Journal of Electrochemistry

Volume 2 | Issue 3

1996-08-28

A Study of RuO_2-Co_3O_4-TiO_2(60)Coating on Ti-Substrate for Chlorine Gas Evolution

Liguang Yao

Mingxian Wang

Recommended Citation

Liguang Yao, Mingxian Wang. A Study of RuO_2-Co_3O_4-TiO_2(60)Coating on Ti-Substrate for Chlorine Gas Evolution[J]. *Journal of Electrochemistry*, 1996, 2(3): 293-293.

DOI: 10.61558/2993-074X.1337

Available at: https://jelectrochem.xmu.edu.cn/journal/vol2/iss3/8

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

析氯钛基RuO2-Co3O4-TiO2(60) 涂层的研究

姚立广* 王明贤

(中国科学院金属腐蚀与防护研究所,沈阳,110015)

摘要 用稳定极化、X 射线衍射、透射电镜和扫描电镜的方法研究了钛基RuO2-Co3O4-TiO2 (60) 涂层的析氯活性、导电性、使用寿命、微观结构和表面形貌,并对其活性表面积进行了评价,详 细讨论了涂层成份、微观结构和表面形貌对涂层析氯活性和活性表面积的影响. 发现在0~10 m/o Co₃O₄ 和60 m/o TiO₂ 成份范围内RuO₂、Co₃O₄ 和TiO₂ 可形成单一金红石型固溶体,且有优异的析氯 活性、电导率和使用寿命.以此研究为基础可改进氯碱工业广泛使用的传统RuO:-TiO: 阳极,降低阳 极涂层中贵金属含量,提高阳极的电化学性能.

关键词 RuO₂-Co₃O₄-TiO₂(60)涂层,析氯活性,微观结构,固溶体,表面形貌,欧姆极化

A Study of RuO₂-Co₃O₄-TiO₂(60) Coating on Ti-Substrate for Chlorine Gas Evolution ①

Yao Liguang ' Wang Mingxian

(Institute of corrosion and protection of metals, Academia Sinica, Shenyang 110015)

Abstract The chlorine gas evolution activity, electric conductivity, service life, microstructure and surface morphology of $RuO_2-Co_3O_4-TiO_2(60)$ coating on Ti-substrate were studied in $0 \sim 30$ m/o Co_3O_4 range by steady-state polarization, X-ray diffraction, TEM and SEM methods. Active surface area of the coating was also evaluated. The influences of coating composition, microstructure and surface morphology on chlorine gas evolution activity and active surface area of the coating were discussed in detail. As a result, sole rutile-type solid solution of RuO_2 , Co_3O_4 and TiO_2 which showed better chlorine gas evolution activity, electric conductivity and service life was found in ca. $0 \sim 10$ m/o Co_3O_4 range. Traditional RuO_2 - TiO_2 /Ti anodes being widely used in chlor-alkali industry could be modified by a suitable amount of Co_3O_4 for the benefit of reducing content of Ru as a noble metal in the coating and improving the electrochemical properties of the anodes.

Key words RuO₂-Co₃O₄-TiO₂ (60) coating, Cl₂-evolution activity, Microstructure, Solid solution, Surface morphology, Ohmic polarizaton

Since the dimensionally stable anodes (DSA) were developed by de Nora^[1], multicomponent oxide-coated anodes have aroused more and more interest in electrochemical industry for their good electrochemical properties and/or, now cost^[2]. The knowledge of coating composition, microstructure and surface morphology and their effects on electrochemical properties is essential for the design and the optimization of multicomponent active oxide coating.

