Journal of Electrochemistry

Volume 9 | Issue 2

2003-05-28

Corrosion Behavior of Mg_(1.85)Mm_(0.15)Ni Hydrogen Storage Alloy Modified by Electroless Cu in CH_30H·H_20 Solutions

Hua-bin YANG Hai-chang ZHANG Hua SUN Xiao-dan WANG Zuo-xiang ZHOU

Recommended Citation

Hua-bin YANG, Hai-chang ZHANG, Hua SUN, Xiao-dan WANG, Zuo-xiang ZHOU. Corrosion Behavior of Mg_(1.85)Mm_(0.15)Ni Hydrogen Storage Alloy Modified by Electroless Cu in CH_3OH·H_2O Solutions[J]. *Journal of Electrochemistry*, 2003 , 9(2): 196-202. DOI: 10.61558/2993-074X.1505 Available at: https://jelectrochem.xmu.edu.cn/journal/vol9/iss2/12

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2003)02-0196-07

CH₃OH-H₂O 体系化学镀铜 Mg_{1.85}Mm_{0.15}Ni 合金的抗腐蚀性能研究

杨化滨*,张海昌,孙华,王晓丹,周作祥

(南开大学能源材料化学研究所, 天津 300071)

摘要: № 采用稳态极化曲线法和交流阻抗法研究了在甲醇-水不同含量镀液中化学镀铜的 Mg1.85 Mm0.15Ni(Mm 富铈混合稀土)储氢合金于强碱性溶液中的抗腐蚀性能.结果表明,对甲醇-水体系 化学镀铜,合金的抗腐蚀性可进一步改善.其中以甲醇体积比含量为 40 %的镀液施镀的抗腐蚀效 果最佳.稳态极化曲线测试给出,此时合金的腐蚀电流密度只有 5.6 mA cm⁻²,相应的电化学反应 阻抗为 22.25 cm²,而原粉的两者之值分别为 11.7 mA cm⁻²和 1.99 cm². 关键词: 镁基储氢合金;富铈混合稀土;抗腐蚀性能;非水体系镀铜 中图分类号: TM 911 **文献标识码**: A

以 Mg2Ni 为代表的镁基储氢合金由于其低比重,高储氢量,价格低廉,被认为是最有希望 用于氢—空气燃料电池的储氢介质,因而日益引起人们开发研究的兴趣.但采用镁基合金作为 储氢材料,主要缺点有二:首先是镁及其合金在空气中易被氧化,表面生成一层氧化膜,妨碍合 金的活化与吸氢,在碱性电池体系中,镁及其合金易被腐蚀,表面生成不致密的 Mg(OH)2 膜, 溶液容易透过,腐蚀危及合金体相;其次,镁及其合金的吸,放氢动力学性能差,于 250 以上 Mg2Ni 须经反复活化多次才能对氢可逆吸,放.

元素取代可望改善镁基合金以上的不足. S. X. Dou 等^[1]研究了 $M_{g_{2-x}}M_xNi(M = Ti, Ce)$ 和 $M_gNi_{1-y}N_y(N = Mn, Co)$ 合金的电化学性能,指出 Ce 可形成 CeO₂ 表面保护膜,减缓 Mg 的 腐蚀. 但是,单一稀土价格昂贵,不利于实际推广应用,我国稀土资源丰富,且混合稀土金属 Mm 价格便宜.本文以富铈混合稀土代替单一稀土,合成了 $M_{g_{2-x}}Mm_xNi(x = 0, 0.15, 0.18, 0.2)$ 系列合金,并用稳态极化曲线法和交流阻抗法研究了合金的腐蚀性能,发现当 x = 0.15时,合金的综合性能最优^[2],但以取代后的合金作镍/氢化物电池的负极材料,其电催化活性 并不理想,抗腐蚀性能亦有待于进一步提高.本文将用于氢/氧燃料电池储氢介质的 $M_{g_{1.85}}$ $Mm_{0.15}Ni$ 合金粉在水和甲醇的混合溶剂中进行包覆铜处理,以期进一步提高该合金的耐腐蚀 性和合金在吸放氢过程中的热传导.通过正交实验,得出镁基合金粉表面包覆铜的最佳工艺条

- 7

* 通讯联系人, Tel:(86-22)23508405 E-mail:hb-yang @nankai.edu.cn 863 计划(2001AA515022)资助

收稿日期:2002-08-16,修订日期:2002-10-28

件,经电化学方法测定,发现经包覆铜后的这种合金电极,其反应电阻增大,腐蚀电流降低.

