Journal of Electrochemistry

Volume 6 | Issue 2

2000-05-28

Powder Microelectrode Modified with Nafion-Os(bpy)_3~(2+) and PVP Composite and Its Catalysis for NO_2 - Reduction

Pei-fang LIU

Jia-wei YAN

Recommended Citation

Pei-fang LIU, Jia-wei YAN. Powder Microelectrode Modified with Nafion-Os(bpy)_3~(2+) and PVP Composite and Its Catalysis for NO_2 - Reduction[J]. *Journal of Electrochemistry*, 2000, 6(2): 146-150. DOI: 10.61558/2993-074X.1375

Available at: https://jelectrochem.xmu.edu.cn/journal/vol6/iss2/2

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

Vol. 6 No. 2 May 2000

文章编号:1006-3471(2000)02-0146-05

复合聚合物修饰的粉末微电极及其 对亚硝酸根还原的催化

刘佩芳*,严佳伟

(武汉大学化学系,湖北 武汉 430072)

摘要: 本论文简述用 Nafion-Os(bpy)₃²⁺/ PVP 复合膜修饰的乙炔黑粉末微电极,以亚硝酸根还 原为模型反应,实现从复合修饰及扩大电极比表面两方面改善电极性能的思路.结果表明,它同时 显示 Nafion-Os(bpy)₃²⁺/ PVP 修饰电极对 NO₂⁻及 NO⁺双重富集并再生活性粒子 NO⁺、防止中继 体流失、加速膜中中继体传输、改变反应途径等复合修饰电极的多种功能以及粉末微电极的高比 表面、高液相传质速度以及薄层效应的特性.与平面修饰电极及裸粉末微电极相比,它明显提高了 酸性溶液中亚硝酸根还原的可逆性、呈数量级地提高稳态极限电流密度以及 NO₂⁻ 的检测指标.

关键词: 微电极,修饰电极,亚硝酸根还原.

中图分类号: TQ 151.5 **文献标识码:** A

由于体液及环境中亚硝酸根的监测日益得到重视,建立简单、灵敏、稳定以及抗干扰能力强的亚硝酸根电化学检测方法成为迫切重要性的课题.就杂质干扰而言,亚硝酸根的电还原比电氧化更为有利.然而在一般的电极上,例如玻碳电极及金电极上,亚硝酸根在酸性溶液中的还原受一前置化学反应 HNO₂ + H⁺ NO⁺ + H₂O 的控制,其中 NO⁺ 为电活性物质,即整个反应遵循 CE 机理.这种前置反应的极限电流密度(大约为 5 - 10 µA cm⁻²)比亚硝酸根还原的扩散极限电流密度约小两个数量级.由文献^[1]所报道的该前置反应的速度常数及平衡常数数据而估计出的反应区的厚度相当小,与双电层厚度相当.对于这类特殊的反应体系,可采用增加异相反应速度的方法来增加均相反应速度.此一推论已在我们有关亚硝酸根于碳及金粉末微电报上还原的研究中得到证实^[2].对平面电极上的亚硝酸根还原^[3,4],应用 Nafion-Os (bpy)₃²⁺/ PVP(polyvinylpyridine)复合膜修饰层具有下述多种功能:在不同的反应阶段富集并再生反应活性粒子,防止中继体流失,加速中继体在膜中的传输速度,改变反应途径,降低反应活化能.本文用复合膜对粉末微电极进行修饰,旨在将上述两种提高亚硝酸根还原极限电流的方法结合起来,进一步改善电极性能.

收稿日期:2000-01-21

* 通讯联系人

基金项目:国家自然科学基金资助课题(29673031);第十届全国电化学会议(1999.10月,杭州)推荐论文

1 实验

将直径为 0.1mm 的 Pt 微盘电极端面腐蚀成一定深度的空腔. 在超声波清洗器中将 XC-72 乙炔黑与含有 Os(bpy)₃²⁺的 Nation 乙醇溶液均匀混合(乙炔黑与 Nation 韵最佳重量比为 6:1^[5]). 在红外灯下不断搅拌混合物至干燥成粉末. 将粉末填满电极的空腔后再滴加 PVP 甲 醇溶液,溶液挥发后即制得 Nation-Os(bpy)₃²⁺/ PVP 修饰粉末微电极. 用类似的两步修饰方法 修饰玻碳旋转园盘电极,用于对比.

