Journal of Electrochemistry

Volume 11 | Issue 3

2005-08-28

An Electrochemical Behavior of LiMn_(2)O_(4) Electrode in Electrolyte Based on Room Temperature Ionic Liquid

ZHENG Hong-he

Recommended Citation

ZHENG Hong-he. An Electrochemical Behavior of LiMn_(2)O_(4) Electrode in Electrolyte Based on Room Temperature Ionic Liquid[J]. *Journal of Electrochemistry*, 2005, 11(3): 298-303. DOI: 10.61558/2993-074X.1657

Available at: https://jelectrochem.xmu.edu.cn/journal/vol11/iss3/11

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2005)03-0298-06

室温离子液体电解液中尖晶石 LMng O4 的电化学性质

郑洪河^{*},石磊,高书燕,王键吉

(河南师范大学化学与环境科学学院,河南 新乡 453007)

摘要: 应用循环伏安、恒电流充放电和电化学阻抗技术研究了尖晶石 LMn₂O₄于室温离子液体电解液中的 电化学性质. 实验表明,以室温离子液体作电解液,LMn₂O₄的首次放电容量可达 108 2 mAh/g,循环效率高 于 90%,温度和电流密度显著影响电极的电化学性能. 交流阻抗测定了 Li⁺在电极 /电解液相界面迁移的活 化能,为 55 kJ/mol 根据界面反应的高活化能解释了 LMn₂O₄在该离子液体电解液中低温性能和倍率充放电 性能不佳的原因.

 关键词:
 锂离子电池;室温离子液体;尖晶石 LMn₂O₄;交流阻抗

 中图分类号:
 O645, ™ 9 11

 文献标识码:
 A

室温离子液体 (RTL)是近年来诞生的新型液 态体系,具有液程宽、热稳定性好、导电性好、易回 收等突出的优点^[1~5],正在引起人们广泛的关注. 以其用于锂离子电池不仅拓宽了电解液的温度范 围,而且还可以提高电池在高功率密度下的安全 性.Wikes^[6]首先报道了粘度小、电导率高的 EMF BF₄离子液体的独特优点和应用前景,之后季铵盐 类离子液体由于其电化学窗口宽和对金属锂的稳 定性好,正成为锂离子电池具有发展前景的新型电 解液体系.有关 LiCoO₂、MnO₂、Li₄ Ti₈O₁₂和硬碳等 几种重要的电极材料在某些离子液体中的电化学 性能研究已有初步报道^[7~12].但涉及资源丰富、价 格低廉、工作电压高且无毒性的尖晶石 LMn₂O₄研 究却为数很少,相关结果也未能尽如人意^[13].

本文研究尖晶石 LMn₂O₄在三甲基己基铵 (TMHA)阳离子和磺酰亚胺(TFSI)阴离子组成的 离子液体电解液中的电化学性质,计算并解释了锂 离子通过电极/电解液相界面的迁移活化能以及影 响电极性能的内在原因.

1 实验部分

1.1 离子液体的制备

准确称量等摩尔的溴化三甲基己基铵 (TM-

HAB r, 99.9%, Aldrich)和磺酰亚胺锂 (LiTFSI, 99.9%, Aldrich),用二次水混合,70 下充分反 应 4 h后,经 CH₂CL 抽提,再将抽提液用二次水充 分洗涤,除去残留的 LB r,真空下旋转蒸发除去抽 提液中的 CH₂CL,最后于 80 下真空干燥 12 h, 产物为 TMHATFSI,含水量低于 2 ×10⁻⁵ (by mass).

于纯净的 TMHATFSI离子液体中加入一定量的 LiTFSI,在充满高纯氩气的手套箱中搅拌一昼 夜,制得 lmol/L LiTFSI/TMHATFSI离子液体电解液.

