315. \quad 120559. \quad 120559. \quad 120559. \quad 12058. \quad 12058. \quad 12058. \quad 1$ inner layer[J]. Nat. Commun., 2020, 11(1): 3315.

Liu W, Wang X T, Wang F, Du K F, Zhang Z F, Guo Y

Elitective Commun., 2020, 11(1): 3315.

Liu W, Wang X T, Wang F, Du K F, Zhang Z F, Guo Y

Z, Yin H Y, Wang D H. A durab (13) Highlering selenium in surface and cobalt in a thigh current[J]. Appl. Catal. B Environ., 2021, 298:

inner layer[J]. Nat. Commun., 2020, 11(1): 3315.

[13] Liu W, Wang X T, Wang F, Du K F, Zhang Z F, Guo Y [23] Zhan the *Q*² (*L Electrochem.)* 2022, 28(10), 2214008 (14 of 18)

MoS₂ via co-confining selenium in surface and cobalt in thigh current[J]. Appl. Catal. B Environ., 2021, 298:

inner layer[J]. Nat. Commun., 2020, 11(1) self-standing MoC-Mo₅C heterochem.) 2022, 28(10), 2214008 (14 of 18)

MoS₅ via co-confining selenium in surface and cobalt in at high current[J]. Appl. Catal. B Environ., 2021, 298:

liner layer[J]. Nat. Commun., 202 efficient hydrogen evolution reaction (J). Nat. Commun., 2002, 28(10), 2214008 (14 of 18)

inner layer[J]. Nat. Commun., 2020, 11(1): 3315.

inner layer[J]. Nat. Commun., 2020, 11(1): 3315.

Liu W, Wang S T, Wang F, Du K $\begin{aligned}\n& \text{if } \{E \neq (I, \text{Electrochem.}) \ 2022, 28(10), 2214008 \ (14 of 18)\} \\
&\text{MoSs via co-confining selenium in surface and cobalt in} \\
& \text{if } \{E \neq (I, \text{Nat. Commun, } 2020, 11(1): 3315, \text{In a } 20059\}. \\
& \text{if } \{E \} \text{ in } \{E \} \text{$ ($E/2$, *Electrochem*.) 2022, 28(10), 2214008 (14 of 18)

MoS_s via co-confining selenium in surface and cobalt in

in at high current[J]. Appl. Catal. B Environ., 2021, 298:

inner layer[J]. Nat. Commun., 2020, 11(1): the \mathcal{H}_{∞} is the care of the matrice and cobalt in the sum at high current[J]. Appl. Catal. B Faviron., 2021, 298:

inner layer[J]. Nat. Commun., 2020, 11(1): 3315.

Liu W, Wang X T, Wang Y R, Har F I, Mi V, Wang S **ELECT EXECT (EXECT (FOR ACCE)**

Helectrochem, 2022, 28(10), 2214008 (14 of 18)

Hensing selection in surface and coball in an lingh current[J]. Appl. Catal. B Environ, 2021, 298:

inner layer[J]. Nat. Commun., 2020, 11(1 $\text{LSE} = \frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) - 22 \right) - 28 \right) - 28 \right) - 8 \right) - 8 \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\$ (e) $\#2^2(f, Electrowe, 2022, 28(10), 2214008 (14 of 18)$

MoS, via c-confining selenium, in surface and ordod in an large located in the surface and ordod in a large controll). Appl. Catal, B Environ, 2021, 298:

(13) Liu W, Wang X $H_2^L\mathcal{L}^{\omega}(L, Kleomcheom,)$ 2022, 28(10), 2214008 (14 of 18)

MoS, via co-confining sclenium in surface and obalt in

inner layer[J]. Appl. Catal. B Environ., 2021, 298:

Lia W, Wung X T, Wung D, Dit K i, Zamag Z F, Guo Y
 efficient hydrogen evolution reaction[J]. Adv. Mater., 2017, MoS, vin co-confining selenium is surface and cobalt in

intertapped). Nat. Commun., 2020, 11(1): 3315.

[15] Liu W, Wang X T, Wang V, B, Hu F L, Mi Y, Wang S Z, Liu Y

Z, Yin H Y, Wang D F. A, Zhang D F. A, Outable and p MoS. via co-confining selenium in surface and cobalt in

in the car carbon surface carbon nanotube hybrids. The sign of the s inner layer[1], Nat. Commun, 2019, 11(1): 3315.

Liu W, Wung X T, Wung Y, B, Hu F L, Mi Y, Vhung Y E, Varia V, Wung Y E, Varia T Y, Varia T Y, Varia T Y, Varia T

Li, Wi H, Varia T Y, Varia T Y, Varia T Y, US COOM

Left-u Liu W, Wung X T, Wung F, Du K F, Zhung Z T, Guo Y (23) Zhung S C, Wung W B, Hu F L, Mi Y, Wung S Z, Liu V

Z, Yin H Y, Vong D H. A durable and pH-universal with N . Adv N A, Fang F K, Li H Q, Zhai T Y. 2D CoOOH

evel-Eur 2, Yin H Y, Wung D H. A durable and pH-universal

w, Ai X M, Fang J K, Li H Q, Zhui T Y. 2D CoOOH

efficientling Mo-C-Mog Cheteroignetion electromentales of this method Ni¹ He in the

efficient hydrogen evolution eactio (14 of 18)
at high current[J]. Appl. Catal. B Environ., 2021, 298:
120559.
Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y
W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₂P into tubular arrays re 28(10), 2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

[23] Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni (a) 2214008 (14 of 18)
at high current[J]. Appl. Catal. B Environ., 2021, 298:
120559.
Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y
W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₂P into tu 9), 2214008 (14 of 18)
at high current[J]. Appl. Catal. B Environ., 2021, 298:
120559.
Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y
W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₂P into tubul 2000 magnetic 11000 mA care in the Dividendal Bendericular Schement (J]. Appl. Catal. B Environ., 2021, 298:

120559.

20059.

20059. Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T 0), 2214008 (14 of 18)
at high current[J]. Appl. Catal. B Environ., 2021, 298:
120559.
Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y
W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₂P into tubu (14) 000 (14) of 18)

2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

2211, 298.

2211, 298.

221, 298.

221, 298.

221, 298.

221, 298.

222, 243.

24. Example 11: 140.

221, 242.

220,

221, 28(10), 2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

(23) Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-eneapsulated Ni 214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni₂P into tubul (1), 2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

2Dang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni₂P into (1))))), 2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni₂P 28(10), 2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

23] Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni (14 of 18)

2214008 (14 of 18)

210559.

2100559.

221 (20559).

221 (20559).

22 (20659).

22 (20659).

22 (20659).

22 (20659).

22 (2066).

22 (2066).

22 (2076).

22 (2076).

22 (2076).

22 (2076).

22 (2076).

22 (207 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni₂P into tubular arr (1908), 2214008 (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

220559.

220559.

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni_sP into tubular arrays realizing

1000 mA ·cm³ (14 of 18)

at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

220559.

220559.

220559.

220559.

22026 C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

2216 CoOH

4. A M, Fang J K, Li H Q, Zhai T Y. 2D CoOH

4 at high current[J]. Appl. Catal. B Environ., 2021, 298:

120559.

120559.

1231 Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni₂P into tubular ar at high current[J]. Appl. Catal. B Environ., 2021, 298:
120559.
21ang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y
W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₃P into tubular arrays realizing
100 120559.

27 Schang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y

W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH

sheet-encapsulated Ni₃P into tubular arrays realizing

1000 mA · cm⁻²-level-current-density hydrogen ev Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y
W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₂P into tubular arrays realizing
1000 mA · cm⁻²-level-current-density hydrogen evolution
over 100 W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH
sheet-encapsulated Ni₃P into tubular arrays realizing
1000 mA · cm³-level-current-density hydrogen evolution
over 100 h in neutral water[J]. Nano-Micro Lett., 2020,
2(1): 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (14 of 18)

n in surface and cobalt in at high current[J]. Appl. Catal. B Environ., 2021, 298:

2020, 11(1): 3315. [20559.]

u K F, Zhang Z F, Guo Y [23] Zhang S C, Wang W B, H
	-
	-
- sell-standing McC-Mo_C heterojancion electode for

alfoloniar armys realizing

efficient hydrogen evolution reaction [7], Nat. Commun,

2021, 12(1): 6776.

Izing K, Liu B Y, Liu W, Ning S. Creag M, Ziu W, Y. Inter V, W. S efficient hydrogen evolution reaction [J]. Nat. Commun.,

2021, 12(1): 6776.

2021, 12(1): 6776. The NV, Ning S C, Peng M, Zhao V, Lat 12(1): 140.

2021, 12(1): 140.

2021, 12(1): 140.

2021, 140. C χ the W N. Tan V W. 2021, $12(1)$: 6776. over 100 h in neutral water[J]. Nino-Micro Lett., 2020,

Nagliang K, Liuo N, Ning S C, Peng M, Zhao Y, Luo V , Ring H, Zhang H, Zhang H, X, Hu Y J, Li C Z, Hesterge-

itelum atternance are consisted Y R, Chan T S, dc Groot F M F, Tan Y W. Single plate

eiting and S, then the S, David C A, Districted A, Tan S (Note that the secure inferior column are

eiting the accelerating hydrogen evolution reactions on the secure sheet-encapsulated Ni₂P into tubular arrays realizing

1000 mA · cm⁻²-level-current-density hydrogen evolution

over 100 h in neutral water[J]. Nano-Micro Lett., 2020,

12(1): 140.

124) Xu Q C, Jiang H, Zhang H X, Hu 1000 mA · cm²-level-current-density hydrogen evolution
over 100 h in neutral water[J]. Nano-Micro Lett., 2020,
12(1): 140.
Xu Q C, Jiang H, Zhang H X, Hu Y J, Li C Z. Heteroge-
neous interface engineered atomic configura 100 h in neutral water[J]. Nano-Micro Lett., 2020, 12(1): 140.

Xu Q C, Jiang H, Zhang H X, Hu Y J, Li C Z. Heterogeneous interface engineered atomic configuration on ultra-

thin Ni(OH)₂/Ni₅S₂ nanoforests for effic 12(1): 140.

Xu Q C, Jiang H, Zhang H X, Hu Y J, Li C Z. Heterogeneous interface engineered atomic configuration on ultra-

thin Ni(OH)₂Ni₅S₂ nanoforests for efficient water split-

ting[J]. Appl. Catal. B Environ. Xu Q C, Jiang H, Zhang H X, Hu Y J, Li C Z. Heterogeneous interface engineered atomic configuration on ultra-
thin Ni(OH)₂Ni₅S₂, nanoforests for efficient water split-
ting[J]. Appl. Catal. B Environ., 2019, 242: 60-
	-
- inum atoms embedded in annoporous cobalt selenide as
 mean encous interface engineered atomic configuration on ultra-

electrocatalyst for accelestration (1191)-1143.
 Zung R. Wang X X, Wu s 3, We a 1, Zahu X Wu S electivocallisti for accelerating hydrogen evolution reac-

thin Ni(OH)₂Ni₅8, mandivests for efficient witer split-

Damma, R. W. Power X, V. W. W. W. W. W. Then X , W. W. W. Then X , W. W. W. Then X , W. W. W. W. tion[J]. Nat. Comman., 2019, 10(1): 1743.