There have existed various studies on RuO_2 , RuO_2 - TiO_2 , Co_3O_4 - RuO_2 (on the Co_3O_4 -rich side) and Co_3O_4 coatings^[1~12]. Some of them, especial RuO_2 - TiO_2 coated anode, are widely used in chloralkali industry. It was consistently confirmed that RuO_2 was an excellent electrochemical catalyst, and inactive TiO_2 could improve the adhesion of oxide coating with Ti-substrate. Co_3O_4 was also proved to be an electrochemical active, non-noble, material. Nevertheless, the RuO_2 - Co_3O_4 - TiO_2 coating has not been studied in detail thus far. The aim of this paper was to elucidate the behavior of such a mixed oxide system, expecting to provide some helpful information for the improvement of traditional RuO_2 - TiO_2 /Ti anode widely used for chlorine gas evolution. Just from such a point of view

① Received 12 Feb, 1996; accepted 15 april, 1996

the $60~m/o~TiO_2$, a classical content in the RuO_2 -TiO_2/Ti anode, was chosen in the mixed oxide system.

1 Experimental

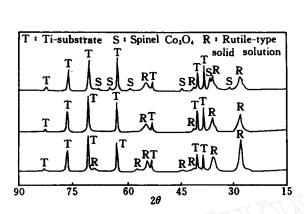
The preparation of the oxide coatings was carried out by thermal decomposition method in the following way. 20% HCl aqueous solutions with appropriate amounts of RuCl₃ • xH₂O, Co(NO₃)₂ • 6H₂O and TiCl₃ were brushed onto Ti- substrates which were degreased with acetone and then etched in boiling oxalic acid for 5 hours, and the solvent evaporated at 150 °C for 10 min. The process was repeated in $8 \sim 12$ runs, and after each run samples were fired in air for 20 min at selected temperatures, 350 °C before the fifth run, 450 °C latter. After the final run, samples were fired for another 40 min, to complete the thermal decomposition. The TiO₂ content was kept at a constan value 60 m/o, the Co₃O₄ content varied between $0 \sim 30 \text{ m/o}$ (pre-investigation showed that, CoTiO₃ phase will exist in the coating if Co₃O₄ is more that 30 m/o). The total amount of RuO₂, Co₃O₄ and TiO₂ in the coatings was 10^{-5} mol/cm². The amount of each metallic oxide in specific coating will be indicated in parentheses in mole percent.

For electrochemical measurements, a polymethyl methacrylate H-type cell with fritted glass (G4 type)separating the study and counter electrode sections was used as electrolytic cell and Pt sheet or graphite bar as counter electrode. Only 1 cm² area of the oxide coating was used for electrochemical studies and the rest was isolated with Araldite glue. Potentials of the study electrodes were measured against a saturated calomel electrode (SCE), via Luggine capillary with its tip (1 mm-inner diam., 1.5 mm-out diam.) located about 2 mm up from the lower coating edge and 1.5 mm away from the coating surface. A salt bridge was inserted between the reference electrode and Luggine capillary.

The anode polarization characteristics were studied by steady-state galvanostatic method at 15 °C in saturated NaCl+1 mol/L HClO₄ solution which was pre-electrolyzed under N₂-bubbling condition prior to use and saturated by chilorine gas in measurements. The ohmic drop in solution and oxide coating was corrected by the current interruption technique.

For evaluation of the active surface area of the oxide coating, cyclically voltammetric studies were carried out in 1 mol/L H_2SO_4 solution which was deareated by bubbling N_2 gas for 40 min., 0 ~ 600 mV vs. SCE scanning range, 15 °C.

X-ray diffraction, Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) techniques were also employed for phase, microstructure and surface morphology analyses. The TEM foils were thinned at Ti-substrate side and polished at oxide coating side by ionic thinner.


Chemicals used were all Analar grade.