1 实 验

1.1 Mg_{1.85} Mm_{0.15} Ni 合金的合成

按 $Mg_{1.85}Mm_{0.15}Ni$ 合金的化学计量,分别称取 Mg,Mm,Ni 金属粉末,放在 P6 型球磨机 (德国 FRITSCH 公司) 球磨罐中,于氩气保护下,以 300 r/min 转速混合 2 h 之后,将该混合的 粉末于 30 MPa 下压成直径 2.5 cm 的圆形片,封入特制的不锈钢容器中,将容器抽空,再充入 0.5 MPa 的高纯氩气,经反复三次,赶走空气,然后再通入氩气,使不锈钢容器中氩气的压力保 持在 0.5 MPa,置于电阻炉,加热至 540~560 ,恒温 4h,使 Mg,Mm 和 Ni 相互扩散,生成 $Mg_{1.85}Mm_{0.15}Ni$ 合金.

1.2 XRD, SEM, XPS测试

合金样品的物相分析采用 Rigaku D/ max-2500 型 X-射线衍射仪(日本理学公司),Cu K 靶,石墨单色器,功率 50 kV ×200 mA,工作电压 50 kV,工作电流 200 mA,扫描速率 8 9 min, 扫描范围 5 ~ 80 ° XRD 数据详见文献[2].

用 X-650 型扫描电镜仪(日本日立公司)观察样品的表面形貌,工作电压 20 kV.

用光电子能谱(XPS)测试样品表面元素组成及价态. 仪器为 PHI-5300ESCA 能谱仪(美国 PHI 公司),工作真空度小于 10⁻⁹ torr.

用 EDAX 测试样品元素组成及分布,仪器为美国 EDAX Falcon-60 型能谱仪,工作电压 20 kV.

1.3 电化学方法测定合金的腐蚀性能

实验用三电极体系,参比电极为 HgO/ Hg 电极,辅助电极为铂黑电极,电解液为 5 mol·L⁻¹KOH 溶液,用 1287 型恒电位仪和 1250 频谱响应分析仪联机电化学测试系统(英国 Solartron 公司),分别测定合金电极的恒电位极化曲线和交流阻抗谱,测试温度为 25 (水浴控温).恒电位极化实验:扫描范围 - 1.2~-0.2 V(vs. HgO/ Hg),扫速 0.2 mV/s,测试前先将电极于 - 1.2 V 下恒电位极化 3 min,以除去表面氧化物;交流阻抗实验:频率范围 10 k~10 mHz,振幅 5 mV,测试前将电极于 - 1.2 V 电位极化 5 min,实验数据由 ZV IEW^[3]软件进行非 线性拟合.

1.4 合金粉包覆铜

以甲醛作还原剂,对合金粉表面进行化学镀铜,反应式为:

 $Cu^{2+} + 2HCHO + 4OH^{-} \frac{\mbox{i} \mbox{i} \mbox{k} \mbox{i} \mbox{k} \mbox{i} \mbox{k} \mbox{i} \mbox{i} \mbox{k} \mbox{i} \mbox{i}$

实验步骤为:250 mL 烧杯中盛 100 mL 的镀液(组成见表 1),取 200~400 目的合金粉 1 g,搅拌速率 350 r/min,反应 15 min.影响上述反应的因素较多,为减少实验环节,以获得最佳 的包覆效果,本文采用正交实验法^[4]安排实验.本实验含 5 因素 4 水平,为此,选用 L₁₆(4³)正 交表.各因素水平如表 1 所列.

表1	Mg1.85 Mm0.15 Ni 水溶液化学镀铜正交实验表(L16(43)			
	Tab 1 Easters and levels			

T/	pН	$CuSO_4 \ 5H_2O/g \ L$	⁻¹ K ₄ [Fe(CN) ₆] $3H_2O/mg L^{-1}$	HCHO/ ml L^{-1}
35	11.5	5	10	10
40	12	10	150	15
45	12.5	15	20	20
50	13	-20	25	25
	T/ 35 40 45 50	T/ pH 35 11.5 40 12 45 12.5 50 13	T/ pH CuSO ₄ 5H ₂ O/g L 35 11.5 5 40 12 10 45 12.5 15 50 13 -20	T/ p H CuSO ₄ 5H ₂ O/g L ⁻¹ K ₄ [Fe(CN) ₆] 3H ₂ O/mg L ⁻¹ 35 11.5 5 10 40 12 10 15 45 12.5 15 20 50 13 20 25

经正交实验优化后,得出镁基合金表面包覆铜的最佳工艺条件为:

T/	pН	CuSO ₄ $5 H_2O/g L^{-1}$	$K_4[Fe(CN)_6] 3H_2O/mg L^{-1}$	HCHO/ ml L^{-1}	
40	13	20	25	20	_>

在上述水溶液化学镀铜工艺条件基础上,又另选水和甲醇混合溶剂对 Mg_{1.85} Mm_{0.15} Ni 合 金粉进行化学镀铜.所用镀液甲醇的含量分别选定为:0%,20%,40%,60%,80%(V/V).