[15] Zhang K, Wan S, Yan M, Wang Y (25) Link Y, Yang Y P, Peng Z K, Link ZV, Chen Z, M, Shang R, Wan X, N, Wan X K, H, W. Y. V. Name Y NCo₂P, Link Y, Y. Chen Z, N. Exp. Z, N. S Theng R, Wang X X, Yu S J, Wen T, Zhu X W, Yang F (25) Liu Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M, Shang

SX, Sun X N, Wang X K, Hu W P. Ternary NicosP.

emicinent phase as methemum dota as an efficient and super-stable x, Sun X N, Wang X K, Hu W P. Ternary NiCo₂P,

L, Lu S Y, Zhang T R. Seif-crosslinking carbon dots

and multipuresal pelcericantilaysts for highly loaded rulternal dots as an efficient multipure sale

differently dots f mmowires as pH-universal electrocatalyss for highly

dioaded ruthenium dots as an efficient and super-siable

different professional electrocatalys at all pH values [J].

Then 2×9 (169510.

Then 2×9 (26) Vang 1. Am. efficient hydrogen evolution reaction[J]. Adv. Mater, 2017,

29(9): 1605502.

2018, 2019, 1605502.

2019, 1605502.

2019, 2019, 2019, 2019, 65: 104002.
 R. M. Mobybelenum phosphide/carbon nanotube hybrids
 B. Ren W C, 29(9): 1605502.

1800 Diang Y, V, Wang Ton, Nano Energy, 2019, 65: 104023.

161 KH, Maybelemum phosphide²curbon nunotube hybrids

181, Ram W, C, Cheng 11 M, Li J, Liu B L. A dumble and

181, H, Maybelemum phosphide²cu Zhang X, Yu X L, Zhang L J, Zhou F, Liang Y Y, Wang [26] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z

B, H. Molybeknum phosphide carbon nanotobe hybrids = B, Ren W. C, then B H. Li J, Liu B L. A durable and

us p R. H. Molybelemum phosphide/carbon manotole- hybrids

B., Ren W.C, Cheng H.M, Li J. Liu B.L. A durable and

ensistent descriptions of the sale of the as pH-miversal electrocatalysis for hydrogen evolution

efficient electrocatalyst for saine water splitting with

ran FV, Greg S, He I, Huang Y R, Fami A, Yang W

Mater., 2012), 31(21): 2010367.

Tim FV, Greg S, He I, Huan ecution [J]. Adv. Funct. Mater., 2018, 28(16): 1766523. externit density occerting 2000 mA-cm⁻[J]. Adv. Funct.
Tan FY. Ocen g. St. E. Huang Y R, Faust A, Yang & N, Faust A, Yang EV. (2013): 12012-20136 NV, 1301 Y, 2019, W, Liu Y Q, Yu Y S. Interface orgineering: PSS-PPy [27] Naima A, Linng C W, Chinng S W, Wu Y, Zou P C, Khan

whylng anorphosis Ni-Co-P for estances passed parallel particles and the C-P for estances and the C-P comparison wrapping amorphosa Ni-Co-P for enhancing neutral-pH

1.), I in W 1), Kang F Y, Giao S J, Wu 1 B, Yang C. Proton

1., 2021, 417: 1923:2.

Cappear evolution case of the Sim (March March March March March March March March Ma by the method in reaction performance [J]. Chem. Eng.

1, 2021, 417: 199232.

1, 2021, 417: 199232.

Clopta S, Patel N, Motello A, Kothari D C. Cobalt-boride:

non Seci, 2021, 4143: 1594: 601.

10, 1684: 1992, 1894: 1692, J., 2021, 417: 129222.

(For superior hydrogen evolution activity [J]. Energy Envi-

for Motello A, Kothari D.C. Cobalt-boride:

an efficient and rebust electrocatalyst for hydrogen evo-

128) Wu L. H, Zhang F H, Song S.W an efficient and robust electrocatallyst for hydrogen evo-

[19] Gao R, Dai Q F, Dai D, Cao H, Color G, Cao H, Color C, Nine a ZV, Zhon Q, Cao R, Tom C, Nine (B, The Color H, Tom C, Nine D, D. Cao H, Color H, Color H, Yu L neous interface engineered atomic configuration on ultra-
thin Ni(OH)₂Ni₅S₂ nanoforests for efficient water split-
ting[J]. Appl. Catal. B Environ., 2019, 242: 60-66.
[25] Lit Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M thin Ni(OH)₂Ni₃S₂ nanoforests for efficient water split-
ting[J]. Appl. Catal. B Environ., 2019, 242: 60-66.
Liu Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M, Shang
L, Lu S Y, Zhang T R. Self-crosslinking carbon dots
ol ting[J]. Appl. Catal. B Environ., 2019, 242: 60-66.
Liu Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M, Shang
L, Lu S Y, Zhang T R. Self-crosslinking carbon dots
loaded ruthenium dots as an efficient and super-stable
hydrogen pr Liu Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M, Shang
L, Lu S Y, Zhang T R. Self-crosslinking carbon dots
loaded ruthenium dots as an efficient and super-stable
hydrogen production electrocatalyst at all pH values [J].
Nano L, Lu S Y, Zhang T R. Self-crosslinking carbon dots
loaded ruthenium dots as an efficient and super-stable
hydrogen production electrocatalyst at all pH values [J].
Nano Energy, 2019, 65: 104023.
Yang F N, Luo Y T, Yu Q M, loaded ruthenium dots as an efficient and super-stable
hydrogen production electrocatalyst at all pH values [J].
Nano Energy, 2019, 65: 104023.
Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z
B, Ren W C, Cheng H M, Li hydrogen production electrocatalyst at all pH values [J].

Nano Energy, 2019, 65: 104023.

[26] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z

B, Ren W C, Cheng H M, Li J, Liu B L. A durable and

efficient electroca Nano Energy, 2019, 65: 104023.

Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z

B, Ren W C, Cheng H M, Li J, Liu B L. A durable and

efficient electrocatalyst for saline water splitting with

current density exceedin Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z
B, Ren W C, Cheng H M, Li J, Liu B L. A durable and
efficient electrocatalyst for saline water splitting with
current density exceeding 2000 mA · cm⁻²[J]. Adv. Funct.
 B, Ren W C, Cheng H M, Li J, Liu B L. A durable and
efficient electrocatalyst for saline water splitting with
current density exceeding 2000 mA · cm⁻²[J]. Adv. Funct.
Mater., 2021, 31(21): 2010367.
V. Liu W D, Kang F V, efficient electrocatalyst for saline water splitting with
current density exceeding 2000 mA · cm²[J]. Adv. Funct.
Mater., 2021, 31(21): 2010367.
Nairan A, Liang C W, Chiang S W, Wu Y, Zou P C, Khan
U, Liu W D, Kang F Y, eurrent density exceeding 2000 mA·cm³[J]. Adv. Funct.

Mater., 2021, 31(21): 2010367.

[27] Naria A, Liang C W, Chiang S W, Wu Y, Zou P C, Khan

U, Liu W D, Kang F Y, Guo S J, Wu J B, Yang C. Proton

selective adsorption Mater., 2021, 31(21): 2010367.
Nairan A, Liang C W, Chiang S W, Wu Y, Zou P C, Khan
U, Liu W D, Kang F Y, Guo S J, Wu J B, Yang C. Proton
selective adsorption on Pt-Ni nano-thorn array electrodes
for superior hydrogen evol Nairan A, Liang C W, Chiang S W, Wu Y, Zou P C, Khan
U, Liu W D, Kang F Y, Guo S J, Wu J B, Yang C. Proton
selective adsorption on Pt-Ni nano-thorn array electrodes
for superior hydrogen evolution activity[J]. Energy Envi-U, Liu W D, Kang F Y, Guo S J, Wu J B, Yang C. Proton
selective adsorption on Pt-Ni nano-thorn array electrodes
for superior hydrogen evolution activity[J]. Energy Environ. Sci., 2021, 14(3): 1594-1601.
Wu L B, Zhang F H, selective adsorption on Pt-Ni nano-thorn array electrodes
for superior hydrogen evolution activity[J]. Energy Envi-
ron. Sci., 2021, 14(3): 1594-1601.
[28] Wu L B, Zhang S W, Ning M H, Zhu Q, Zhou
J Q, Gao G H, Chen Z Y, Z for superior hydrogen evolution activity[J]. Energy Environ. Sci., 2021, 14(3): 1594-1601.
Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou
J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S ron. Sci., 2021, 14(3): 1594-1601.
Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou
J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T,
Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alka-
ine water/seawater hydrogen e Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alka-
line water/seawater hydrogen evolution by a nanorod-
nanoparticl J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T,
Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alka-
line water/seawater hydrogen evolution by a nanorod-
nanoparticle-structured Ni-MoN catalyst with fast water-
disso
	-
	-
	- Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alka-
line water/seawater hydrogen evolution by a nanorod-
nanoparticle-structured Ni-MoN catalyst with fast water-
disociation kinetics[J]. Adv. Mater., 2022, 34(21): 22017
	-

- $# \&L \# (J. \nElectrochem.) 2022, 28(10), 2214008 (15 of 18) \ndroxide-based core-shell nanoarrays for efficient electro-
\nchemical water splitting[J]. Front. Chen. Sci. Eng., 2018,
\nRiese A, Xiao B W, Li R Y,
\n12(3): 537-554.
\nG A, Sun X L. Platinum sing
\nYu Z Y, Duan Y, Feng X Y, Yu X X, Gao M R, Yu S H.
\nClean and affordable hydrogen fuel from alkaline water \nsplitting: past, recent progress, and future prospects [J].
\nAdv. Mater., 2021, 33(31): 20071$ 19(*H*²)²(*J. Electrochem*, 2022, 28(10), 2214008 (15 of 18)

droxide-based core-shell nanoarrays for efficient electro-

144] Cheng N C, Stambula S, Wa

chemical water splitting[J]. Front. Chem. Sci. Eng., 2018,

12($#E\#(L \n(*Electrochem*)) 2022, 28(10), 2214008 (15 of 18) \n d\n for which the initial value of the system is given by the formula for the formula. The formula is given by the formula. The formula is given$
-
-
-
- 1922.
-
- Lagadec M F, Grimaud A. Water electrolysers with closed

aloows for long-term electrocatalysis b

and open electrochanical systems[J]. Nat. Mater., 2020,

19(11): 1140-1150.

19(11): 1140-1150.

19(11): 1140-1150.

19(11): mechanism in alkaline media[J]. Acta Phys. -Chim. Sin.,

2012, 137(9): 2007054.

2012, 137(9): 2007054.