2 Results and Discussion

2. 1 Phase and Microstructure

The series of RuO_2 - Co_3O_4 - TiO_2 (60) coatings on flat titanium sheets were examined by fast-scan X-ray diffraction (Fig. 1). The composition of the coating varied from $0 \sim 30$ m/o Co_3O_4 at 5 m/o

intervals. No un-indexed reflections were observed. For 0,5,10 m/o Co_3O_4 coatings, diffraction peaks could be assigned to a rutile-type structure, additional peaks corresponded to reflections expected from the titanium substrate. Combined with the diffraction peaks mentioned above, the peaks of spinel Co_3O_4 diffraction appeared in the 15, 20, 25, 30 m/o Co_3O_4 coatings and their intensity increased with Co_3O_4 content. It should be emphasized that the rutile-type peaks were relatively broad and weak, and the more Co_3O_4 content, the broader and weaker the peaks. No evidence for separate TiO_2 -and RuO_2 -rich phase was provided even in a more detailed analyses of the major peaks (110, 101) belonging to rutile-type structure using a slower scan rate. It was concluded that the rutile-type phase was a solid solution consisted, at least, of RuO_2 and TiO_2 .

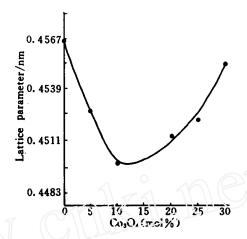


Fig. 1 X-ray diffraction patterns of RuO₂(40)-TiO₂
(60) (a), RuO₂(30)-Co₁O₄(10)-TiO₂(60)
(b), and RuO₂(25)-Co₃O₄(15)-TiO₂(60) (c)
coatings on Ti-substrates

Fig. 2 Variation of lattice parameter a of rutile-type phase in the RuO₂-Co₃O₄-TiO₂ (60) coating with Co₃O₄ content

Lattice parameter a of rutile type phase was measured precisely (Lattice parameter c could not be measured precisely due to the influence of diffraction peaks belonging to Ti-substrate and Co_3O_4). With the increasing of Co_3O_4 content in the coating, lattice parameter a of rutile type phase decreased rapidly and reached a minimum value at about 12 m/o Co_3O_4 composition before its obvious increasing (Fig2). Lattice parameter a of TiO_2 (rutile-type) is bigger than that of RuO_2 . If the rutile type phase was a dual-component solid solution of RuO_2 and TiO_2 , its lattice parameter a would increase monotonously, according to L. Vegard's law, with more TiO_2 in the solid solution as Co_3O_4 content increased in the coating. No doubt the abnormal variation of lattice parameter a resulted from the existence of Co_3O_4 as the third component in the rutile-type solid solution.

TEM inspection and micro-electron-bundle diffraction showed that the microstructure of RuO2-

· 288 ·

 $Co_{3}O_{4}\text{-Ti}O_{2} \hspace{0.2cm} \text{(60) coating was very similar to that of } RuO_{2}(40)\text{-Ti}O_{2}(60) \hspace{0.2cm} \text{coating (sole rutile-type)}$ solid solution (Fig. 1)) as Co_xO_x content was not more than 10 m/o, no spinel Co_xO_x were found. As Co₃O₄ content higher than 10 m/o, distinguishable spinel Co₂O₄ phase appeared in the coating. The higher the $\mathrm{Co}_3\mathrm{O}_4$ -content, the bigger the size of the spinel $\mathrm{Co}_3\mathrm{O}_4.$

Evidently the RuO_2 - Co_3O_4 - $TiO_2(60)$ coating concerned in this paper should be of sole rutile-type solid solution of RuO2, C3O4 and TiO2 in ca. $0\sim10$ m/o Co3O4 range. Spinel Co3O4 only emerges in the coating as Co_3O_4 content exceeds on. 10 m/o, and its size increases remarkably with Co_3O_4

2. 2 Surface Morphology and Active Surface Area

Typical surface morphologies taken by SEM are shown in Fig. 3. The surface of the coating which consisted of sole solid solution exhibited long net-like cracks. The more dissolved Co₂O₄, the