1.2 离子液体的电化学窗口测试

TMHATFSI离子液体的电化学窗口由循环伏 安法测定,实验分别以铜箔、镍箔、铝箔、玻璃碳和 乙炔黑作工作电极,光亮锂箔作辅助电极和参比电 极,电位扫描范围 0~5 V (vs Li/Li⁺)扫描速率 0.1 mV/s

1.3 尖晶石 LMn₂O₄的电性能测试

将尖晶石 LMn₂O₄ (德国 Merck Ca)、PVDF、 乙炔黑按 85 5 10的质量比均匀混合于 N 甲基吡 咯烷酮 (NMP)中,所得浆料均匀涂覆在铝箔表面, 真空干燥后作工作电极.在充满高纯氩气的手套箱

收稿日期:2004-11-26,修订日期:2005-01-12 *通讯联系人:Tel:(86-373)3326544, E-mail: hhzheng@mail com 国家自然科学基金(20273019),河南省杰出青年基金(04120001100)资助

(露点 < - 80)内组装模拟电池,辅助电极和参比电极均为光亮锂箔.循环伏安测试扫描范围为3.0~4.5 V,恒电流充放电实验的充电终止电压4.3 V,放电终止电压3.3 V.

1.4 交流阻抗分析

电化学阻抗分析使用 Sorlation 1255电化学测试系统,测试频率范围 100 kHz~10 MHz,实验前, 电极于 3.94 V下恒压 3 h以上,以保证测试过程 电极处于准电位平衡状态.

2 结果与讨论

2.1 TMHATFSI离子液体的电化学窗口

图 1示出 TMHATFSI离子液体在不同电极界 面上的电化学窗口.可以看出,其电化学稳定性在 很大程度上决定于电极材料的种类.据图在 0~5 V (vs Li/Li⁺)的电区间内,其于不同电极表面的 还原顺序为:乙炔黑 >Ni >Cu >A1 硬碳;而相应 的氧化顺序则为:Cu >乙炔黑 >Ni >A1 硬碳.其 中,TMHATFSI在硬碳和铝箔的表面没有明显的 还原和氧化反应发生.由于 TMHATFSI在此电区 间内于铝箔表面稳定,本文即选用铝箔作为 LMn₂O₄电极的集流体.尽管当电位低于 1V时, TMHATFSI能在乙炔黑表面发生强烈的还原反应, 但在 3~4.5 V之间没有明显的氧化反应,因而乙 炔黑可以用作 LMn₂O₄电极的导电剂.

图 2示出不同温度下 TMHATFSI离子液体在 乙炔黑表面的伏安行为.如图可见,TMHATFSI在 高电位下的氧化反应随着温度的升高逐渐增强,

图 2 不同温度下 TMHA TFS I离子液体在乙炔黑表面伏安行为 Fig 2 Cyclic voltammograms of TMHA TFS I on the surface of acetylene black at different temperatures

60 时,于在 5V 处的电流密度已超过 0.1 mA/cm²,这意味着氧化反应相当明显, TMHATFSI 的电化学稳定性随着温度的升高而迅速减弱.

22 尖晶石 LMn_2O_4 在 $1 mol \cdot L^{-1} LiTFSI/$

TMHATFS I离子液体中电化学性能

图 3示出尖晶石 LMn₂O₄在 30 和 0 02 mA/ cm²电流密度下的充放电曲线.如图,其充放电曲 线均表现为两个明显的电位平台,对应于LMn₂O₄ 电极的两步嵌脱锂过程,这与 LMn₂O₄在传统有机 电解液中的电化学行为相似.电极首次放电容量为 108 2 mAh/g,库仑效率达 90 2%.与 Caja^[13]报道

图 3 尖晶石 LMn₂O₄电极在 1 mol·L⁻¹ LiTFSI/TMHATFSI离 子液体电解液中的充放电曲线

的 LMn₂O₄在 1mol/L LBF₄ /DMFPBF₄离子液体电 解液中的可逆容量 (40mAh/g)与库仑效率 (75%) 相比,具有明显的优势.实验结果同时表明,该电极 经过 10次电化学循环后,并没有明显的容量衰减, 表现出满意的电化学性能.