2 实验结果和讨论

2.1 络合剂的作用

7

化学镀中,沉积速率同镀液的稳定性是相矛盾的,而镀液的不稳定则是化学镀铜的最大缺点.沉积速率高的化学镀铜液,稳定性往往较差,使用几次后便失效.改善这种情况的办法一般 是于镀液中添加适量的稳定剂,而又不导致沉积速率发生显著降低.化学镀铜液不稳定的原因 之一乃由于发生下列反应,以致溶液中出现固体微粒:

$$2Cu^{2+} + 2HCHO + 5OH^{-} - Cu_{2}O + HCOO^{-} + 4H_{2}O$$
 (2)

 $Cu_2O + H_2O - Cu + Cu^{2+} + 2OH^{-}$

(3)

以上反应(2)所生成的一价铜化合物 Cu₂O 以及由后续反应(3)进一步生成的金属铜颗 粒,立即成为镀铜液自然分解的催化中心.如果往溶液中添加能络合一价铜的络合剂,例如硫 脲,2-巯基苯骈噻唑或亚铁氰化钾等,则对抑制上述反应和稳定镀液具有一定效果.虽然稳定 剂的加入能提高镀层的光亮度,但却降低了铜沉积的反应速率,即在一定时间内减少镀层的增 重率.尽管如此,镀液的稳定仍然有利于生成晶粒细小,组织致密,具有良好延展性的镀层.

当镀液中不存在络合剂时,铜离子在弱碱性条件下发生如下反应:

 $Cu^{2+} + 2OH^{-} - Cu(OH)_{2}$ (4)

络合剂的作用,是使 Cu²⁺在碱性条件下形成稳定的络合物,并适当控制铜沉积的速率.化 学镀铜工艺中最为常用的络合剂有 ED TA 二钠盐和酒石酸钾钠.以 ED TA 二钠盐作为络合 剂,溶液稳定性好,可得到性能较好而且较厚的镀层,但反应需在较高的温度下进行,反应速率 较快;以酒石酸钾钠作络合剂,镀液稳定工作温度应低于 35 ,沉积速率较慢,所得镀层韧性 差.本文采用 ED TA 二钠盐为络合剂.化学镀铜按反应(1)进行,反应过程中存在 ED TA 配位 反应与甲醛还原反应两者对铜离子的竞争,因而通过 ED TA 配位可使铜离子得以缓慢释放, 保证反应均匀发生.

2.2 化学镀铜合金电极腐蚀曲线

蚀,并进而改善镁基合金的循环寿命.

图 1 示出合金电极于不同甲醇含量镀液中镀铜后的恒电位极化曲线.表 2 是对图 1 各曲 线进行 Tafel 拟合^[5]所得结果. 图 1 中 I uncoated --0.2 曲线1为未经镀铜的合金粉之恒电位极 2 0% 化曲线,其腐蚀电流密度为11.7 mA 3 20% -0.4cm⁻²,均大于镀铜后各合金的腐蚀电流 5 60% -0.6 6 80% 密度,这说明合金镀铜后因表面铜层的, 存在而降低了腐蚀速率;随着镀液中甲\$ -0.8 醇加入量的增加,腐蚀电流呈先降后升 -1.0 趋势,当甲醇含量为40%时,腐蚀电流 -1.2 (速率)最小,从图1中还可以看出,镀铜 1E-7 1E-6 1E-5 后各合金粉电极的恒电位极化曲线在 -1E-4 1E-3 0.01 0.1i/A • cm⁻² 0.4 V 左右均出现一明显的氧化峰,可 将其归属于铜的溶解.铜溶解峰的出现 图 1 不同甲醇含量镀液中化学镀铜 Mg1.85 Mm0.15 Ni 合 说明该包覆铜层于 - 0.4 V 左右才被破 金电极的极化曲线 坏,而对一般镁基合金电极,其充放电循 Fig. 1 Polarization curves of the Mg_{1,85} Mm_{0,15} Ni alloys 环过程给定的电位上限都不会比 - 0.4 modified by electroless Cu coating in various V 更正,即在这一情况下,该包覆铜层可 $CH_3OH(x \%)$ - H_2O solutions 以起到保护膜的作用,减缓内部合金腐

表 2 不同甲醇含量镀液中化学镀铜 Mg1.85 Mm0.15 Ni 合金电极极化曲线 Tafel 拟合数据(25)