所有试剂为分析纯,用二次蒸馏水配制溶液.实验所用 NaNO₂ 的硫酸溶液为临测量前配制的新鲜溶液.Nafion 及 PVP 为 Aldrich 产品.Os(bpy)₃Cl₂ 按文献^[6]制备.所有电势值均相对于饱和甘汞电极电势.电化学测试在 25 \pm 0.2 进行.

2 结果与讨论

- 7

2.1 Nafion-Os(bpy)₃²⁺/ PVP 双层修饰的粉末微电极 CV 特性

图 1 示出用 Nafion-Os(bpy)₃²⁺/ PVP 双层修饰的粉末微电极的 CV 特性. 图中的电流峰 乃 Os(bpy)^{2+/3+}的氧化还原所引起. 实验中发现,氧化还原电流峰的个数和电势与 Os(bpy)²⁺ 在 Nafion 中的浓度密切相关. 若以 X 表示 Nafion 层中磺酸基相对于 Os(bpy)²⁺的摩尔比,则

可见 CV 图随 X 的变化.图 1 给出了两种 代表性的曲线. X = 3时 Os (bpy)²⁺在 Nation 中达到饱和浓度. 此时 CV 图上只在 0.6V 附近出现一对电流峰. 当 3 $\leq X < 6$ 时,CV曲线与X = 3的相同,但当X继续 增大,则于 0.38 V 附近逐渐出现第二对氧 化还原电流峰.上述 CV 随 X 而变的情况, 与以 Nafion-Os(bpy)32+ 单层膜修饰的平面 电极及以 Nafion-Os(bpy)3²⁺/PVP 复合膜 修饰的平面电极所观测的基本相同. 两对 氧化还原电流峰的出现表明在修饰膜内中 继体有两种不同的存在状态,或处于两种 不同的微环境中;这两种状态的相对量与 中继体在膜中的总浓度有关,复合膜与单 层膜的主要区别是前者有双重富集功能, 再生 NO^+ 功能并可有效阻止 $Os(bpy)^{2+}$ 的 流失,加速中继体在膜中的传输速度,这显

- 图 1 Nafion-Os(bpy)₃²⁺/PVP 复合聚合物修饰粉末 微电极在 0.05 mol/L H₂SO₄ 中的 CV 图,扫速 100 mV/s.
- Fig. 1 Cyclic voltammograms of Os $(bpy)_3^{2+/3+}$ in Nafion-Os $(bpy)_3^{2+}$ / PVP modified powder microelectrode, scan rate 100 mV/s. X denoted the mole ratio of SO₃⁻ to Os $(bpy)_3^{2+}$

然归因于荷正电的质子化 PVP 的静电作用. 粉末微电极与平面电极相比,其单位表观电极面 积所载 Os(bpy)₃^{2+/3+}的量要大得多,从而中继体氧化还原电流峰的表观电流密度也大得多.

2.2 NO₂⁻ 在 Nafion-Os(bpy)₃²⁺/ PVP **双层修饰的粉末微电极上的还原** 图 2 表明,在复合聚合物修饰的粉末微电极上,X 的值对 NO₂⁻ 还原的电催化确有很大影 · 148 ·

响,而且中继体的氧化还原电 势与 NO_2^- 的还原电势有明 显的对应关系.当 X=3 时,在 0~0.6 V (vs SCE)极化电势 范围内,其稳态极化曲线只出 现亚硝酸根的第一步还原,且 其起始电势与中继体的氧化 还原峰电势相近. X=20 时, 在同样电势范围内出现了 NO_2^- 的两步还原,其起始电 势分别接近于中继体的两个 氧化还原峰的电势.

图 2 表明不论 X = 3 或 20,在复合膜修饰的粉末微电 极上,亚硝酸根还原的表观电 流密度比平面电极要大得多. 图 2 中曲线 b 和 c 分别为对 应的复合膜修饰的玻碳旋转 电极上亚硝酸根还原的稳态 极化曲线.实验中发现当转速 达到 500 rpm 时,电流已与转 速无关,表明电极过程由动力 学而非液相扩散控制.由图可 知,采用多孔电极,表观电流 密度比平面电极增大 30 至 50 倍.在 5 mmol/L NaNO₂ + 0.05 mol/LH₂SO₄ 溶液中,X = 3 的复合膜修饰电极上表

