# Journal of Electrochemistry

Volume 11 | Issue 4

2005-11-28

# Effect of HCO\_3~-Concentration on CO\_2 Corrosion in Gas and Oil Fields

Guo-An ZHANG

#### **Recommended Citation**

Guo-An ZHANG. Effect of HCO\_3~-Concentration on CO\_2 Corrosion in Gas and Oil Fields[J]. *Journal of Electrochemistry*, 2005, 11(4): 387-392. DOI: 10.61558/2993-074X.1673 Available at: https://jelectrochem.xmu.edu.cn/journal/vol11/iss4/6

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2005)04-0387-06

# HCO<sub>3</sub> 浓度对油气田中 CO<sub>2</sub>腐蚀的影响

# 张国安<sup>\*</sup>,路民旭,吴荫顺

(北京科技大学腐蚀与防护中心,北京 100083)

**摘要**: 应用动电位扫描和失重法研究 HCO<sub>3</sub> 对油气田 CO<sub>2</sub>腐蚀的影响.实验表明,当 HCO<sub>3</sub> 浓度低于 0.042 mol/L时,随着 HCO<sub>3</sub> 浓度的增加,溶液 pH升高,H<sup>+</sup>的还原速率 (阴极电流密度)下降;HCO<sub>3</sub> 浓度增 至 0.126 mol/L时,溶液中的 H<sub>2</sub>CO<sub>3</sub>, HCO<sub>3</sub> 的直接还原占主导地位,故阴极过程随 HCO<sub>3</sub> 浓度的上升而加 速,对阳极过程,在 HCO<sub>3</sub> 浓度低于 0.042 mol/L下,主要为活化过程,而且其阳极溶解电流 (密度)随 HCO<sub>3</sub> 浓度的增加而下降;HCO<sub>3</sub> 浓度增至 0.126 mol/L时,阳极过程出现明显的活化 钝化行为.高温高压腐蚀试验 显示,材料的腐蚀速率随介质 HCO<sub>3</sub> 浓度的增加而下降. SEM、EDS、XRD分析表明,在较低的 HCO<sub>3</sub> 浓度下,腐蚀产物膜的主要成分为 FeCO<sub>3</sub>晶体,HCO<sub>3</sub> 浓度较高时,则腐蚀产物主要为 Ca<sub>4</sub>Mg的化合物,并形成 Ca (Fe,Mg) (CO<sub>3</sub>)2复盐.在高 pH值下,Ca<sup>2+</sup>、Mg<sup>2+</sup>比 Fe<sup>2+</sup>更容易沉积.

关键词: 油气田; CO₂腐蚀; HCO₃<sup>-</sup>浓度;极化曲线 中图分类号: TG 179 **文献标识码**: A

油气田中的 CO<sub>2</sub>对管道和设备的腐蚀破坏往 往造成重大的经济损失和灾难性事故.因腐蚀导致 的原油泄漏会破坏水资源和生态环境并造成资源 浪费. CO<sub>2</sub>腐蚀已成为困扰石油工业发展的一个极 为突出的问题<sup>[1~4]</sup>.

油气井内地层水通常含有不同浓度的盐溶液, 其中 HCO<sub>3</sub> 浓度对管道的 CO<sub>2</sub>腐蚀有较大的影 响。Videm<sup>[5]</sup>认为, HCO<sub>3</sub> 的存在会增大介质的 pH值,降低 FeCO<sub>3</sub>的溶解度,从而降低碳钢的腐蚀 速率.而 Jasinsk<sup>[6]</sup>则指出,尽管 HCO<sub>3</sub> 的存在提 高了溶液的 pH值,但碳钢的腐蚀速率变化不大. 许立铭等<sup>[7]</sup>的研究表明:在较低的温度 (29 ) 下,当 HCO<sub>3</sub> 浓度较低时,碳钢的腐蚀速率会因阴 极过程受阻而减小;而在较高的温度 (59 )下,则 HCO<sub>3</sub> 滚度比较高,则不论环境温度如何,都会促 进碳钢的腐蚀.为了探明腐蚀介质中 HCO<sub>3</sub> 对碳 钢 CO<sub>3</sub>腐蚀的影响规律,本文应用动电位扫描和失 重法研究了油气田中地层水 HCO<sub>3</sub> 离子浓度对碳 钢的 CO<sub>2</sub>腐蚀行为影响.