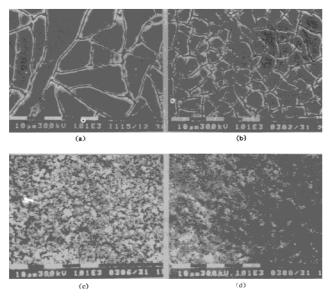


Fig. 3 Surface morphology of $RuO_2(30)-Co_2O_4(10)-TiO_2$ (60) (a), $RuO_2(25)-Co_2O_1(15)-TiO_2(60)$ (b), $RuO_2-Co_2O_1(25)-TiO_2(60)$ (c), and RuO_2 (10)-Co₃O₄(30)-TiO₄(60) (d), coatings on Ti-substrates

more narrow cracks. As spinel Co_3O_4 emerged in the coating, the number of cracks increased critically. The coating of higher Co_3O_4 content appeared to be more compact and homogeneous but very porous. Clearly the roughness of $\text{RuO}_2\text{-Co}_3\text{O}_4\text{-TiO}_2$ (60) coating is enhanced by spinel Co_3O_4 .

The active surface area of the oxide coating was evaluated by double layer capacitance value. Cyclic voltammograms of the oxide-coated electrode in N_2 -saturated 1 mol/L H_2SO_4 were recorded at varying scan rate in $0\!\sim\!600$ mV vs. SCE range. The double layer capacitance value was determined from the slope of linear plot, charging current vs. scan rate. The coating with a little of spinel Co_3O_4 showed higher active surface area in accordance to its roughness. But the active surface area decreased linearly with Co_3O_4 content increasing as more spinel Co_3O_4 emerged in the coating, in spite of the increasing of coating roughness (Fig. 4). This implies that the active surface area changes from roughness sensitive to composition sensitive. In other words, the average amount of active sites in the oxide coating decreases overwhelmingly with more emerged spinel Co_3O_4 .

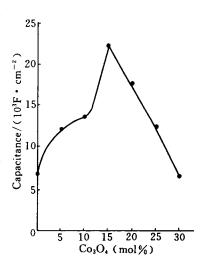
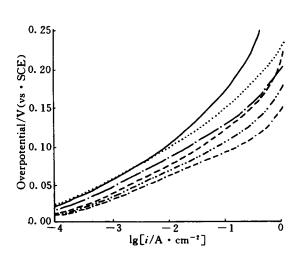



Fig. 4 Effects of Co₃O₄ content on the double layer capacitance of the (RuO₂-Co₃O₄-TiO₂ (60))-coated electrode in 1 mol/L H₂SO₄ at 15 C

2. 3 Chlorine Gas Evolution

Anodic polarization curves for chlorine gas evolution at $(RuO_2-Co_3O_4-TiO_2(60))$ -coated titanium electrodes in saturated NaCl+1 mol/L HClO₄ solution pre-saturated with chlorine gas are shown in Fig. 5. The $RuO_2-Co_3O_4-TiO_2(60)$ coating, in a wide composition range, are more active for chlorine gas evolution than the $RuO_2(40)-TiO_2(60)$ coating (similar to the composition of industrial anodes). With increasing Co_3O_4 content of the coating, the chlorine gas evolution rate increased almost vertically to a maximum value at the maximum solubility point of Co_3O_4 in the rutile-type solid solution after a slow increase, then took a sudden turn and developed rapidly prior to a relatively slow decrease. This is directly illustrated in Fig. 6 where current densities at specific overpotentials are given with respect to oxide composition.

Obviously, the chlorine gas evolution activity of the RuO_2 - Co_3O_4 - TiO_2 (60 coating is composition-and microstructure-sensitive. This should be critically attributed to the effect of crystal defects. The crystal structure of Co_3O_4 is far different from that rutile-type RuO_2 and TiO_2 . When Co_3O_4 dissolves in the rutile-type solid solution of RuO_2 and TiO_2 , as the quantitative X-ray diffraction analyses has proved, severe crystal defects are introduced into the coating, and the more dissolved Co_3O_4 , the more severe crystal defects. No doubt the severe crystal defects will greatly enhance the activities of RuO_2 and Co_3O_4 which are active components in the coating. So, the rutile-type solid solution of RuO_2 and TiO_2 saturated by Co_3O_4 will show best chlorine gas evolution