2016. R.P. every denoted and cominal ensity exceeding 2000 mA-c

2016. R.P. Evento Qui AP-N-C for oxygen reduction an
- 102. [37] Zhang S B, Wu Y F, Zhang Y X, Niu Z Q, Dual-atom

atomic-scale precision at different meta-legenphene inter-

anglesis: commulable symbensis and electromealing proposes: commulable symbersions and electromealing

192 [38] Norskov J. K, Bligaard T, Logadontir A, Kitchin J. R, Chen

163 J. G, Pandelsov S, Norskov J. K, Techstin in the ecchnome

2005, 152(3): 23-53,

2005, 152(3): 23-56, 152(3): 24-56, 152(3): 24-56, 152(3): 24-56, 152(3 3 G₁ Pandelov S₅, Norskov J K. Trends in the exchange

applications(J]. Chem. Commun., 2015, 51(88): 15880-

2005, 152(3): 23-26.

2008, 152(3): 23-26.

[49] 111 M, Jiang S, Shao M F, Wei M. Host-guster engineering

E current for hydrogen-evolution [J]. J. Electrochem, Soc.,

1989. 15893.

1980. 1520/23-256. Sample Ethiomanan H, Motes P G; Honde J, Jorgensen K P,

Nichem J, H, Jongensen K P,

or blayered double hydroxides towards effici 2005, 152(3): 23-26.

Himemann B. Moses P. G. Bonde J. Jorgensen K. P. c. Integrets only EV (at M. Fost-guest engineering

Himemann B. Moses P. G. Bonde J. Jorgensen K. P. c. evolution reaction receives towards different o Nielsen J H, Horch S, Chorkendorff L, Nirackov J K. evolution reaction: recent advances and perspectives [J],

Equinistic hydrogen evolution [J]. J. Am. Chem. Soc., [50] Wang D S. 2D materials modulating layered double hy-Himmintin hydrogen evolution: MoS₂, nanoparticles as

catalysts, 2018 , $8(5)$: 214 ,
 2008 , $127(15)$: $5308-309$,
 2008 , $207(15)$: 5309 ,
 3080 , 208 , $127(15)$: $5308-309$,
 5308
 5308
 5308
 5308
 cuallyst for hydrogen evolution [J]. J. Am. Chem. Soc., [50] Wang D S. 2D materials modulating layered double by-2005, 127(15): 5308-5309.

Marshira F, Dongensen Kristina P, Bonde J, Catal., 2022, 43(6): 1380-1398.

Nielse
- 3783.
- 7590.
-
- $\label{eq:21} \begin{minipage}[t]{0.9\textwidth} \begin{tabular}{l} \exists \textbf{d} \& \exists \textbf{$$ **电化学(J. Electrochem.) 2022, 28(10), 2214008 (15 of 18)**
droxide-based core-shell nanoarrays for efficient electro-
chemical water splitting[J]. Front. Chem. Sci. Eng., 2018,
 $\begin{array}{l} \text{Ri} \leq \text{Rj} \leq \text{Rk} \leq \text{Rk} \leq \text$ $\# \{\&\cong (J. \n \begin{align*}\n\text{H}(T) & \text{H}(T) &$ (a) the movide-based core-shell nanoarrays for efficient electro-
droxide-based core-shell nanoarrays for efficient electro-
clean (44) Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
chemical water splitting[J]. Front. $#E#(J. Electrochem.) 2022, 28(10), 2214008 (15 of 18)$ droxide-based core-stillell nanoarrays for efficient electro-
 $[44]$ Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

behencied water splitting[J]. Front. Chem. Sci. Eng., 2018 4 (*K)*²² (*K) Electrochem.*) 2022, 28(10), 2214008 (15 of 18)

4 (a) droxide-based core-shell nanoarrays for efficient electro-

144] Cheng N C, Stambula S, Wang D, Banis M N,

12(3): 537-554.

12(3): 537-554.

12(3) $\text{H}(E\overset{\text{def}}{\Rightarrow}(L \text{ *Electmchemen*.) } 2022, 28(10), 2214008 (15 of 18) \\\\ \text{droxide-based core-shell nanoartays for efficient electron} \tag{44} \begin{minipage}[10] \label{fig:1} \text{Chem} \end{minipage} \begin{minipage}[10] \label{fig:1} \text{Chem} \end{minipage} \begin{minipage}[10] \label{fig:1} \text{Chem} \end{minipage} \begin{minipage}[10] \label{fig:1} \text{R} \end{minipage} \begin{minipage}[10] \label$ $\label{eq:20} \begin{array}{ll} \text{H}(E\frac{2\pi}{7}(L \: \text{Electrochem.}) \; 2022, 28(10), 2214008 \; (15 \text{ of } 18) \\ \text{d}\text{twisted-based core-shell nanonarys for efficient electron} \end{array} \quad \begin{array}{ll} \text{H}(1 \: \text{Cheng N C, Stambula S, Wang D, Banis M N, Liu J, chemical water splitting} \\ \text{the chemical water splitting} \\ \text{D}(\text{S1, S37-554}, & \text{Gas M, Nu X, Gao M, R, Yu S H.} \\ \text{D}(\text{S2, V, Dan Y, Feng$ $\label{eq:201} \frac{d\text{th}(2\%)}{d\text{th}} \cdot \$ **Heading Scheme Controlling (16 (16 (18 m)**
 Heading Scheme of the Controlling Scheme of the Controlling Scheme of the Controlling Scheme of the U.S. (18 m)
 Hydrogen oxidation Figure 12(3) S37-554.
 Controlling Sche mechanism in all the "(*J. Electrochemica*) 2022, 28(10), 2214008 (15 of 18)

droxiale-based core-shell nanouranys for efficient decir-

desiring NC, Sambula 8, Wing D, Banis M N, Liu J,

desirine alter spitting

12(3): (a) $46 \times M_{\text{star}}$, 201 , $321 \times 100 \times 100$, $321 \times 100 \times 100$, $321 \times 100 \times$ 8(10), 2214008 (15 of 18)
[44] Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reacti 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction[J]. Nat. 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. 8(10), 2214008 (15 of 18)

[44] Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution re 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. 2214008 (15 of 18)
Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. $(8(10), 2214008 (15 \text{ of } 18)$

[44] Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolutio , 2214008 (15 of 18)

Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution reaction [J] 2214008 (15 of 18)

Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution reaction [J]. (2214008 (15 of 18)

Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution reaction [J] 2214008 (15 of 18)

Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution reaction [J]. 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (15 of 18)

narrays for efficient electro-

[44] Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

ont. Chem. Sci. Eng., 2018,

G A, Sun X L. Platinum single-atom and cluster c
	-
	-
- (a) $\frac{16}{2}$ (*L F*(*L Fortuchemis*) 2022, 28(10), 2214008 (15 of 18)

drexide-based core-shell nunoarmys for efficient electro-

(44) Cheng N C, Sumbala S, Wong D, Bunis M N, Liu J,

chemical water splitting[1]. Fro hydrogen evolution reactions in acid and alkaline soludroxide-based core-shell nanoarrays for efficient electro-

144) Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

ohennical water splitting[J]. Front. Chenn. Sci. Eng., 2018,

12(3): 537-554.

12(3): 537-554.

12(3): 12/ droxide-based orcesshell amongrays for efficient electro-
 $\frac{1}{2}$ (Fing N C, Sumbolu & S, Wang D, Banis M N, Liu J, Bottom (2): S37-554,

(2): S37-554, (2): M N S, Rom T N, Liu J, M, D, However, OLA (2): Nom N, Fig. N, chemical water splitting[1]. Front. Chem. Sci. Eng., 2018,

2018, 837-554.

21/2): 537-554.

21/2): 537-554.

21/2): 537-554.

Clean and afthordable hydrogen fuel from alkaline water and electrocatalytically past, recent 2(3): 537-554,

12(3): 537-554,

Ver X V, Dur X, Guao M R, Yu S H.

Ver ZV, Dur X, Guao M R, Yu S H.

Clean and affected
be hydrogen fuel from altaline water
 2016 , $7(1)$: 13638,

and thuse prosecular and affected

Adv Clean and affordable hydrogen field from alkatine water

Alti, Dash 1, Bomet N, Hargashi T, Sun Y M, Jiang Q

philing: past, excell progress, and flutte prospects \int H, 451 Li A, Lodas H, Bomet N, Hargashi T, Sun Y M, J splitting: past, reent propers (II) [45] Li A L, Ooka II, Bonnel N, Hayashi T, Sun Y M, Jinng Q

Adv. Muer: 2020/1303 12007100

K. Li C, I Cm II X, Norskov J K. History between the exchange exchange exchanges with closed
 Adv. Mater.. 2021, 33(31): 2007100.

League MK, Ginand A, Warter electrochemical system electrochem. Subset potential winds

League MK, Ginand A, Warter electrochem. Subset of the specific conditions[1]. And the specific c and open lestrochemical systems[J]. Nat. Mater., 2020,

[39] [10] (11) 1140-1150. 1160-1150. In the system observed in the system (16) $\frac{1}{2}$ (86) $\frac{1}{2}$ (86) $\frac{1}{2}$ (86) $\frac{1}{2}$ (86) $\frac{1}{2}$ (86) $\frac{1}{2}$ (19(11): 1140-1150.

19(11): 1140-1150.

16(11): 1140-1150.

16(11): 1141-1150.

16(11): 1141-1150. The system And hydrogen evolution enaction

in Alking PN, U. DY, Chorg H M, 111, 11a H 1. A durable and

mechanism in alki Li M T, Zheng X Q, Li L, Wei Z D. Research progress of [46] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu

hydrogen coil of brivary coil of B, Ren W C, Cheng H M, Li J, Li B L A darushe and

mechanism in alkaline med arch progress of [46] Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z

blution reaction B, Ren W C, Cheng H M, Li J, Liu B L. A dunble and

sys. -Chim. Sin, efficient electrocatally
st for sailine water splitting wit bydrogen oxidation and hydrogen evolution reaction
mechanism in allahies mechanism in allahies mechanism in allahies mechanism in allahies mechanism in allahies method of the allahies of the same 1.1, Sun Sep. (2010, 22 an 2021, 37(9): 2007054.

[46] Gin XP, Zhus Q Q, Zhus D M, H. Thomas F, Mark C, 2021, 31(21): 2010667. Points C, Zhus Q A, Thomas F, Thomas F, Thomas F, Thomas F, Thomas F, July 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008 (in X P, Zhu S Q, Zhung L I, Sim S H, Sim o M II. Theoretial stations of metallicant stations of metallications and $[47]$ Kosmaton A, Perilli D, Liu H, Duestical stations (in explored and diadline solution reactions in es oretical studies of metal-N-C for oxygen reduction and
 $\frac{1}{2}$ Kosmala T, Baby A, Lunatoon M, Perilli D, Liu H, Da-
 $\frac{1}{2}$ Chin (State sites for all state in the C, Division C, Agoinis C, Gogarato
 $\frac{1}{2}$ Chin ($8(10)$, 2214008 (15 of 18)

[44] Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution , 2214008 (15 of 18)

Cheng N C, Stambula S, Wang D, Banis M N, Liu J,

Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton

G A, Sun X L. Platinum single-atom and cluster catalysis

of the hydrogen evolution reaction[J] Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. Commun.,
2016, 7(1 Cheng N C, Stambula S, Wang D, Banis M N, Liu J,
Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton
G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. Commun.,
2016, 7(1 Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J]. Nat. Commun., 2016, 7(1): 13638.
Li A L, Ooka H, Bonnet N, Hayashi T, Su G A, Sun X L. Platinum single-atom and cluster catalysis
of the hydrogen evolution reaction [J]. Nat. Commun.,
2016, 7(1): 13638.
I(45) Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q
K, Li C, Han H X, Nakamura R. S 2016, 7(1): 13638.