图 4给出了 LMn₂O₄在该离子液体电解液中 于不同扫描速率下的循环伏安曲线.可以看出,脱 锂峰电位与嵌锂峰电位之间的电位差随着扫描速 率的增加而显著增大,说明该电极在快速极化过程 中产生了较大的电位滞后,电极的可逆性降低.如 图,扫描速率达到 0.1 mV/s时,其阳极过程的两步 脱锂峰几乎完全交叠,说明 LMn₂O₄在这种离子液 体的电解液中快速极化时的反应活性低、电极可逆 性差.

- 图 4 扫描速率对 LMn₂O₄电极在 1 mol·L⁻¹LiTFSI/TM-HATFSI离子液体电解液中伏安行为的影响
- Fig 4 Effect of the potential scan rate on the cyclic voltammograms of spinel LMn_2O_4 in 1 mol $\cdot L^{-1}$ L iTFSI/TMHATFSI ionic electrolyte

图 5示出 LMn₂O₄在 1 mol·L⁻¹ LiTFSI/TM-HATFSI电解液中于不同电流密度下的首次充放电 曲线. 如图,当电流密度从 0 02 mA/cm²增加到 0 8 mA/cm²时,电极首次放电容量从 108 2 mAh/g 迅速下降到 32mAh/g,这进一步证实了 LMn₂O₄电 极在该电解液中倍率充放电性能不佳.

升高温度可以降低离子液体的粘度,减小 Li⁺ 的迁移阻力,改善电解液与电极的浸润性,图 6示 出不同温度下 LMn₂O₄电极在该离子液体电解液 中的伏安行为.可以看出,低温下电极的极化电流 很小,表明此时 LMn₂O₄的嵌脱锂活性很低,随着 温度的升高,极化电流强度迅速增加,相应的阳极 峰与阴极峰之间的电势差减小,显然升高温度有利于提高 LMn₂O₄在离子液体电解液中电化学活性.

- 图 5 不同电流密度下 LMn₂O₄在 1 mol·L⁻¹LiTFSI/IM-HATFSI电解液中的充放电曲线
- Fig 5 Charge-discharge profiles of LMn_2O_4 in 1 mol $\cdot L^{-1}L$ iTF-SI/TMHATFSI electrolyte at different current densities

- 图 6 温度对 L M n₂ O₄在离子液体电解液中伏安行为的影响 (Scan rate: 0.05 mV/s)
- Fig 6 Effect of temperature on the cyclic voltammograms of $L\,Mn_2O_4 \mbox{ in the ionic electrolyte at } 0.05 \mbox{ mV}\/s$

图 7为不同温度下尖晶石 LMn₂O₄在 1 mol· L⁻¹LiTFSI/TMHATFSI离子液体电解液中的首次 充放电曲线.可以看出,电极在低温下嵌脱锂容量 低,温度从 20 增加到 50 ,电极的首次充电容 量从 82 4 mAh/g增加到 240 8 mAh/g,首次放电 容量在 30~40 时达到最大,库仑效率则从 20 时的 90%下降到 50 时的 35%.这说明虽然升高 温度有利于提高电极的反应活性,但温度过高会导 致电极可逆容量和库仑效率的下降.