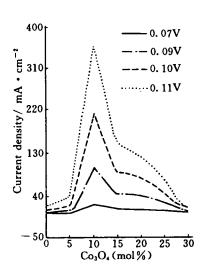
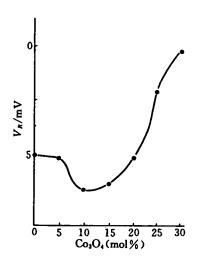


Fig. 5 Galvanostatic polarization curves for chiorine ags evolution at (RuO₂-Co₃O₄-TiO₂ (60))-coated electrodes in saturated NaCl+1 mol/L HClO₄ solution (Cl₂ saturated) at 15 C.

Data corrected for ohmic drops. • • • ; RuO₂(40)-TiO₂ (60), • - • • ; RuO₂(35)-Co₃O₄(5)-TiO₂(60), • - • • ; RuO₂(25)-Co₃O₄(15)-TiO₂(60), • • • • • ; RuO₂(25)-Co₃O₄(15)-TiO₂(60), - · · • ; RuO₂(25)-TiO₂ (60), - ; RuO₂(10)-Co₃O₄(30)-TiO₂ (60)


Fig. 6 Effect of Co₃O₄ content on the rate of chlorine gas evolution at (RuO₂-Co₃O₄-TiO₂(60))-coated electrode at a number of specific overpotentials (same operating conditions as given in Fig. 5)

activity though the activity of pure Co_3O_4 is inferior to that of RuC_2 . As soon as spinel Co_3O_4 emerges, the amount of crystal defects in the coating would decrease remarkably. The more Co_3O_4 content, the bigger the size of the spinel Co_3O_4 and the less the crystal defects. And the activity of the coating in high Co_3O_4 range (more than 10 m/o) will deteriorate. However, the coating with a little of spinel Co_3O_4 possesses higher active surface area, because the present of spinel Co_3O_4 greatly enhances the coating roughness. It is not obscure to see a shoulder after the current peak in Fig. 6.

It was noticed, in the investigation of steady-state polarization, that the ohmic polarization value in the coating and solution showed a slight decrease before its increase with more Co_3O_4 content in the coating. A minimum value was observed at the maximum solubility point of Co_3O_4 in the solid solution (Fig. 7).

The tip of Luggine capillary was precisely located at 1.5 mm away from the coating surface, so the ohmic drop in solution was a constant value at the same current. Practically Fig. 7 shows the relative variation of ohmic polarization value in the coating and indicates that Co_3O_4 in rutile-type solid solution will improve the electric conductivity of $RuO_2-Co_3O_4$ - TiO_2 (60) coating and reduce ohmic drop in it. But as soon as spinel Co_3O_4 emerges in the coating, its electric conductivity will drop

sharply. This seems to be also related to the crystal defect effects introduced by the Co_3O_4 dissolved in the rutile-type solid solution which are mentioned above.

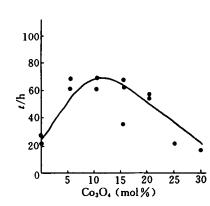


Fig. 7 Polt of ohmic drop in coating and solution at 100 mA/cm^2 against Co_3O_4 content (same operating conditions as given in Fig. 5)

Fig. 8 Effect of Co_3O_4 content on the service life(t) of RuO_2 - Co_3O_4 - TiO_2 (60)/Ti anode in 6 mol/L NaOH(80 °C , 1 A/cm²)

2. 4 Service Life

Service life value of the RuO₂-Co₃O₄- TiO₂(60)/Ti anode, operated under severe conditions (6 mol/L NaOH, 80 °C, 1 A/cm², Pt counter electrode), were determined by recording the cell voltage as a function of time during electrolysis under galvanostatic conditions. The service life value was the time before cell-voltage increased snarply.