2016, 7(1): 13638.

Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q

K, Li C, Han H X, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides

and acidic condition 2016, 7(1): 13638.

Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q

K, Li C, Han H X, Nakamura R. Stable potential win-

dows for long-term electrocatalysis by manganese oxides

under acidic conditions[J]. Angew. Ch Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q
K, Li C, Han H X, Nakamura R. Stable potential win-
dows for long-term electrocatalysis by manganese oxides
under acidic conditions[J]. Angew. Chem. Int. Ed., 2019,
88(dows for long-term electrocatalysis by manganese oxides
under acidic conditions[J]. Angew. Chem. Int. Ed., 2019,
58(15): 5054-5058.
H46] Y A, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z
B, Ren W C, Cheng H M, Li J, Liu B L. under acidic conditions[J]. Angew. Chem. Int. Ed., 2019, $S8(15): S054-5058$.
Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z
B, Ren W C, Cheng H M, Li J, Liu B L. A durable and
efficient electrocatalyst for saline wate 58(15): 5054-5058.

Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z

B, Ren W C, Cheng H M, Li J, Liu B L. A durable and

efficient electrocatalyst for saline water splitting with

current density exceeding 2000 mA ·c Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z
B, Ren W C, Cheng H M, Li J, Liu B L. A durable and
efficient electrocatalyst for saline water splitting with
current density exceeding 2000 mA ·cm⁻²[J]. Adv. Funct.
M B, Ren W C, Cheng H M, Li J, Liu B L. A durable and
efficient electrocatalyst for saline water splitting with
current density exceeding 2000 mA - cm²[J]. Adv. Funct.
Mater., 2021, 31(21): 2010367.
[47] Kosmala T, Baby A, efficient electrocatalyst for saline water splitting with
current density exceeding 2000 mA·cm²[J]. Adv. Funct.
Mater., 2021, 31(21): 2010367.
Kosmala T, Baby A, Lunardon M, Perilli D, Liu H, Du-
rante C, Di Valentin C, current density exceeding 2000 mA · cm²[J]. Adv. Funct.
Mater., 2021, 31(21): 2010367.
Kosmala T, Baby A, Lunardon M, Perilli D, Liu H, Du-
rante C, Di Valentin C, Agnoli S, Granozzi G. Operando
visu alization of the hyd Mater., 2021, 31(21): 2010367.

[47] Kosmala T, Baby A, Lunardon M, Perilli D, Liu H, Durante C, Di Valentin C, Agnoli S, Granozzi G. Operando

visu alization of the hydrogen evolution reaction with

atomic-scale precision Kosmala T, Baby A, Lunardon M, Perilli D, Liu H, Durante C, Di Valentin C, Agnoli S, Granozzi G. Operando
visu alization of the hydrogen evolution reaction with
atomic-scale precision at different metal-graphene inter-
fac
	- bydrogen evolution reactions in avid and allelating solutions. There is considerate the effect of the sydes periodic methods reaction of the sydes of the syd eatalysis: controllable synthesis and electrocatalytic fires[J], Nat. Catal., 2021, 4(10): 850-859.

	1922.

	1923.

	1923. China Ghem., 2021, 64(11): 1908-[48] Sho M F. Zhang K K, Liz ZH, Nei M, Evans D G, Duan

	1922.

	1922. applications [J]. Sci. China Chem., 2021, 64(11): 1908-

	1922.

	1922.

	1922.

	1922.

	1923. In a Morskow J.K., Hiligand T, Logadottir A, Kitchin J.R, Chem

	1923. In applications (between electrochemical

	1931 G, Pamelelow S 15893. rante C, Di Valentin C, Agnoli S, Granozzi G. Operando
visu alization of the hydrogen evolution reaction with
atomic-scale precision at different metal-graphene inter-
faces[J]. Nat. Catal., 2021, 4(10): 850-859.
Shao M F, atomic-scale precision at different metal-graphene inter-
faces[J]. Nat. Catal., 2021, 4(10): 850-859.

	[48] Shao M F, Zhang R K, Li Z H, Wei M, Evans D G, Duan

	X. Layered double hydroxides toward electrochemical

	energy faces[J]. Nat. Catal., 2021, 4(10): 850-859.
Shao M F, Zhang R K, Li Z H, Wei M, Evans D G, Duan
X. Layered double hydroxides toward electrochemical
energy storage and conversion: design, synthesis and
applications[J]. Che Shao M F, Zhang R K, Li Z H, Wei M, Evans D G, Duan

	X. Layered double hydroxides toward electrochemical

	energy storage and conversion: design, synthesis and

	applications[J]. Chem. Commun., 2015, 51(88): 15880-

	15893.

		-
		-
		- 1106.
		- 2108481. energy storage and conversion: design, synthesis and
applications[J]. Chem. Commun., 2015, 51(88): 15880-
15893.
[49] Li JM, Jiang S, Shao M F, Wei M. Host-guest engineering
of layered double hydroxides towards efficient o applications[J]. Chem. Commun., 2015, 51(88): 15880-
15893.

		Li J M, Jiang S, Shao M F, Wei M. Host-guest engineering

		of layered double hydroxides towards efficient oxygen

		evolution reaction: recent advances and perspect 15893.

		Li J M, Jiang S, Shao M F, Wei M. Host-guest engineering

		of layered double hydroxides towards efficient oxygen

		evolution reaction: recent advances and perspectives [J].

		Catalysts, 2018, 8(5): 214.

		Mang D S. 2D Li J M, Jiang S, Shao M F, Wei M. Hots-guest engineering
of layered double hydroxides towards efficient oxygen
evolution reaction: recent advances and perspectives [J].
Catalysts, 2018, 8(5): 214.
Mang D S. 2D materials mo of layered double hydroxides towards efficient oxygen
evolution reaction: recent advances and perspectives [J].
Catalysts, 2018, 8(5): 214.
[50] Wang D S. 2D materials modulating layered double hy-
droxides for electrocata evolution reaction: recent advances and perspectives [J].
Catalysts, 2018, 8(5): 214.
Wang D S. 2D materials modulating layered double hy-
droxides for electrocatalytic water splitting[J]. Chinese J
Catal., 2022, 43(6): 13 Catalysts, 2018, 8(5): 214.

		Wang D S. 2D materials modulating layered double hy-

		droxides for electrocatalytic water splitting[J]. Chinese J

		Catal., 2022, 43(6): 1380-1398.

		Zhou L, Shao M F, Wei M, Duan X. Advances in Wang D S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting[J]. Chinese J
Catal., 2022, 43(6): 1380-1398.
Zhou L, Shao M F, Wei M, Duan X. Advances in efficient
electrocatalysts based o
		-
		-
- $# \{\&\cong (J. \:Electrochem.)\ 2022, 28(10), 2214008\ (16 of 18)$

[55] Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, tion and overall water splitting[J]. J. Mater. Sci. Technol.,

Evans D G, Duan X. Fast electrosynthesis of Fe-co Evans D G, Duan X. Fast electrosynthesis of Fe-contain-2015, 6(11): 6624-6631. 2015, 2015, 2017, 2022, 2017, 2022, 2017, 2022, 2017, 2022, 2017, 2021
-
- Song Y J, Li Z H, Fan K, Ren Z, Xie W F, Yang Y S,

Song Y J, Li Z H, Fan K, Ren Z, Xie W F, Yang Y S,

Shao M F, Wei M. Ultrathin layered double hydroxides

2022, Shao M F, Wei M. NiSn atom

ananosheets army towards effic
- 13603.
- 631.
-
- Shao M F, Wei M. Ultrathin hyverd double hydroxidas X , Lee J Y, Shao M F, Wei M. Vista atomic pair on an anosolete stray two wants efficient clearconoxidation of Y , then W, E is a spherical electrococidation of the su nmosheets terry towards efficient electrocoatdotion of
 X , Lee Y , Lamp Ar F, Wei Nstate uncer particular control integrand decreases for synetgotic electrocatalytic CO₂

5-hydroxymethylinfram control (1). Appl. Can. 5-hydroxymethylfurfural coupled with hydrogen generation of spares electrocal properties contemporaneous intervalses for entired to the method of the method of the space value of the method of the Goo R, 2hu J, Yan D P. Tramsiton metal-based hayered

Goo R, 2hu J, Yan D P. Tramsiton metal-based hayered

double hydroxides for protocolectroch-prime in the same ME (68) 1.1 Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee COS LET 11 A. Chang Y R, The West Water Thereness, 2018, 10(40): 3494-545

img: a mini review [J]. Nanoscale, 2021, 13(32): 13593-

2 ting. a mini review[1], Nanoscale, 2021, 13(32): 13933
 Example State in the State of Coordinated State 10

13603.
 Example State in the State of Coordinates and intervention of State 1591
 This Associate State is th 19603.

19603. getom continuo and hydrogen revolution caretion plughelis the elitrical process of the coupled with λ than X. durino and hydrogen revolution recordingly and Methematin CoNF@fatyerd double hydroxides core 2.1. The size of the minimal collinging methods and proportion engines of the clear and by the clear and the correlatio Ultrathin CoNiP@layered double hydroxides core-shell

Ultrathin CoNiP@layered double hydroxides core-shell

(09) $13/14$, Cai 19 x , 101934.

splitting[J]. ACS Appl. henergy enhances are simple the sure of well-defined m annosheets arrays for largely enhanced overall water

splitting[J]. ACS Appl. Energy Mater., 2018, 1(2): 623-

if ins and the carbon nanotube network desired metal-organic

if ins and the carbon nanotube network desired m splitting[J]. ACS Appl. Energy Mater, 2018, 1(2): 623-

films and the carbon annotobe network derived from

fo0 [11 A, Zhang L, Wang F Z, Zhang L, Li L, Chen H M,

wei Z D. Rational design of porous Ni-Co-Fe termay

mathe 31.

1631.

1631.

1631.

1631.

1631.

1641. Zhang L, Wang F Z, Zhang L, Li L, Chen H M,

1641. λ Chen B F Z, Zhang L, Li L, Chen H M,

1641. λ Chen B M, then thousal constrained phosphides anaboticks as bifunctional Li A, Zhung L, Wang F Z, Zhang L, Li L, Chen H M,

Water Interfaces, 2018, 10(40): 3434-434501.