流密度比平面电极要大得多.图2 在 0.05 mol/L H₂SO₄ + 5 mmol/L NaNO₂ 溶液中, NO₂ · 还原的稳图 2 中曲线 b 和 c 分别为对态极化曲线.a, 裸玻碳电极; b, X = 3 的 Nafion-Os(bpy)₃²⁺/ PVP应的复合膜修饰的玻碳旋转修饰玻碳旋转园盘电极; c, X = 20 的 Nafion-Os(bpy)₃²⁺/ PVP 修电极上亚硝酸根还原的稳态饰玻碳旋转园盘电极; d, X = 3 的 Nafion-Os(bpy)₃²⁺ (%你的粉末极化曲线. 实验中发现当转速微电极; e, X = 20 的 Nafion-Os(bpy)₃²⁺ / PVP 修

达到 500 rpm 时,电流已与转 速无关,表明电极过程由动力
学而非液相扩散控制.由图可
知,采用多孔电极,表观电流
密度比平面电极增大 30 至 50
倍.在 5 mmol/L NaNO₂ +
0.05 mol/L H₂SO₄ 溶液中,X
次 与 4 5 mmol/L NaNO₂. a, Bare glassy carbon electrode;
b, Nafion-Os(bpy)₃²⁺/ PVP modified glassy carbon RDE, X = 3;
c, Nafion-Os(bpy)₃²⁺/ PVP modified glassy carbon RDE, X = 20;
d, Nafion-Os(bpy)₃²⁺/ PVP modified powder microelectrode, X = 3;
e, Nafion-Os(bpy)₃²⁺/ PVP modified powder microelectrode, X = 3;

观极限电流密度达到 2.18 mA/cm². 如据文献中报道的扩散系数(~1.75 cm²S^{-1[11]}),可估 算出溶液中扩散极限电流密度为 2.2 mA/cm². 与图 2d 的极限电流密度很接近. 这表明在复合 膜修饰的粉末微电极上,NO₂⁻ 的还原极限电流实际上已主要受溶液相扩散控制. 不仅如此,对 约在 0.6 V 开始的还原电流波,其 $E \sim \log(i_L - i)/i$ 斜率为 52 mV,证明了电极反应基本呈可 逆状态,而该电极过程已由原来的前置化学步骤控制转化为扩散控制. 应当看到复合膜修饰与 多孔电极效应相结合确能十分有效地加快亚硝酸根的还原. X = 20 时亚硝酸根第二步还原的 极限电流密度(3.93 mAcm⁻²)约为第一步还原极限电流密度的 2 倍(图 2e). 从电流起始阶段 的斜率看,第二步还原的可逆性不如第一步,但仍有相当宽的极限电流电势区,因而可方便地 用于电分析. X = 20 与 X = 3 相比,可达到的极限电流密度增大了一倍,因而原则上对亚硝酸 根的检测灵敏度也可提高一倍. 亚硝酸根还原的第一步和第二步的半波电势与裸玻炭电极相 比分别正移了 300 和 750 mV. 图 2d 和 2e 的对比可能说明,处于不同微环境中的中继体能催 化反应的不同阶段. 初步的现场及非现场的 UV-VIS 和 FTIR 光谱实验发现, $X = 3 \ D \ X = 20$ 的 Nafion-Os(bpy)₃²⁺修饰膜的光谱也很不相同^[7],支持了上述存在不同微环境的看法;但微 环境的结构细节尚待进一步研究.

对于分析目的,表观极限电流密度的提高 以及极限电流平台的扩展无疑是十分有利的. 此外,用图 2e 的第二个还原电流波,其灵敏度 可比用第一个还原电流波提高一倍.实验结果 表明,在 10⁻⁵ mol/L~0.25 mol/L NO₂⁻ 的浓 度范围内,极限电流与浓度呈良好的线性关系 (图 3).检测灵敏度为 814 mA/cm²M.当信噪 比 S/N = 3 时,检测下限为 3 ×10⁻⁶ mol/L.至 今文献报道最灵敏的亚硝酸根检测电极是亚 硝酸根还原酶电极^[9],但只及复合膜修饰粉末 微电极的一半;在响应速度以及稳定性方面, 酶电极更无法与复合膜修饰粉末微电极相比. 抗环血酸,Fe³⁺,Fe²⁺,Mg²⁺,K⁺,NH⁴⁺,Cl⁻, NO₃⁻ 以及 PO₄³⁻ 浓度为 0.1 mol/L 时,对 Fig. 3