## 1 实验方法

实验材料为 X65管线钢,其化学成分(%, by mass)为: C, 0 04 %; Si, 0 2%; Mn, 1. 5%; P, 0.011%; S, 0 003%; Mo, 0 02%; Fe,余量. 高温高 压腐蚀试验在 10L高温高压 FCZ磁力驱动反应釜 中进行.试样尺寸为外径 72 mm、内径 64 mm、弦长 35 mm、面宽 11 mm 的 1/6圆环试样.试验前将试 样打磨至 800#砂纸,丙酮除油,去离子水清洗.试 验介质为模拟某油田的地层水采出液,由去离子水 和分析纯化学试剂依表 1组成配制.腐蚀介质预先 用 99.95% CO<sub>2</sub>除氧 4 h,然后迅速将试样安装在  $\phi$ 72 mm 的圆柱状夹具上,并把夹具安装在旋转轴 上,关闭所有出口阀门,通 99.95% CO<sub>2</sub>除氧 1 h,以 除去安装过程混入的氧.然后升温、升压至设定数 值 (65 ,0.3 MPa),气体出口用水封,试验周期为 6 d 试验完毕取出试样,去离子水清洗、吹干、

收稿日期: 2005-03-25,修订日期: 2005-06-27 \*通讯联系人, Tel: (86-10) 62332458, E-mail: zga2003@163. com 国家自然科学基金重点项目 (50231020)资助

| Tab 1  Composition of formation water drawn out from oil field |              |           |                  |      |            |                  |                               |                         |
|----------------------------------------------------------------|--------------|-----------|------------------|------|------------|------------------|-------------------------------|-------------------------|
| bn                                                             | $K^+ + Na^+$ | $Mg^{2+}$ | Ca <sup>2+</sup> | Cl   | $SO_4^{2}$ | HCO <sub>3</sub> | CO <sub>3</sub> <sup>2-</sup> | Total ion concentration |
| Concentration $/\text{mg} \cdot \text{L}^{-1}$                 | 2568         | 78        | 64               | 3580 | 48         | 863              | 153                           | 7354                    |

表 1 油田中地层水采出液的成分

用失重法测量 3个平行试样的腐蚀速率;腐蚀产物 用 HCl(1 L, =1. 19 g/mL) + Sb<sub>2</sub>O<sub>3</sub> (20 g) + SnCl<sub>2</sub> (50 g) 溶液去除.另一平行试样用 Cambridge S360扫描电镜观察腐蚀后的表面形貌; League 2000能谱仪分析腐蚀产物成分; Dmax - RB X射 线衍射仪 (日本 Rigaku)作腐蚀产物膜物相分析, 工作条件: 40 kV, 150 mA, Cu靶。

电化学测试装置由 SII280型电化学测试系统 (Solartron)和 1 L容积的玻璃电解池组成,三电极 体系,研究电极为  $\phi$ 15 mm ×5 mm 的 X65管线钢 圆片,工作面积为 1.77 cm<sup>2</sup>.辅助电极为铂电极,参 比电极选用饱和甘汞电极.实验前将研究电极打磨 至 800#砂纸,去离子水清洗,吹干,丙酮除油,去离 子水清洗.测试前介质溶液先通 99.95% CO<sub>2</sub>除氧 4 h 然后安装研究电极,继续通 CO<sub>2</sub>1 h,出气口用水 封.动电位极化曲线测试电位范围: - 800~1000 mV(vs  $E_{corr}$ ),扫描速率为 20 mV/min,测试温度为 65 ,CO<sub>2</sub>分压为 0.1 MPa

2 结果与讨论

· 388 ·

2.1 动电位极化曲线

图 1为 X65 钢在 CO<sub>2</sub>分压为 0. 1 MPa, 65 , 静态条件下于不同 HCO<sub>3</sub> 浓度的模拟地层水介质 中的动电位扫描极化曲线. 一般认为,在含有 CO<sub>2</sub> 水溶液中,碳钢阴极过程可能包含如下 (1) ~ (4) 反应<sup>[8~9]</sup>.