- 图 7 不同温度下尖晶石 LMn₂O₄在 1 mol·L⁻¹ LiTFSI/ TMHA TFS I电解液中恒电流充放电曲线
- Fig 7 Charge-discharge profiles of LMn₂O₄ in 1 mol · L⁻¹ LiTFSI/TMHA TFSI electrolyte under different temperatures

- 图 8 不同温度下 LMn₂O₄在 1 mol·L⁻¹ LiTFSI/TMHATF SI电解液中的循环性能
- Fig 8 Cycleability of LMn_2O_4 in 1 mol $\cdot L^{-1}$ L iTFSI/TM HATFSI electrolyte under different temperatures

图 8为不同温度下尖晶石 LMn₂O₄在 1 mol·L⁻¹ LiTFSI/TMHATFSI离子液体电解液中的电化 学循环性能,可见,在低温条件下(<30)该电极 具有优良的循环性能,高温(>40)时,电极容量 随着循环次数的增多而迅速衰减,造成容量衰减的 原因一方面可能是由于 TMHATFSI在乙炔黑导电 剂表面发生氧化反应(如图 2)而破坏了电极性 能^[14],另一方面,也可能是由于尖晶石 LMn₂O₄自 身的高温性能差造成的.

2.3 交流阻抗分析

图 9为 3.94 V、不同温度下尖晶石 LMn₂O₄在 1 mol·L⁻¹LiTFSI/TMHATFSI离子液体电解液中 的 Nyquist图谱.可以看到,随着温度的升高,高频 半圆的起点沿实轴负方向移动,说明电解液的电阻 随温度的升高而减小.中频半圆为锂离子在电极和 电解液相界面的电荷迁移电阻,该半圆的直径随温 度的升高而减小,表明电荷迁移电阻随着温度的升 高而减小. 锂离子通过 LMn₂O₄ 离子液体电解液

图 9 3.94 V、不同温度下尖晶石 LMn₂O₄在离子液体电解 液中的交流阻抗谱

图 10 尖晶石 LMn₂O₄和离子液体电解液相界面电荷迁 移电阻的温度依赖性

Fig 10 Temperature dependance of charge transfer resistance at the interface between spinel LMn_2O_4 and the ionic electrolyte

相界面的迁移活化能可以根据电荷迁移电阻的倒 数与温度之间的 Arrhennius关系求算,据图 10,由 直线斜率,求得该电荷迁移的活化能为 55 ±5 kJ/ mol, 这一数值明显高于文献 [15] 报道的 LMn₂O₄ 电极在传统有机电解液中的活化能(24 kJ/mol), 意味着锂离子在此种电极 离子液体相界面的迁移 存在较高的能垒,从而制约着锂离子的界面迁移, 影响其电化学嵌脱锂的顺利进行. 据此即可解释 LMn₂O₄在该离子液体电解液中低温下嵌脱锂活 性低和高电流密度下的极化现象,高能垒产生的原 因一方面是因为电解液粘度高且与电极的浸润性 差有关,另一方面,Li⁺在电解液中容易与 TFSI形 成紧密接触离子对抵抗电场的影响,由此造成 Li⁺ 的迁移数低,所有这些因素都在不同程度上制约 Li⁺的界面迁移过程.

3 结 论

尖晶石 LMn₂O₄在 1 mol·L⁻¹ LiTFSI/TM-HATFSI离子液体电解液中可以进行有效的嵌脱锂 循环,并具有满意的可逆容量、库仑效率和循环稳 定性.由于电解液粘度高、Li⁺的迁移速率低及其与 活性物质界面浸润性差,电极的倍率充放电性能和 低温性能不好,降低电解液的粘度,有助于提高 Li⁺的迁移速率,改善电极的界面浸润性;选择新的 导电剂 .抑制离子液体在高电位条件下的氧化反应 也将有利于进一步提高尖晶石 LMn_bO₄该离子液 体中的电化学性能,相关研究正在进行中.

参考文献 (References):

- [1] Blanchard L A, Hancu D, Beckman E J, et al Green processing using ionic liquid and CO2 [J]. Nature, 1999, 99:28 ~ 29.
- [2] Sun J, Forsyth M, MacFarlane D R. Room temperature ionic liquid based the quaternary ammonium ion[J]. J. Phys Chem. B, 1998, 102: 8 858 ~ 8 864.
- [3] Welton T. Room temperature ionic liquid: new solvent for organic synthesis [J]. Chem. Rev., 1999, 99: 2 071 ~2 093.
- [4] Fuller J, Carlin C T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-mathylimidazazolium tetrafluoroborate: electrochemical couples and physical properties [J]. J. Electrochem. Soc., 1997, 144: 3 881 ~ 3 885.