· 149 ·

- 图 3 在 0.05 mol/L H₂SO₄ 中 Nafion-Os(bpy)₃²⁺ (x = 20)/PVP修饰粉末微电极上,亚硝酸根还原 电流与浓度的关系.电势恒定在 E=0.08 V
- Fig. 3 Concentration dependence of nitrite reduction current at Nafion-Os $(bpy)_3^{2+}$ (X = 20)/PVP modified powder microelectrode. Potential kept at 0.08 V

Powder Microelectrode Modified with Nafion-Os(bpy) $_3^{2+}$ and PVP Composite and Its Catalysis for NO₂⁻ Reduction

LIU Pei-fang^{*}, YAN Jia-wei

(Dept. of Chem., Wuhan Univ., Wuhan 430072, China)

Abstract : The modified powder microelectrode was prepared by etching a Pt (0.1 mm diameter) disk microelectrode and filling in thus formed cavity with Nation-Os(bpy) $_{3}^{2+}$ / PVP composite modified carbon powder. The composite modified powder microelectrode showed cyclic voltameters.

metric behaviors changing with the mole ratio (denoted X) of SO_3^- to $Os(bpy)_3^{2+}$ in Nafion. When X = 3, a single pair of current peaks appeared near 0.6V (vs. SCE) due to Os(bpy)₃^{2+/3+} redox couple. In contrast, for X = 20, a pair of additional current peaks occurred near 0.4V. Both X = 3 and X = 20 modified powder microelectrodes strongly catalyzed the first electron reduction of nitrite in 0.5 mol/L H₂SO₄. The catalysis was so effective that the steady state polarisation curve showed essentially reversible characteristics with a plateau current density 2.18 mA/ cm^2 and half-wave potentials near 0.55 V. While the electrode with X = 3 could catalyze nitrite reduction only to the first electron transfer, the modified powder microelectrode with X = 20 could catalyze the second electron transfer, resulting in an additional current wave starting near 0.4 V with a plateau current twice the first one. The plateau current densities obtained with the composite modified powder microelectrodes were much larger than those obtainable with flat electrodes (with or without modification), verifying the idea of advantageous combination of the composite modification and the porous electrode technique. The composite modified powder microelectrodes showed high performance in nitrite detection: sensitivity 814 mAL/ cm^2 mole, linearity $10^{-6} \sim 0.25 \text{ mol/L}$, lower detection limit 10^{-6} mol/L ; no interference from 0.1 mol/L ascobic acid, Fe^{3+} , Fe^{2+} , Mg^{2+} , K^{+} , NH^{4+} , Cl^{-} , $\operatorname{NO}_{3}^{-}$ and $\operatorname{PO}_{4}^{3-}$.

Key words: Microelectrode, Modified electrode, Nitrite reduction

References:

- Plieth W J. Encyclopedia of electrochemistry for the elements [M], Bard A J, editor. New York: Mareel Dekker, Inc., 1978, 8:322,427,497.
- [2] Liu P F, Lu J T, and Yan J W. Nitrite reduction at powder microelectrodes[J]. J. Electroanal. Chem., 1999,469:196.
- [3] Liu P F, Yan J W. Nafion-Os(bpy)/ PVP composite modified electrode and its activity for NO₂⁻ reduction.
 Proc. for chemical and biological sensors and analytical electrochemical methods (ECS). 1997:387.
- [4] Liu P F, Lu J T, Yan J W. Unique Nafion/Os(by)₃²⁺ modified electrode [J]. Chinese Chem. Letters, 1999, 10:857.
- [5] Liu Pei Fang, Cha Qun Xin, Li Xi, Chen Jian, Study on redox polymer modified porous electrodes [J]. Chem. J. Chinese Univ., 1993, 15:725.
- [6] Creutz C, Chou M, Netzel T. L, Okumura M, Sutin N, J Am Chem. Soc., 1982, 104:1 300.
- [7] Liu Pei Fang, Yan Ja Wie. FTIR investigation on Nafion-Os(bpy)₃²⁺/PVP modified electrodes[C]. Abstracts of the 10th National Conference on Electrochemistry, 1999: A024.
- [8] Strliz B, Gr ünding B, Schumacher W, et al. A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection[J]. Anal Chem., 1996, 68:807.