 $2H^{+} + 2e^{----}H_2$  (1)

$$2H_2CO_3 + 2e^{----}2HCO_3 + H_2$$
 (2)

 $2HCO_3^{-} + 2e^{-----} 2CO_3^{-2--} + H_2$  (3)

$$2H_2O + 2e^{-----}2OH^- + H_2$$
 (4)

图 1给出,当 HCO<sub>3</sub> 浓度低于 0.042 mol/L 时,阴极电流密度随 HCO<sub>3</sub> 浓度增加而下降.这是 因为,此时溶液的 pH值较小,阴极过程以 H<sup>+</sup>还原 为主.但如 HCO<sub>3</sub> 浓度增至 0.126 mol/L时,则阴



- 图 1 X65钢在不同 HCO<sub>3</sub> 浓度 CO<sub>2</sub> 水溶液中的极化 曲线
- Fig 1 Polarization curves of the steel X65 in CO<sub>2</sub> -containing aqueous solution with different concentration of HCO<sub>3</sub>



- 图 2 HCO3 浓度对 X65钢腐蚀失重的影响
- Fig 2 Influences of the HCO<sub>3</sub><sup>-</sup> concentration on weight loss for the steel X65
  CO<sub>2</sub> partial pressure: 0. 3 MPa, temperature: 6 , flow rate: 0 or 0. 5 m/s, exposed time: 6 d

| Tab 2 The fitting electrochemical parameters of steel X65 in $CO_2$ -con taining aqueous solution |                                |                                                  |                  |                  |                                 |  |
|---------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|------------------|------------------|---------------------------------|--|
| HCO <sub>3</sub> <sup>-</sup><br>concentration<br>/mol L <sup>-1</sup>                            | $E_{\rm corr}$ /mV<br>(vs SCE) | $I_{\rm corr}$ /mA <sup>-</sup> cm <sup>-2</sup> | <sub>a</sub> /mV | <sub>c</sub> /mV | pH (CO <sub>2</sub> -saturated) |  |
| 0                                                                                                 | - 713. 68                      | 11. 21 ×10 <sup>-2</sup>                         | 37.83            | 121. 52          | 4. 5                            |  |
| 0. 005                                                                                            | - 720. 12                      | 8.04 ×10 <sup>-2</sup>                           | 43. 38           | 99. 05           | 5. 5                            |  |
| 0. 014                                                                                            | - 755. 83                      | 4. 97 ×10 <sup>-2</sup>                          | 38.97            | 82 20            | 6 2                             |  |
| 0. 042                                                                                            | - 774. 84                      | $2.05 \times 10^{-2}$                            | 34. 78           | 125. 22          | 6.7                             |  |
| 0. 126                                                                                            | - 787. 54                      | 4. 51 ×10 <sup>-2</sup>                          | 38.14            | 86.49            | 7. 0                            |  |

表 2 X65钢于 CO, 水溶液中拟合的电化学参数

极电流上升,原因是这时的阴极过程转化为由上述 式 (2)和式 (3)占主导地位,故增加 HCO; 的浓度 可加速其阴极过程.另一方面,当 HCO。浓度低于 0.042 mol/L时,阳极过程主要为活化过程,表现出 阳极溶解电流随 HCO<sub>3</sub> 浓度的增大而下降。直至 HCO。浓度增加到 0. 126 mol/L后,阳极过程出现 明显的钝化区,此表明,在高 pH下,该电极表面容 易形成腐蚀产物膜、从而抑制了阳极过程。

据图 1极化曲线,应用最小二乘法拟合 X65钢 在 HCO, 水溶液中弱极化区的电化学参数,结果如 表 2所列.由表可见, X65钢的自腐蚀电位 Ecori随 HCO<sub>3</sub> 浓度增大而负移,这是由于当 HCO<sub>3</sub> 浓度低 于 0.042 mol/L之下时, HCO, 一会渐次抑制 H<sup>+</sup>阴极 过程. 而当 HCO3 浓度达到 0. 126 mol/L 后, HCO3 又会在活化区内促进阳极过程,这也导致 Ecorr下降. HCO<sub>3</sub> 浓度低于 0.042 mol/L, I<sub>am</sub>随 HCO<sub>3</sub> 浓度的 增加而减小, HCO3 浓度大于 0.042 mol/L时, Lan随 HCO, 浓度的增加而上升,其变化规律与 HCO, 浓 度对阴极过程的影响相同.