Wei Z D. Rational design of perusa Ni-Co-Fe termaty

(70) Li S J, Xie W F, Song Y K, Shao M F. Layered double

by the CoFeR Wei Z D. Rational design of provos Ni-Co-Fe terms

Wei Z D. Rational design of provos Ni-Co-Fe terms

(701) i.18 J. Xie W. S. Sng D Y. A, Shao M F. 1ayered dealbes

hyster Reicent overall water splitting[7]. Appl. Ceal. B metal phosphides nanobricles as bifinncional electrocation (70) Li 5 J. Xie W F, Song Y K, Shao M F. Luyerd dooliele
Jydeotyiophopmane core-shell nanosheet arrayy-
Jysts for efficient normal varier splitting[J]. Appl. Environ, 2022, 310: 121353. derived bifunctional electrocatalyst for efficient, flexible,

[61] Vong 21, 0.00 P, Cao S F, Chen H Y, Zhou S N, Liu H all-solid-state zince since the simulational electrocatalyst for efficien Womg 2.1, Goo P, Coo S F, Chen H Y, Zhou S N, Liu H
 H . Halsolid-state zinc-air hattery U). ACS Statsminshe Chen,

11, Womg H J, Liu S Y, Wei S X, Wei S X, Sie DD IS, (2018, 8(1), 8(1), 8(1), 82-3-20

11, Worg V H, View
-
- 17529-17535. H, Wang H W, Zhang J B, Liu S Y, Wei S X, Sun D F,

Lin S Y, Wei S X, Sun D F,

Lin S Y, Cochemponentous inverse mainted and the CDF and Ni² for establed or defined also for electrodes for electrodes for electrodes for
-

- til Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M,

Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M,

Evans D G, Duan X. Fast electrocynthesis of Fe-contain-

ing layered double hydroxide arrays toward highly effi-

(6 (1) the method of 18)

(1) the method (156) Li Z H, Shao M F, Zhou L, Zhang R K, Zhang C, Wei M,

final many strengthen and overall vater splitting [J]. J. Mater. Sci. Technol,

From So G, Duan X. Fast electrosynthesis of Fe-contain-

ing layered double hydr Evans D G, Duan X. Directed growth of metal-organic (160 Stie W F, Song Y K, Li S J, Shao M F, Wei M, Shao M F, An H L, Wang Z X, Xu S M, Wei M, the man doverall water splitting[J]. J. Mater. Sci. Technol.

Evans D G, Dua **Fig. 21.** (and Microsoften Annual 2022, 28(10), 2214008 (16 of 18)
 Fig. 21. Shao M F, An H L, Wang Z X, Xu S M, Wei M,

Frames D G, Duan X. Fast electrosynthesis of Fe-contains and originally were alternated verifies **Efficient electrocatalytic oxygen reduction[J]**. Adv. Mater.
 Effective electrocatalytic oxygen reduction in the same of the same of the same of the same D G, Duan X. Fast electrocynthesis of Fe-containing a 2022, 110 (16 of 18)
tion and overall water splitting[J]. J. Mater. Sci. Technol.,
2022, 110: 128-135.
Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)₂/CeO₂ hybr (a), 2214008 (16 of 18)

2022, 110: 128-135.

2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni(OH)₂/CeO₂ hybrid as superior bifuncti $28(10)$, 2214008 (16 of 18)
tion and overall water splitting[J]. J. Mater. Sci. Technol.,
 2022 , 110: 128-135.
[65] Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-9), 2214008 (16 of 18)
tion and overall water splitting[J]. J. Mater. Sci. Technol.,
2022, 110: 128-135.
Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)₂ (16 of 18)
ition and overall water splitting [J]. J. Mater. Sci. Technol.,
2022, 110: 128-135.
Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)₂/CeO₂ hy (16 of 18)
tion and overall water splitting[J]. J. Mater. Sci. Technol.,
2022, 110: 128-135.
Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)₂/CeO₂ hybr 9068270. 28(10), 2214008 (16 of 18)

tion and overall water splitting[J]. J. Mater. Sci. Technol.,

2022, 110: 128-135.

[65] Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
 nanostructural electrodes based on layer Sci. Technol.

2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni(OH)₂/CeO₂ hybrid as superior (16 of 18)

(16 of 18)

(16 of 18)

(2022, 110: 128-135.

(2022, 110: 128-135.

(2022, 110: 128-135.

(2022, 110: 128-135.

(2014) H. Then X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

ra 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (16 of 18)

ung Z X, Xu S M, Wei M, tion and overall water splitting[J]. J. Mater. Sci. Technol.,

rosynthesis of Fe-contain 2022, 110: 128-135.

arrays toward highly effi- [65
	-
- **EVAPALLY (Electrochem.) 2022, 28(10), 2214008 (16 of 18)**

[55] Li Z H, Shao M F, An H I, Wang Z X, Xu S M, Wei M,

Evans D G, Duan X. Fast electrocynthesis of Te-contain-

In gayered double hydroxide arrays toward highl Shao M F, Wei M. Ultrathin layered double hydroxides **EVALUATION**
 EVALUATION (16 OF 18)
 EVALUA EVALUATION 12000 (16 of 18)
 EVALUATION (1 ($\frac{1}{2}$ EH, Shao M F, An H L, Weang Z X, Xt is M, Wei M, the and overall water splitting[J]. J. Mater. Sei. Technol.

Evans D G, Dnan X. Fast electrosynthesis of Fe-contain-

ing layered dauble hydroxide armays toward (1) $\ell\ell\ell^{\infty}(L/\ell, E|cctmche, n.$) 2022, 28(10), 2214008 (16 of 18)

[58] Li ZII, Shuo M. An II L, Wung Z X, Xu S M, Wei M,

ion and overall wuter splitting[J], J. Mater. Sci. Technol,

img layered double hydroxide arrays to double $\frac{1}{2}\langle E\mathcal{Z}^2(E) \cdot E\text{Scc} / \text{measured} \cdot 0.022, 28(10), 2214008 (16 of 18)$

Found MF, An H 1, Wang Z X, Xu S M, Wei M,

Evans D G, Duan X. Fast electrosynthesis of Fe-contain-

2022, 110: 128-135.

ing hyered double hy Li 2/H, Shao M F, An H I, Was Section, 2022, 2337-2344,

United the Minimir content of the Minimir replicing[1]. J. Mate. Sci. Technol.

Twins D G, Duan X. Fast electrocynthesis of Fe-contain-

2022, 110: 128-135.

ing la Evans D G, Duan X. Fast electrosynthesis of Fe-contain-

ing hayeed double hydroxide arrays toward highly effi-

Lin II. V, ann 21, Cheng F. Y. Electrodeposition of Pedeco-

2015, 6(11): 6624-6631.

In G. L. Cheng F. Y. E ing layered double hydroxide arrays toward highly effi-

(65) Liu H. H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

ceix electroceasive oxistion reactions [J]. Chem. Sci.

2015. (411): 6624-6631.

211, Shoo M. Zhong R. K. Even decreases arrays for largely enviable matrix of the correlation of Predecesion of Predecesion (301), 602-4663. (611): 602-4663. (611): 602-4663. (611): 602-463. (612): 62-463. (612): 62-463. (612): 62-463. (62): 62. 2015, 6(11): 6624-6631.

12015, 6(11): 6624-6631.

1213, Shang R. P., Zhang R. Khang C., Wei M.

1214, Shang R. Alang R. Alang C., Wei M.

1221, Shang R. Wei Mater., 2020, 2020: For a splitting

Frameworks and their deriv Evans D G, Duan X. Directed growth of metal-organic

framewolvs and their derived catalog and the strived catalog and the strive and the strive of the strive and efficient exterestantly is expanded. Here, $\frac{1}{2}$ and $\$ Emmeworks and their derived carbon-based network for
 $\frac{1}{2}$ Mic W.F. Song Y K, Li S J, Shao M F, Wei M. Integrated

efficient electrocatalyine oxygen reduction(i)] Adv. Mater,
 $\frac{1}{2}$ Mic W.F. Song Y K, Li S J, Rat metal phosphides nanobricks as bifunctional electrocata-2001, 2012, 2021, 2021, 2021, 2023, 2021, 2023, 2022, 2023, 28(10), 2214008 (16 of 18)

tion and overall water splitting[J]. J. Mater. Sci. Technol.,

2022, 110: 128-135.

[65] Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
 (1), 2214008 (16 of 18)

tion and overall water splitting[J], J. Mater. Sci. Technol.,

2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni((16 of 18)

ion and overall water splitting[J]. J. Mater. Sci. Technol.,

2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni(OH)₂/CeO₂ (16) of 18)

ion and overall water splitting[J]. J. Mater. Sci. Technol.,

2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

radd Ni(OH)₂/CeO₂ 7388. 28(10), 2214008 (16 of 18)

tion and overall water splitting[J]. J. Mater. Sci. Technol.,

2022, 110: 128-135.

[65] Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
)), 2214008 (16 of 18)

tion and overall water splitting[J]. J. Mater. Sci. Technol.,

2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni(O tion and overall water splitting[J]. J. Mater. Sci. Technol.,
2022, 110: 128-135.
Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)₂/CeO₂ hybrid as super tion and overall water splitting[J]. J. Mater. Sci. Technol.,
2022, 110: 128-135.
Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,
Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)/CeO, hybrid as superior b 2022, 110: 128-135.

Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni(OH)_XCeO₂ hybrid as superior bifunctional electrocataly

to revater splitting[J]. Re [65] Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M,

Fan G L, Cheng F Y. Electrodeposition of Pt-deco-

rated Ni(OH)₂/CeO₂ hybrid as superior bifunctional elec-

trocatalyst for water splitting[J]. Research, 2020 Fan G L, Cheng F Y. Electrodeposition of Pt-deco-
rated Ni(OH)₂/CeO₂ hybrid as superior bifunctional elec-
trocatalyst for water splitting[J]. Research, 2020, 2020:
9068270.
Xie W F, Song Y K, Li S J, Shao M F, Wei M. rated Ni(OH)₂/CeO₂ hybrid as superior bifunctional electrocatalyst for water splitting [J]. Research, 2020, 2020:
9068270.
Xie W F, Song Y K, Li S J, Shao M F, Wei M. Integrated
annostructural electrodes based on layer trocatalyst for water splitting [J]. Research, 2020, 2020:
9068270.
Xie W F, Song Y K, Li S J, Shao M F, Wei M. Integrated
annostructural electrodes based on layered double hy-
droxides[J]. Energy Environ. Mater., 2019, 2(9068270.

Xie W F, Song Y K, Li S J, Shao M F, Wei M. Integrated

nanostructural electrodes based on layered double hy-

droxides[J]. Energy Environ. Mater., 2019, 2(3): 158-171.