Tab. 2	Tafel fitting data of the Mg _{1.85} Mm _{0.15} Ni alloys modifie	ed by electroless Cu coating in variou	us
	$CH_3OH(x \%) \cdot H_2O$ solutions (25)		

CH ₃ OH %	0.0/	20.0/	40.0/	60.0/	80.0/
(CH ₃ OH ·H ₂ O)	0 %	20 %	40 %	00 %	80 %
$b_{\rm c}/~{ m mV}$	107	150	154	163	189
$i_{\rm corr}/{\rm mA~cm^{-2}}$	9.6	6.7	5.6	9.6	10.1

注:未包覆铜的合金的 b_c 为 278mv, $i_{corr} = 11.7$ mA cm⁻²

图 2 分别示出, Mg_{1.85} Mm_{0.15} Ni 合金粉在不同甲醇含量的镀液中包覆铜后,其表面铜元 素的 XPS 谱. 如图可见, 对不含和含有 20 %或 40 %甲醇的镀液,其镀铜后合金的最强峰均出 现在 932.5 eV 左右,此时铜是以单质的形式存在, 而于 934 eV 附近所显示的肩峰则可指认为 是 CuO 与 Cu 叠加的结果. 由此可见,以上述 3 种镀液镀出的合金粉,其表面镀层主要成分是 铜,只有少许的铜被氧化. 又据图 2, 对含有 60 %和 80 %甲醇的镀液, 前者使镀铜后的合金粉 表面镀层于 XPS 图中表征 Cu 和 CuO 峰几乎平齐, 而后者则使表征 CuO 的峰变得十分突出, 这说明以这两种镀液镀出镀层, 可能由于形成的铜颗粒比较细, 致使氧化严重.

-7

- 图 2 不同甲醇含量镀液中化学镀铜后 Mg1.85 Mm0.15 Ni 合金粉表面 XPS 图谱
- Fig. 2 XPS patterns of the $Mg_{1.85} Mm_{0.15} Ni$ alloys modified by electioless Cu coating in various $CH_3OH(x \%)-H_2O$ solutions

综上,适量加入甲醇,可使镀液稳定,得到表面性能良好的镀层,从而提高合金电极的抗腐蚀性能;但如甲醇加入量过大,溶液过于稳定,铜的析出困难,很难得到均匀并有一定厚度的 包覆铜层,并且析出的铜过于细小,易被氧化,这些均不利于改善合金的抗腐蚀性能.若欲实现 完全非水体系化学镀,必须寻找有效的反应促进剂或考虑两种或多种具有不同官能团的有机 溶剂共同使用,以期施镀过程中铜的析出反应能顺利进行.

图 3 未施镀的(a)和在含 40 %甲醇镀液中化学镀铜后的(b)的 Mg_{1.18}Mn_{0.15}Ni 合金粉 SEM 图 Fig. 3 SEM images of the Mg_{1.85}Mm_{0.15}Ni alloys uncoated Cu(a) and coated by electroless Cu(b) in 40 % CH₃OH ·H₂O solution 图 3 是 Mg_{1.85} Mm_{0.18}Ni 合金粉于镀铜前和 在 40 %CH₃OH ·H₂O 镀液中镀铜后的扫描电镜 照片.由于该合金粉乃是经机械粉碎而得,镀前 粉末颗粒仅放大 200 倍就可见到明显的棱角; 而于镀后虽放大 7000 倍表面仍光滑圆润.

图 4 示出在含有 40 %CH₃OH 镀液中化学 镀铜的合金电极经稳态极化测试后,其合金表 面各元素含量与测试前的比较.如图所见,极化 后合金表面铜含量有所降低,这可能是由于在 强碱性溶液中(5mol L⁻¹)因极化而导致合金表 面铜的部分溶解,从而使体相的镁暴露出来.而 在碱液中镁也很快发生腐蚀生成氢氧化物,所 以极化之后的合金表面镁和氧的含量均相应增 加,对照图 1 铜溶解峰的存在恰好验证了这一 推测.

2.3 化学镀铜后合金电极交流阻抗研究

据图 1 及图 2 XPS 图谱,当甲醇含量达 ° 0,2 60%以上时,合金粉表面包覆的铜已被氧化,因 此,再对其进行下一步的研究已无意义.以下仅 就原粉和甲醇含量分别为 0%,20%,40%镀液 镀铜后的合金粉进行了交流阻抗测试.图 5 示 出这几种合金电极于 25 下的交流阻抗图谱, 表 3 列出图 5 各曲线的拟合参数,表中, *R*₂ 相 当于吸附氢转化过程的电阻, *R*₃ 为反应电阻.