#### 2.2 高温高压下 HCO, 浓度的影响

HCO<sub>3</sub> 的存在一方面提高了介质的 pH值,降 低  $H^+$ 的还原速率和腐蚀产物膜 (FeCO<sub>3</sub>)的溶解 度.但 HCO3 也可能直接参与阴极还原反应,加速 金属的阳极溶解.图 2示出在 65 , CO<sub>2</sub>分压 0.3 MPa,静态或动态 (流速为 0.5 m/s)条件下, X65钢 腐蚀失重和计算的 pH 值随溶液中 HCO3 浓度的 变化关系。可以看出,随着 HCO, 浓度的增加,溶 液的 pH值上升,而材料的腐蚀速率则相应下降, 这可能是在低的 HCO<sub>3</sub> 浓度下,溶液的 pH比较 低,阴极反应以 H<sup>+</sup>的还原为主. 随着 HCO<sub>3</sub> 浓度

的增大,溶液的 pH迅速升高 (见图中 pH~HCO, 浓度曲线),H<sup>+</sup>的还原过程减缓,从而腐蚀速率大 为降低.继续增加 HCO, 浓度 (溶液的 pH同时升 高),阴极过程逐渐转化为以 H<sub>2</sub>CO<sub>3</sub>和 HCO<sub>3</sub> 的直 接还原为主,并因此减慢了由于 pH值升高而引起 的腐蚀速率下降幅度.

图 2示明,动态条件下的腐蚀速率明显大于静 态的,但当 HCO, 浓度达到 0. 126 mol/L 时,两者 的腐蚀速率相差便不大.这是因为对低浓度的  $HCO_3$  溶液,流动状态可加速 H<sup>+</sup>的扩散,从而加 快阴极过程,而且此时生成的腐蚀产物膜(FeCO<sub>3</sub>) 比较疏松,在流体的冲刷作用下容易破坏而流失, 因而流速对腐蚀速率的影响比较大.如上所述,在 高的 HCO<sub>3</sub> 浓度下,阴极过程以 H<sub>2</sub>CO<sub>3</sub>和 HCO<sub>3</sub> 的还原为主,生成的腐蚀产物膜比较致密、完整,受 流体的破坏作用较小,因而动态与静态条件下腐蚀 速率相差不大.

图 3为 X65钢于高温高压生成的腐蚀产物膜 的 SEM 形貌照片. 如图所示,静态条件下,当 HCO<sub>3</sub> 浓度比较低时,腐蚀产物主要为 FeCO<sub>3</sub>晶 体,晶体堆垛比较致密 (图 3a). HCO3 浓度较高 时,腐蚀产物主要为 Ca,Mg的化合物,晶体形貌变 得模糊,晶粒比较细小、致密 (图 3b),这对基体具 有更好的保护性,表明在高 pH值下,Ca<sup>2+</sup>、Mg<sup>2+</sup>比  $Fe^{2+}$ 更容易发生沉积. 而在动态 (0.5 m/s)和低浓 度 HCO<sub>3</sub> 条件下,腐蚀产物主要也是 FeCO<sub>3</sub>晶体. 并可观察到该腐蚀产物膜在流体的冲刷作用下遭 受比较严重的破坏 (图 3c). HCO3 浓度比较高时, 其表面形貌与静态的差别不大 (图 3d),主要也是 Ca, Mg的化合物,其中 Ca的含量高达 62.08% (by mass,表 3).图 4和图 5分别示出动态条件 (0.5

m/s)下 X65钢在 HCO<sub>3</sub> 浓度为 0 004 7 mol/L和 0 126 mol/L 介质中形成腐蚀产物膜的 EDS和 XRD图谱。由图 5可见,当 HCO<sub>3</sub> 浓度为 0 004 7 mol/L时,腐蚀产物膜主要为 FeCO<sub>3</sub>; HCO<sub>3</sub> 浓度 增至 0 126 mol/L时,腐蚀产物膜中除了未溶解的 Fe外,还出现 Ca (Fe,Mg) (CO<sub>3</sub>)<sub>2</sub>的衍射峰,这表 明在高 pH值溶液中 Ca<sup>2+</sup>、Fe<sup>2+</sup>、Mg<sup>2+</sup>与 CO<sub>3</sub><sup>2-</sup>发 生了共沉积,并在腐蚀产物膜中以碳酸复盐的形式 存在. Ca, Fe, Mg的碳酸盐均为方解石族,它们可 以相互取代,形成不同配比的碳酸复盐<sup>[10]</sup>.这种碳 酸复盐晶体更加细小,致密,能经受流体的冲刷作 用,对基体具有更好的保护性.