Xie W F, Li H, Cui G Q, Li J B, Song Y K, [66] Xie W F, Song Y K, Li S J, Shao M F, Wei M. Integrated
nanostructural electrodes based on layered double hy-
droxides[J]. Enregy Environ. Mater., 2019, 2(3): 158-171.
[67] Xie W F, Lii H, Cui G Q, Li J B, Song Y K, L nanostructural electrodes based on layered double hy-
droxides[J]. Energy Environ. Mater., 2019, 2(3): 158-171.
Xie W F, Li H, Cui G Q, Li J B, Song Y K, Li S J, Zhang
X, Lee J Y, Shao M F, Wei M. NiSn atomic pair on an
in droxides[J]. Energy Environ. Mater., 2019, 2(3): 158-171.

Xie W F, Li H, Cui G Q, Li J B, Song Y K, Li S J, Zhang

X, Lee J Y, Shao M F, Wei M. NiSn atomic pair on an

integrated electrode for synergistic electrocatalytic Xie W F, Li H, Cui G Q, Li J B, Song Y K, Li S J, Zhang
X, Lee J Y, Shao M F, Wei M. NiSn atomic pair on an
integrated electrode for synergistic electrocatalytic CO₂
r2088.
1738.
1738.
1738.
1738.
1738.
Li J.Z, Li H, Xie
	-
	-
	- X, Lee J Y, Shao M F, Wei M. NiSn atomic pair on an
integrated electrode for synergistic electrocatalytic CO₂
reduction[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7382-
7388.
ILi J Z, Li H, Xie W F, Li S J, Song Y K, Fan K integrated electrode for synergistic electrocatalytic CO₂
reduction[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7382-
7388.
168] Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y,
Shao M F. Flame-assisted synthesis of reduction[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7382-
7388.

	Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y,

	Shao M F. Flame-assisted synthesis of O-coordinated sin-

	gle-atom catalysts for efficient electroca 7388.

	Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y,

	Shao M F. Flame-assisted synthesis of O-coordinated sin-

	gle-atom catalysts for efficient electrocatalytic oxygen re-

	duction and hydrogen revolution react [68] Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y,

	Shao M F. Flame-assisted synthesis of O-coordinated sin-

	gle-atom catalysts for efficient electrocatalytic oxygen re-

	duction and hydrogen revolution reactio Shao M F. Flame-assisted synthesis of O-coordinated sin-
gle-atom catalysts for efficient electrocatalytic oxygen re-
duction and hydrogen evolution reaction[J]. Small Meth-
ols, 2022, 6(1): 2101324.
Li Z H, Cui J Y, Liu Y gle-atom catalysts for efficient electrocatalytic oxygen re-
duction and hydrogen evolution reaction[J]. Small Meth-
ols, 2022, 6(1): 2101324.
Li Z H, Cui J Y, Liu Y K, Li J B, Liu K, Shao M F. Elec-
trosynthesis of well-d duction and hydrogen evolution reaction[J]. Small Meth-
ods, 2022, 6(1): 2101324.
Li Z H, Cui J Y, Liu Y K, Li J B, Liu K, Shao M F. Elec-
trosynthesis of well-defined metal-organic framework
films and the carbon nanotube ods, 2022, 6(1): 2101324.

	[69] Li Z H, Cui J Y, Liu Y K, Li J B, Liu K, Shao M F. Electrosynthesis of well-defined metal-organic framework

	films and the carbon nanotube network derived from

	them toward electrocatalytic Li Z H, Cui J Y, Liu Y K, Li J B, Liu K, Shao M F. Electrosynthesis of well-defined metal-organic framework
tilms and the carbon nanotube network derived from
them toward electrocatalytic applications [J]. ACS Appl.
Mater. trosynthesis of well-defined metal-organic framework
films and the carbon nanotube network derived from
them toward electrocatalytic applications[J]. ACS Appl.
Mater. Interfaces, 2018, 10(40): 34494-34501.
Li S J, Xie W F, films and the carbon nanotube network derived from
them toward electrocatalytic applications[J]. ACS Appl.
Mater. Interfaces, 2018, 10(40): 34494-34501.
[70] Li S J, Xie W F, Song Y K, Shao M F. Layered double
hydroxide@p them toward electrocatalytic applications [J]. ACS Appl.

	Mater. Interfaces, 2018, 10(40): 34494-34501.

	Li S J, Xie W F, Song Y K, Shao M F. Layered double

	hydroxide@polydopamine core-shell nanosheet arrays-

	derived bif Mater. Interfaces, 2018, 10(40): 34494-34501.

	Li S J, Xie W F, Song Y K, Shao M F. Layered double

	hydroxide@polydopamine core-shell nanosheet arrays-

	derived bifunctional electrocatalyst for efficient, flexible,

	all-so [70] Li S J, Xie W F, Song Y K, Shao M F. Layered double
hydroxide@polydopamine core-shell nanosheet arrays-
derived bifunctional electrocatalyst for efficient, flexible,
all-solid-state zinc-air battery[J]. ACS Sustainab hydroxide@polydopamine core-shell nanosheet arrays-
derived bifunctional electrocatalyst for efficient, flexible,
all-solid-state zinc-air battery[J]. ACS Sustainable Chem.
Eng., 2019, 8(1): 452-459.
Organical electrocatal
	-
	-
	-
	-
	- derived bifunctional electrocatalyst for efficient, flexible,
all-solid-state zinc-air battery[J]. ACS Sustainable Chem.
Eng., 2019, 8(1): 452-459.
Song Y K, Xie W F, Shao M F. Recent advances in inte-
grated electrode for 210050. Eng., 2019, 8(1): 452-459.

	[71] Song Y K, Xie W F, Shao M F. Recent advances in integrated electrode for electrocatalytic earbon dioxide reduction

	[J]. Acta Phys. -Chim. Sin., 2021, 38(6): 2101028.

	1721 Li S J, Xie W F,
	-

- (17 of 18)

(4) Electrochem.) 2022, 28(10), 2214008 (17 of 18)

(60(36): 19550-19571.

(60(36): 19550-19571.

(60(36): 19550-19571.

(60(36): 19550-19571.

(7) Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic [88]
-
- El (*K* $\frac{1}{2}$ *K* (*K Electrochem.*) 2022, 28(10), 2214008 (17 of 18)

gen production trilogy[J]. Angew. Chem. Int. Ed., 2021,

User generalize the electronic structure for or

for 60(36): 19550-19571.

Tang C, Zhe gen production trilogy[J]. Angew. Chem. Int. Ed., 2021,

(or egulate the electronic structure

(060,8): 1955-19571.

Tang C, Zheng Y, Jaronice M, Qiao S Z. Electrocatalytic

[88] Lao J S, Im J H, Mayer M T, Schr

refinery
-
-
- droxymethylfurfural oxidation[J]. Appl. Catal. B Environ, [91] Park H, Park H, Jear M, G, K

12022, 312: 121400.

14. Li 2141, Yan Y F, Xu S M, Zhou H, Xu M, Ma L N, Shao G H, Yang H S, Lee TH, Kim C,

14. Li 214, Yan Y F, eurrent densities promoted by a cooperative catalyst [J].

Nat. Commun, 2022, 13(): 147.

Mater., Interfaces, Mater., Interfaces, Mater., Interfaces, Mater., Interfaces, Mater., Interfaces, Mater., Interfaces, Mater., Int
-
-
-
-
-

- the (*V*) $\#$ (*V*) $\#$ (*I. Electrochem.*) 2022, 28(10), 2214008 (17 of 18)
gen production trilogy[J]. Angew. Chem. Int. Ed., 2021,
60(36): 19550-19571.
Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic [88] Luo (d) the Helpert C. *Lectrochem.*) 2022, 28(10), 2214008 (17 of 18)

gen production trilogy[J]. Angew. Chem. Int. Ed., 2021,

(o regulate the electronic structure for overall water split-

(o(36): 19550-19571.

[77] Tang then the filer (*J. Electrochem.*) 2022, 28(10), 2214008 (17 of 18)

gen production trilogy[J]. Angew. Chem. Int. Ed., 2021, to regulate the electronic structure for overall water split-

60(36): 19550-19571.

Tang C, Zhe (E) the mode of the many of the method in 1932, 28(10), 2214008 (17 of 18)

gen production trilogy[J]. Angew. Chem. Int. Ed., 2021, to regulate the electronic structure for overall water split-

60(36): 19550-19571.

Tang (E/E^2 (*L Electrochem.*) 2022, 28(10), 2214008 (17 of 18)

(60(50: 19550-19571). Angew. Chem. Int. Ed., 2021,

(60(50: 19550-19571). Angew. Chem. Int. Ed., 2021,

(77] Tang C, Zheng Y, Jamoie M, Qiao S Z. Electrocatal **EVALUAT CONTING (EXAMPLE 1993)**
 Example 1980
 Example 1980
 Example 1990
 EXAMPLE 19 $\frac{4}{10} \frac{4}{10} \frac{4$ ighterror (Solution Titlogy) J. Angew. Chem. Int. Ed., 2021, 28(10), 2214008 (17 of 18)

sign production trilogy) J. Angew. Chem. Int. Ed., 2021, to regulate the electronic structure for overall water sp

60(36): 19550-19 [79] Song Y J, Jiang S, He Y H, Wu Y, Wan X, Xie W, Wang J E/2 H, Duan H B, Shao M F. Metal vacancy-enriched Shapper Production at H, Li Z H, Duan H B, Shao M F. Metal vacancy-enriched U.S. 2022, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 8(10), 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
[88] Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazceruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 1593-1596. 8(10), 2214008 (17 of 18)

to regulate the electronic structure for overall water split-

ting[J]. Adv. Funct. Mater., 2022: 2203342.

[88] Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley S D, Fa 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater, 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M. 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater, 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M. 2214008 (17 of 18)

2214008 (17 of 18)

to regulate the electronic structure for overall water split-

ting[J]. Adv. Funct. Mater., 2022: 2203342.

Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (17 of 18)
gew. Chem. Int. Ed., 2021, to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
I, Qiao S Z. Electrocatalytic [8
	-
- **EVALUATION 1999**
 EVALUATION TELL THE THE TELL THE THE HEAD (2013) The C. Variable the coupled with coupled with coupled with the production coupled with the Res. 2022: 2013-00.

Tang C, Zheng Y, Jaronice M, Qiao S Z. Electrocatalytic [88] Luo J S. $[80] \begin{tabular}{ll} \hline & \textbf{Re}(E\#G, Elechoekem) \textbf{2022, 28(10), 2214008 (17 of 18)} \end{tabular} \begin{tabular}{ll} \hline & \textbf{Step 18} \\ \hline & \textbf{Step 28} \\ \hline & \textbf{Step 38} \\ \hline & \textbf{Step 4C}, \textbf{Step 8V}, \textbf{I, and} \\ \hline & \textbf{Step 9} \\ \hline & \textbf{Step 9} \\ \hline & \textbf{Step 18} \\ \hline & \textbf{Step 18} \\ \hline & \textbf{Step 18} \\$ THE $\frac{16}{12}$ C. *Khectochem*.) 2022, 28(10), 2214008 (17 of 18)

19 reproduction trilogy[J]. Angew. Chem. Int. Ed., 2021,

19 to regulate the electronic structure for overall water sphi-

for electronic structure for o (a) $\frac{10.46-25}{10.46}$ (b) $\frac{10.46-25}{10.46}$ (i) $\frac{10.46-25}{10.46}$ (i) $\frac{10.46-25}{10.46}$ (iii) $\frac{10.46-25}{10.46}$ (iii) $\frac{10.46-25}{10.46}$ (iii) $\frac{10.46-25}{10.46}$ (iii) $\frac{10.46-25}{10.46}$ (iii) $\frac{10.$ gen production trilogy[J]. Angww. Chem. Int. Ed., 2021,

60(36: 19550-19571.