另对以 40 %甲醇镀液化学镀铜的合金粉进 行表面元素分析,发现合金粉表面覆盖着一层 均匀致密的铜,但以此制成的电极片,其表面铜

- 图 4 在含 40 % CH₃OH 镀液中的化学镀铜 Mg_{1.85}Mm_{0.15}Ni 合金稳态极化曲线测试 前后表面元素含量比较
- Fig. 4 Element distribution on the surface of the Mg_{1.85} Mm_{0.15} Ni alloys coated by electroless Cu in 40 %CH₃OH(x %)-H₂O

- 图 5 甲醇含量不同镀液中化学镀铜 Mg_{1.85}-Mm_{0.15}Ni 合金电极交流阻抗图
- Fig. 5 Nyquist plots of the Mg_{1.85}Mm_{0.15}Ni alloy electrodes coated by electroless Cu in various CH₃OH(x %)-H₂O solutions

含量较压片前的明显降低,这是因为于试样压片时,合金表面的部分铜膜会被破坏,而此时的 合金电极在其开路电位(-0.5 V 左右,原粉约-0.9 V)下,将导致暴露于碱液中的镁迅速腐 蚀,合金表面很快生成一层氧化物膜,反应电阻增加,而表面铜膜的存在也同时会阻碍氢的扩 散.

表 3	镀铜前后合金电极的阻抗参数(25	

Tab. 3 Electrochemical	parameters of the M	$g_{1.85}$ Mm _{0.15} Ni alloys el	lectrodes(25)
CH ₃ OH %	0.04	20.04	40.0/
(CH ₃ OH ·H ₂ O)	0 %	20 %	40 %
$R_2/$ cm ²	2.87	2.71	3.04
$R_3/$ cm ²	18.84	13.77	22.25

注:未包覆铜的合金的 R₂, R₃分别为 1.29 cm² 和 1.99 cm²

3 结 论

稳态极化曲线测试表明 Mg1.85 Mm0.15 Ni 合金粉于甲醇 - 水体系镀液中化学镀铜后表现 出良好的抗腐蚀性能,并且溶液中甲醇的含量以 40 %最宜.倘如甲醇加入量过高,必将导致铜 的析出困难,很难得到均匀并有一定厚度的包覆铜层,况且,由于镀层颗粒过于细小,易被氧 化,致使形成的镀层主要是一些被氧化了的氧化铜,这对于镁基储氢合金电极抗腐蚀性能反而 有所降低.交流阻抗研究表明,合金粉表面包覆铜后,合金电极的反应电阻增加,与恒电位极化 曲线测定结论一致.

Corrosion Behavior of Mg_{1.85}Mm_{0.15}Ni Hydrogen Storage Alloy Modified by Electroless Cu in CH₃OH ·H₂O Solutions

YANG Hua-bin^{*}, ZHANG Hai-chang, SUN Hua, WANG Xiao-dan, ZHOU Zuo-xiang (College of Chemistry Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China)

Abstract: The corrosion behavior of the $Mg_{1.85} Mm_{0.15} Ni$ (Mm: Ce-rich mischmetal) alloy modified by electroless Cu coating in different CH₃OH-H₂O solutions has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. These results showed that the corrosion behavior was improved after electroless Cu. The potentiodynamic polarization and electrochemical impedance spectroscopy results showed that the alloy electrode had more promising anti-corrosion behavior after coated in a 40 % CH₃OH-H₂O solution. The values of corrosion current density and electrode reaction resistance were 5.6 mA cm⁻² (11.7 mA cm⁻² for uncoated alloy electrode) and 22.25 cm² (1.99 cm² for the uncoated alloy electrode), respectively.

Key words:Mg-based hydrogen storage alloy, Ce-rich mischmetal, Corrosin on resistance behavior, Electroless Cu coating

References:

- [1] Chen J , Yao P , Bradhurst D H , et al. Mg_2Ni -based hydrogen storage alloys for metal hydride electrodes[J]. Alloys and Compds. , 1999 ,293 ~ 295 :675 ~ 679.
- Huabin Yang, Hua Sun, Erdong Yang, et al, The corrosion behavior of ternary Mg_{2-x}Mm_xNi alloys[J].
 Electrochem. Soc. 2002,149(5):A543 ~ 545.
- [3] Johnson D. ZVIEW for Windows, Ver. 2.3 [d]1990~2000, Scribner Associates Inc.
- [4] Editor of "Orthogonal Experiment Method". Orthogonal Experiment Method [M]. Beijing: National Defence Industry Press. 1976.
- [5] Cao Chu-nan. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press. 1994.