Also, the severe service life test results indicated that the service life of ($RuO_2-Co_3O_4-TiO_2$ (60))-coated electrode varied in a similar way to the chlorine gas evolution rate (Fig. 8). It increased with Co_3O_4 in rutile- type solid solution and deteriorated with spinel Co_3O_4 .

These results implied that traditional RuO_2 - TiO_2 /Ti anode being widely used in chlor-alkali industry could be replaced by RuO_2 - Co_3O_4 - TiO_2 /Ti anode in which Co_3O_4 content should be so high as to reach, or exceed slightly, its maximum solubility point in the rutile-type phase. Thus, not only the content of noble ruthenium in the coating is to be reduced to a relatively lower extent, but also the anode chlorine gas evolution activity, service life and ohmic drop of the coating, etc., will be improved.

3 Conclusion

Sole rutile-type solid solution of RuO₂, Co₃O₄ and TiO₂, and spinel Co₃O₄ and the solid solution exist in ca. $0\sim10$ and $10\sim30$ m/o Co₃O₄ range respectively in the RuO₂-Co₃O₄-TiO₂(60) coating

system. The chlorine gas evolution activity, electric conductivity and service life of the coating increase with more Co_3O_4 in the rutile-type solid solution until Co_3O_4 is saturated. These properties deteriorate with the emerging of spinel Co_3O_4 . Both the roughness and the active surface area of the coating are greatly enhanced by a little of spinel Co_3O_4 . In a relatively wide composition range, the rate of chlorine gas evolution, electric conductivity and service life of $(RuO_2-Co_3O_4-TiO_2\ (60))$ -coated electrodes are higher compared with the $(RuO_2\ (40)-TiO_2\ (60))$ -coated electrodes. Evidently RuO_2-TiO_2 coated anodes could be modified by adding a suitable amount of Co_3O_4 .

Acknowledgment The authors are grateful to the National Natural Science Foundation, who supported this research through grand no. 58971077.

References

- 1 De Nora O. Use of dimensionally stable, activated titanium anodes in alkali chloride electrolysis. *Chem-ing-tech.*, 1970, 42(4):222
- 2 Trasatti S. Electrodes of Conductive Metallic Oxide, part A and B. New York: Elsevier, 1981:201
- 3 Agapova R A, Kokhanov G N. Electrochemical properties of a cobalt oxid anode. Electrochimiya, 1976, 12:1 649
- 4 Conway B E, Liu T C. Electrocatalysis at cobalt oxide (Co₃O₄) on nickel and titanium substrates. *Ber. Bunsenges Phys. Chem.*, 1987, 91:461
- 5 Boggio R, Carugati A, Lodi G et al. Mechanistic study of Cl₂ evolution at Ti-supported Co₃O₄ anode. J. Appl. Electrochem, 1985, 15:335
- 6 Burke L D, McCarthy M M. Modification of the Electronic transfer properties of Co₃O₄ as required for its use in DSA-type anode. J. Electrochem. Soc., 1988, 135:1 175
- 7 Adler D. Solid State Physics, Vol 21 New York: Academic Press, 1986: 1~113
- 8 Gerrard W A, Steel B C H. Microscructural investigations on mixed RuO₂-TiO₂ coatings, J Appl. Electrochem., 1978, 8,417
- 9 Garavaglia R, Mari C M, Trasatti S. Physicochemical characterization of Co₃O₄ prepared by thermal decomposition. Surf, Technol., 1983, 19:197
- 10 Hine F, Yasudaa M, Yoshida T. Studies on the oxide-coated metal anodes for chlor-alkali cells. J. Electrochem. Soc., 1977, 124:500
- 11 Trasatti S. Progress in the understanding of the mechanisum of chlorine evolution at oxide electrodes. *Electrochimica Acta*, 1987, 32(3): 369
- Boggio R, Garugati A, Trasatti S. Electrochemical surface properties of Co₃O₄. J. Appl. Electrochem., 1987, 17:
 828