60(36: 19550-19571.

160(36: 19550-19571.

160(36: 19550-19571.

160(36: 19550-19571.

160(36: 1959-1957.). Among C., Among C. 1, Hanny C., U. N (10), 2214008 (17 of 18)

to regulate the electronic structure for overall water split-

ting[J]. Adv. Funct. Mater, 2022: 2203342.

[88] Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley S D, Fan 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeenuddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M simples (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M 2214008 (17 of 18)
to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schiereir M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel , 2214008 (17 of 18)

to regulate the electronic structure for overall water split-

ting[J]. Adv. Funct. Mater., 2022: 2203342.

Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley S D, Fan H J, Gra to regulate the electronic structure for overall water split-

img[J]. Adv. Funct. Mater, 2022: 2203342.

[88] Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photo
- 60(36): 19550-19571. Jung S, Zhou S Z. Electrocatalyis (SB) Laols, Final H, Mayer M1; Scheiner M, Naccruddin M

Transfor M, Marcentube production of fuels and chemicals
 μ . K, Park N G, Tilley S D, Tam 11, Nortext M, W Tang C, Zheng Y, Jamois M, Qiao S Z. Electrocatalytic [88] Luo J.S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

Ferfany for sushinable production of fuel and chemicals is K_1 Miles N G, Tilley S D, Fam H J, Grantel M. hols electrooxidation coupled with H2 production at high [J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590. spiss at 12.3% efficiency via perovskite photovoltaics and
Lur Y, Lin Y, Ly (1, Weil Y, Ly (1, Weil Chem. 1503-1506.
Zou V Q, Warng S V. Turing the selective adsorpti Lu Y X, Liu T Y, Dong C L, Huang Y C, Li Y F, Chen J,

Earth-abundant estabysts[J]. Science, 2014, 345(6)

Zou Y Q, Wang S Y. Tuning the selective adsorption site

of biomass on Co,O, by Ir single stoms for electrosynthes 2ου Y Q, Wang S Y. Tuning the selective adsorption site

of branch scale (S93-1596.

sigl) Let I-C, Varnadhan P, Lin C H, He J H, Spontances solar

resigle 2007/056.

T/91 Surn E (S1) Let IV. Wan X, Xi W, Wan X, Xi W, Wa of biomass on Co₁O₁ by F single atoms for electrosynthe-

Singly, Adv, Matter, 201, 33(8x e2, 2007056.

Song Y J, Fiang S, IEe Y H, Wo Y, Wan X, Xie W, Wang J

solution yields veater splitting with decorpoints of ligh (iii)]. Adv. Mater, 2021, 33(8): 2007056.

Song Y1, Jinan S, Fe YH, Wu W. Wan X, Xie W, Wang J

May P1, Jinan S, It C H, Upuan H B, Shao M F. Metal vacancy-enriched

Lyterd double hydroxide to triolons molecule clec-

[90] Song Y J. Jiang S, He Y H, Wa Y, Wan X, Xie W, Wang J

Scherocatal ysis etaily described commun. 2020, 11(1): 3930, 01(1): 3930, 11(1): 3930, 201).

Hydrogen product of E. Metal vectorialism (and Commun, C2O, 11(1): 390, 1 J, Li Z H, Duan H B, Shao M F. Metal vacancy-emiched

stroped dowled by phytosic for biomass molecule elec-

stroped cobalt of biomass molecule catalyst computed catalyst catalyst computed catalyst catalyst catalyst cated Inyered double hydroxide for biomass molecule elec-

1901 Sharma A, Duong T, Liu P, Soo J Z, Yan D, Zhang D D,

trooxidation coupled with hydrogen podestion (Sharma). Findam,

Res., 2022: DOI: 10.10166j.firre.2022.1005.102 trocoid and points (and the hydrogen predoterion [1] Jundam.

Rinz A, Samundsett C, Shen H P, Yang C, Karuturi S K,

E68, D202. DOI (1016/jfmetical and partiel electrof E Rest E J. Direct solate to hydrogen conver-

[80] S Res., 2022: DOE: 10.1016 finnez 2022. 1005.1023.

Y. Sike W. Song Y. J. Limit, 15 31, Jinga S. Lee

Song Y. K. Sike W. Song Y. Limit, 15 1, Jinga S. Lee

ingit edition: hypotecompled visit in the space space is some cande Song Y K, Xie W F, Song Y J, Li II, Li S J, Jimg S, Lee

J V, Shao M E. Bitmachen integraled electrode for the passivalized contacte[J]. Sustain, Frang, Euck, 2022, 6

Ingh-efficient hydrogen production coupled with S-hy-
 J Y. Shao M F. Bifunctional integrated electrode for tive passivated contects[J]. Sustim. Energ, Fuels, 2022, 6

high-efficient hydrogen production coupled with S-hy-

2022, 312: 12:140, AM, 2hou H, Xu M, I. N, Shao H, Xu ligh-efficient hydrogen production coupled with 5-hy-

dexy. (2): 349-360.

dexy.methylftrahed void DJ-Appl. Catal. B Eavion, [91] Pack I, Pack II, Lee M G, Kwon K C, Hong S P, Kim 1

12(22), 312: 121460. [18] We Catal. B 2022, 312: 121400.

H. Lee S.A. Lee TH, Kim C. Moon CW, Son DY, Jung

IH, Lee S.A. Lee TH, Kim G. Moon CW, Son DY, Jung

ME, Kim SV, Kim G. Moon H. Moon CW, Son DY, Jung

ME, Kim G. Kim G. Kim G. Moon Could accord and H, Li ZH, Yun Y F, Xu S M, Zhou H, Xu M, Ma L N; Shao GH, Yung II S, Lee J R, Lee J, Park NG, Kim S Y, Kim M, Ma M, Now H, Xu M, Ma L N, Su Star Splitting exceeding 17% so-

M F, Kong X G, Wang B, Zheng L R, Duan H H, Nockar to regulate the electronic structure for overall water split-
ting[J]. Adv. Funct. Mater., 2022: 2203342.
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M
K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photol-
ysi ting[J]. Adv. Funct. Mater., 2022: 2203342.

Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photol-

yis at 12.3% efficiency via perovskite photovoltaics and

Eart Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M

K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photol-

ysis at 12.3% efficiency via perovskite photovoltaics and

Earth-abundant catalysts[J]. Science, 2014, 345(K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photol-
ysis at 12.3% efficiency via perovskite photovoltaics and
Earth-abundant catalysts[J]. Science, 2014, 345(6204):
1593-1596.
Fu H C, Varadhan P, Lin C H, He J H. Sp ysis at 12.3% efficiency via perovskite photovoltaics and
Earth-abundant catalysts [J]. Science, 2014, 345(6204):
1593-1596.
Fu H C, Varadhan P, Lin C H, He J H. Spontaneous solar
water splitting with decoupling of light a Earth-abundant catalysts[J]. Science, 2014, 345(6204):
1593-1596.

Fu H C, Varadhan P, Lin C H, He J H. Spontaneous solar

water splitting with decoupling of light absorption and

electrocatalysis using silicon back-buried 1593-1596.

Fu H C, Varadhan P, Lin C H, He J H. Spontaneous solar

water splitting with decoupling of light absorption and

electrocatalysis using silicon back-buried junction[J]. Nat.

Commun., 2020, 11(1): 3930.

Sharma [89] Fu H C, Varadhan P, Lin C H, He J H. Spontaneous solar
water splitting with decoupling of light absorption and
electrocatalysis using silicon back-buried junction[J]. Nat.
O Commun., 2020, 11(1): 3930.
[90] Sharma A, water splitting with decoupling of light absorption and
electrocatalysis using silicon back-buried junction[J]. Nat.
Commun., 2020, 11(1): 3930.
Sharma A, Duong T, Liu P, Soo J Z, Yan D, Zhang D D,
Riaz A, Samundsett C, Sh electrocatalysis using silicon back-buried junction[J]. Nat.
Commun., 2020, 11(1): 3930.
Sharma A, Duong T, Liu P, Soo J Z, Yan D, Zhang D D,
Riaz A, Samundsett C, Shen H P, Yang C, Karuturi S K,
Catchpole K, Beek F J. Dir Commun., 2020, 11(1): 3930.

Sharma A, Duong T, Liu P, Soo J Z, Yan D, Zhang D D,

Riaz A, Samundsett C, Shen H P, Yang C, Karuturi S K,

Catchpole K, Beck F J. Direct solar to hydrogen conver-

sion enabled by silicon pho Sharma A, Duong T, Liu P, Soo J Z, Yan D, Zhang D D, Riaz A, Samundsett C, Shen H P, Yang C, Karuturi S K, Catchpole K, Beck F J. Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective Riaz A, Samundsett C, Shen H P, Yang C, Karuturi S K,
Catchpole K, Beck F J. Direct solar to hydrogen conver-
sion enabled by silicon photocathodes with carrier selec-
tive passivated contacts[J]. Sustain. Energ. Fuels, 20 Catchpole K, Beck F J. Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts[J]. Sustain. Energ. Fuels, 2022, 6 (2): 349-360.

[91] Park H, Park I J, Lee M G, Kwon sion enabled by silicon photocathodes with carrier selective passivated contacts[J]. Sustain. Energ. Fuels, 2022, 6
(2): 349-360.
Park H, Park I J, Lee M G, Kwon K C, Hong S P, Kim D
H, Lee S A, Lee H G, Kwon K C, Hong S P tive passivated contacts[J]. Sustain. Energ. Fuels, 2022, 6
(2): 349-360.
Park H, Park I J, Lee M G, Kwon K C, Hong S P, Kim D
H, Lee S A, Lee T H, Kim C, Moon C W, Son D Y, Jung
G H, Yang H S, Lee J R, Lee J, Park N G, Ki (2): 349-360.