- Noda A, Hayamizu K, Watanabe M. Pulsed-gradient [5] spin-echo H and F NMR ionic diffusion coefficient, viscosity and ionic conductivity of non-chloroaluminate room temperature ionic liquid [J]. J. Phys Chem. B, 2001, 105: 4 603 ~ 4 610.
- [6] Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. J. Chem. Soc., Chem. Commun., 1992, 965~967.
- Sakaabe H, Maatsumoto H. N-methyl-N-propylpiperi-[7] dinium bis (trifluoromethanesulfonyl) in ide-novel electrolyte base for Li batteries [J]. Electrochem. Commun . 2003. 5: 594 ~ 598
- [8] Fung Y S, Zhou R Q. Room temperature molten salt as medium for lithium battery [J]. J. Power Sources, 1999, 81: 891 ~ 895.
- [9] Hu Y, Li H, Huang X, et al Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries [J]. Electrochemistry communications, 2004, 6: 28 ~ 32.
- [10] Nakagawa H, Izuchi S, Kuwana K, et al Liquid and polymer gel electrolytes for lithium batteries composed room temperature molten salt doped by lithium salt [J]. J. Electrochem. Soc., 2003, 150: A 695 ~ 700
- [11] Katayama Y, Yukumoto M, Miura T. Electrochemical intercalation of lithium into graphite in room temperature molten salts containing ethylene carbonate [J]. Elelctrochem. Solid-State Lett, 2003, 6: A 96~97.
- [12] Ui K, Ishikawa K, Minami T, et al Development of the nonflammable lithium secondary battery with an ambient temperature molten salt electrolyte [A]. MLB 12 Meeting [C]. Nara: The Electrochemical Society, Inc., 2004. 360.
- [13] Caja J, Dunstan TD, Ryan DM, et al Application of ionic liquids as electrolytes in lithium rechargeable cells [A]. 12th International Symposium on Molten Salts [C]. Hawaii: The Electrochemical Society, 1999. 2 252.
- Aoshima T, Okahara K, Kiyohara C, et al Mecha-[14] nisms of manganese spinels dissolution and capacity fade at high temperature [J]. J. Power Sources, 2001, 97~98: 377~382
- Takahashi M, Tobishima S, Tabei K, et al Reaction [15] behavior of cathode materials for rechargeable lithium batteries [J]. Solid-state bnics, 2002, 148: 283 ~ 289.

· 302 ·

An Electrochemical Behavior of LMn_0O_4 Electrode in Electrolyte Based on Room Temperature bnic Liquid

ZHENG Hong-he^{*}, SHILei, GAO Shu-yan, WANG Jian-ji

(College of Chen istry & Environmental Sciences, Henan Normal University, Xinxiang 453007, China)

Abstract: The electrochemical behavior of spinel LMn_2O_4 electrode in ionic liquid electrolyte was investigated by using cyclic voltammetry, galvanostatic charge-discharge and AC impedance techniques. The results reveal that the spinel LMn_2O_4 can be effectively cycled in electrolyte based on the ionic liquid with discharge capacity of 108 2mAh/g and Coulombic efficiency of more than 90% in the first cycle at room temperature. Temperature and current density play an important role in the electrode performances. The activation energy for lithium ion transfer through interface between the electrode and the electrolyte was evaluated by AC impedance spectroscopy. The high activation energy accounts for the poor cell performance at low temperature and for its poor rate capability.

Key words: Lithium ion batteries, Room temperature ionic liquid, Spinel LMn₂O₄, AC impedance