Park H, Park I J, Lee M G, Kwon K C, Hong S P, Kim D

H, Lee S A, Lee T H, Kim C, Moon C W, Son D Y, Jung

G H, Yang H S, Lee J R, Lee J, Park N G, Kim S Y, Kim

I Y, Jang H W. Water splitting exceeding 17% Park H, Park I J, Lee M G, Kwon K C, Hong S P, Kim D
H, Lee S A, Lee T H, Kim C, Moon C W, Son D Y, Jung
G H, Yang H S, Lee J R, Lee J, Park N G, Kim S Y, Kim
J Y, Jang H W. Water splitting exceeding 17% so-
lar-to-hydroge H, Lee S A, Lee T H, Kim C, Moon C W, Son D Y, Jung

G H, Yang H S, Lee J R, Lee J, Park N G, Kim S Y, Kim

J Y, Jang H W. Water splitting exceeding 17% so-

lar-to-hydrogen conversion efficiency using solution-pro-

ecsed G H, Yang H S, Lee J R, Lee J, Park N G, Kim S Y, Kim
J Y, Jang H W. Water splitting exceeding 17% so-
lar-to-hydrogen conversion efficiency using solution-pro-
eessed Ni-based electrocatalysts and perovskite/Si tan-
eosse
- M F, Kong X G, Wang B, Zheng L R, Duan H H. Alco-

19 Y, Jang H W. Water splitting exceeding 17% solarities electricalistics (and the methods of the solar contents denoted with Fit production and the methods of the solar hols electrooxidation coupled with H₂ production at high

nar-to-hydrogen conversion efficiency using solution-pro-

Nat. Commun. 2022. [3(1): H7.

Mater. Commun. 2022. [3(1): H7.

Mater. Enterinces, 2019, 11

Mater. En Nath (Commun, 2022, 130(1)-1 AC, 147.

[87] 22, 147. Han Mark III, Sundam Individual Scheme Scheme III, Sundam II, Sundam I Zhou II, Li Z H. Xu S M, Lu L, Xu M, Ji K Y, Ge R X,

Y An U N, Kong X G, Zhang H, R, Sonari H S, Sonari S K, Shea, H P, Shamma A, Beck F J. Varadlata

Yan' Y F, Ma L N, Kong X G, Zhang LR, Douar H H, Sonary is a Chapter Yem Y F, Ma L N, Kong X G, Zheng L R, Duon H H. Sec [92] Karuturi S K, Shen H P, Shuman A, Beck F J, Varndhan

through electrochemical orichatives to carboxylates and H P, Duong T, Narangari P R, Zhang D D, Wan Y M, He J
 J Y, Jang H W. Water splitting exceeding 17% so-
lar-to-hydrogen conversion efficiency using solution-pro-
ecssed Ni-based electrocatalysts and perovskite/Si tan-
dem solar cell[J]. ACS Appl. Mater. Interfaces, 2019, 11
(3 lar-to-hydrogen conversion efficiency using solution-pro-
cessed Ni-based electrocatalysts and perovskite/Si tan-
dem solar cell[J]. ACS Appl. Mater. Interfaces, 2019, 11
(37): 33835-33843.
Raruturi S K, Shen H P, Shamma A cessed Ni-based electrocatalysts and perovskite/Si tan-
dem solar cell[J]. ACS Appl. Mater. Interfaces, 2019, 11
(37): 33835-33843.
Karuturi S K, Shen H P, Sharma A, Beck F J, Varadhan
P, Duong T, Narangari P R, Zhang D D, dem solar cell[J]. ACS Appl. Mater. Interfaces, 2019, 11
(37): 33835-33843.
Karuturi S K, Shen H P, Sharma A, Beck F J, Varadhan
P, Duong T, Narangari P R, Zhang D D, Wan Y M, He J
H, Tan H H, Jagadish C, Catchpole K. Over (37): 33835-33843.

[92] Karuturi S K, Shen H P, Sharma A, Beck F J, Varadhan

P, Duong T, Naragain P R, Zhang D D, Wan Y M, He J

H, Tan H H, Jagadish C, Catchpole K. Over 17% effi-

circncy stand-alone solar water split Karuturi S K, Shen H P, Sharma A, Beck F J, Varadhan
P, Duong T, Narangari P R, Zhang D D, Wan Y M, He J
H, Tan H H, Jagadish C, Catchpole K. Over 17% effi-
eiency stand-alone solar water splitting enabled by per-
ovskite-
	-
- Lectively upgrading lignin derivatives to curboxylates

R. Durang T, Nanangari P R, Zhang D D, Wan Y M, He J

dictrochemental oxidery COHD-C bot dictor-

H. Tan H H, Jagabafi C, Catchpole F. Over 1796 effi-

Angew. Chenn. through electrochemical oxidative C(OH)-C bond eleav-

H, Tan H H, Jagatish C; Catchpole K. Over 17% effi-

Angew V a Mn-doped cobalt oxybythoxide catalyst (J).

Alix Ay L, Lin H, 2020, 102(16): 8976-8982.

(S81) Lin X, V age by a Mn-daped cohal oxyludring candidal or spin with existing situation and water splitting enabled by per-
Angey. Chen, I.1, Yu J Y, Liu X Y, Zhang X 1, Liu H, 2020, 10(28): 2000772.

2Dou VJ. Water splitting from cl Anglew. Chem. Int. Tai, X X and X at a special of the specific solation in the specific solar specific solar specific
- P, Duong T, Narangari P R, Zhang D D, Wan Y M, He J
H, Tan H H, Jagadish C, Catchpole K. Over 17% effi-
eiency stand-alone solar water splitting enabled by per-
ovskite-silicon tandem absorbers[J]. Adv. Energy Mater.,
202 H, Tan H H, Jagadish C, Catchpole K. Over 17% efficiency stand-alone solar water splitting enabled by per-
ovskite-silicon tandem absorbers[J]. Adv. Energy Mater.,
2020, 10(28): 2000772.
Gao J, Sahli F, Liu C J, Ren D, Guo ciency stand-alone solar water splitting enabled by per-
ovskite-silicon tandem absorbers[J]. Adv. Energy Mater.,
2020, 10(28): 2000772.
Gao J, Sahli F, Liu C J, Ren D, Guo X Y, Werner J, Jean-
gros Q, Zakeeruddin S M, Bal ovskite-silicon tandem absorbers[J]. Adv. Energy Mater.,
2020, 10(28): 2000772.
Gao J, Sahli F, Liu C J, Ren D, Guo X Y, Werner J, Jean-
gros Q, Zakeeruddin S M, Ballif C, Gratzel M, Luo J S.
Solar water splitting with per
- $\hbox{\small 48\textwidth} \begin{tabular}{l} \exists \& \exists \& $\forall \exists \in \mathcal{I}$. \end{tabular} \begin{tabular}{l} \exists \& $\exists \in \mathcal{I}$. \end{tabular} \begin{tabular}{l} \multicolumn{2}{l}{{\small 1}} \& \exists \& $\forall \exists \in \mathcal{I}$. \end{tabular} \begin{tabular}{l} \multicolumn{2}{l}{{\small 1}} \& \exists \& $\forall \exists \in \mathcal{I}$. \end{tabular} \begin{tabular}{l} \multicolumn{2}{l}{{\small 1}} \& \exists \& $\forall \exists \in \mathcal{I}$.$ *E*[*k*²²₂² (*J. Electrochem.*) 2022, 28(10), 2214008 (18 of 18)

Zhang Y, Kumar S, Marken F, Krasny M, Roake E, Esla coaxial rotatory freestanding triboelectric nanogenerators

va S, Dunn S, Da Como E, Bowen C R. $#E\frac{d}{d}\left\{C\right\},\text{Electrochem.})\ 2022, 28(10), 2214008\ (18 of 18)$

Examp Y, Kumar S, Marken F, Krasny M, Roake E, Esla

va S, Dunn S, Da Como E, Bowen C R. Pyro-electrolytic for self-powered water splitting

water splitting for 2019, 58: 183-191. $# \{\&\cong (J. Electrochem.)\ 2022, 28(10), 2214008 (18 of 18)
\n[96] Zhang Y, Kumar S, Marken F, Krasny M, Roske E, Eisla-
\n was, DumS, Do & Con, E, Power C, Pyro-electrolytic
\n average splitting for hydrogen generation[1]. Nano Energy,
\n 2019, 58: 183-191.
\n[97] Ren X H, Fan H Q, Wang C, Ma J W, Li H, Zhang M C,
\nLet S H, Wang W J. Wind energy harvested on
\n**45.2** Let S H, Wang W J. Wind energy harvested to
\n**56.2**$ Lei S H, Wang W J. Wind energy harvester based on
-

(18 of 18)
coaxial rotatory freestanding triboelectric nanogenerators
for self-powered water splitting[J]. Nano Energy, 2018, 50:
562-570.
Tang W, Han Y, Han C B, Gao C Z, Cao X, Wang Z L.
Self-powered water splitting usin (18 of 18)
coaxial rotatory freestanding triboelectric nanogenerators
for self-powered water splitting[J]. Nano Energy, 2018, 50:
562-570.
Tang W, Han Y, Han C B, Gao C Z, Cao X, Wang Z L.
Self-powered water splitting usin 562-570. Self-powered water splitting using the Dietectric nanogenerators
for self-powered water splitting [J]. Nano Energy, 2018, 50:
562-570.
Tang W, Han Y, Han C B, Gao C Z, Cao X, Wang Z L.
Self-powered water splitting using f (1)). 2214008 (18 of 18)

coaxial rotatory freestanding triboelectric nanogenerators

for self-powered water splitting[J]. Nano Energy, 2018, 50:

562-570.

Tang W, Han Y, Han C B, Gao C Z, Cao X, Wang Z L.

Self-powered 电化学(*J. Electrochem.*) 2022, 28(10), 2214008 (18 of 18)

Krasny M, Roake E, Eslace and coaxial rotatory freestanding triboelectric nanogenerators

ven C R. Pyro-electrolytic for self-powered water splitting[J]. Nano Energ

28(10), 2214008 (18 of 18)

coaxial rotatory freestanding triboelectric nanogenerators

for self-powered water splitting[J]. Nano Energy, 2018, 50:

562-570.

[98] Tang W, Han Y, Han C B, Gao C Z, Cao X, Wang Z L.

Self-po

碱性电解水高效制氢

谢文富,邵明飞*

(北京化工大学化学学院, 化工资源有效利用国家重点实验室, 北京 100029)

摘要: 与传统化石能源制氢技术相比, 利用可再生能源驱动电解水制氢技术具有绿色可持续和制氢效率高等优 势,被认为是目前最具前景的制氢方式。然而,由于电解水两极反应动力学缓慢、催化剂稳定性较差,限制 了其大规模发展。此外,阳极析氧反应存在较高的过电势, 从而导致当前制氢能耗与成本较高, 严重制约了 其商业化应用。为了解决上述问题与挑战, 本文对当前发展较为成熟的碱性电解水技术进行了综合讨论与分 析。首先, 对电解水发展历程中的重要节点进行了总结, 便于读者了解该领域。进一步, 从电催化剂、电 极、反应和系统的角度深入总结了提升电解水制氢性能的有效策略。作者分别介绍了近年来层状双金属氢氧 化物基电解水催化剂、电解水制氢耦合氧化反应以及可再生能源驱动的电解水系统的重要研究进展;同时对 结构化催化剂在电解水应用中的构效关系进行了深入分析。最后,对该领域存在的挑战和未来发展方向进行 了展望,希望能为氢能的发展和推广提供一定的思路。

关键词: 电解水; 制氢; 结构化电极; 耦合反应