图 3 X65钢在不同 HCO<sub>3</sub> 浓度 CO<sub>2</sub> 水溶液中于静态 (a, b)和动态 (c, d)条件下腐蚀产物膜的 SEM表面形貌

Fig 3 SEM surface images of corrosion scales of steel X65 after testing in  $CO_2$  - containing aqueous solution with different concentration of  $HCO_3^-$  under static (a, b) or dynamic conditions (c, d)  $HCO_3^-$  concentration/mol  $\cdot L^{-1}$ , flow rate/m  $\cdot s^{-1}$ : a) 0 0047, 0; b) 0 126, 0; c) 0 0047, 0 5; d) 0 126, 0 5



Fig 4 EDS spectra for corrosion scales of steel X65 after testing in  $CO_2$ -containing aqueous solution with different concentration of  $HCO_3^-$  under dynamic condition (0.5m/s)  $HCO_3^-$  concentration/mol  $\cdot$  L<sup>-1</sup>: a) 0.0047; b) 0.126

表 3 动态条件 (0 5m/s)下 X65钢在不同 HOC<sub>3</sub><sup>-</sup>浓度的 CO<sub>3</sub>水溶渡中腐蚀产物膜的 EDS能谱 Tab 3 EDS analytical results of corrosion scales of steel X65 after testing in CO<sub>2</sub> - containing aqueous solution with different concentration of HCO<sub>3</sub><sup>-</sup> under dynamic condition (0 5m/s)

| Concentration of             | Content of the elements % (by mass) |       |       |       |      |       |      |  |
|------------------------------|-------------------------------------|-------|-------|-------|------|-------|------|--|
| $HCO_3^{-}/mol \cdot L^{-1}$ | Fe                                  | Ca    | Cl    | S     | Mg   | Na    | Mn   |  |
| 0. 0047                      | 93. 79                              | 0.84  | 1. 02 | 1. 93 |      |       | 2.42 |  |
| 0. 126                       | 18.72                               | 62.08 | 5. 53 | 0. 45 | 5.94 | 7. 27 |      |  |
|                              |                                     |       |       |       |      |       |      |  |



图 5 动态条件 (0.5 m/s)下 X65钢在不同 HCO<sub>3</sub><sup>-</sup>浓度 CO<sub>2</sub>水溶液中腐蚀产物膜的 XRD谱图 Fig 5 XRS pattern of corrosion scales of steel X65 after testing in CO<sub>2</sub>-containing aqueous solution with different concentration of HCO<sub>3</sub><sup>-</sup> under dynamic condition (0.5 m/s) HCO<sub>3</sub><sup>-</sup> concentration/mol·L<sup>-1</sup>: a) 0.0047, b) 0.126

## 3 结 论

1)动电位极化曲线测试表明,当 HCO<sub>3</sub> 浓度 低于 0. 042 mol/L时,阴极过程以 H<sup>+</sup>还原为主,随 着 HCO<sub>3</sub> 浓度的增大,溶液 pH升高,H<sup>+</sup>的还原速 率下降. HCO<sub>3</sub> 浓度达到 0. 126 mol/L时,溶液中 的 H<sub>2</sub>CO<sub>3</sub>、HCO<sub>3</sub> 直接参与还原占主导地位,阴极 电流相应上升. HCO<sub>3</sub> 浓度低于 0. 042 mol/L时, 阳极过程主要为活化过程,而且随着 HCO<sub>3</sub> 浓度 的增大,阳极溶解电流下降; HCO<sub>3</sub> 浓度增大到 0. 126 mol/L后,阳极过程出现明显的活化 - 钝化 行为.

2)高温高压腐蚀试验表明,X65钢的腐蚀速率 随溶液中 HCO<sub>3</sub> 浓度增大而下降.在较低 HCO<sub>3</sub> 下,腐蚀产物主要为 FeCO<sub>3</sub>晶体,堆垛比较致密. HCO<sub>3</sub> 浓度较高时,腐蚀产物主要为 Ca(Fe,Mg) (CO<sub>3</sub>)<sub>2</sub>的复盐,晶体形貌变得模糊,晶粒比较细 小、致密,对基体具有更好的保护性.

### 参考文献 (References):

- [1] LU Minxu (路民旭), BA I ZHenquan (白真权), ZHAO Xinwei (赵新伟), et al Actuality and typical cases for corrosion in the process of extraction, gathering, storgage and transmission for oil and gas [J]. Corrosion & Protection, 2002, 23(3):105~113.
- [2] Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production - a compendium [J]. Corrosion, 2003, 59 (8): 659 ~ 683.
- [3] Videm K, Kvarekval J. Corrosion of carbon steel in carbon dioxide saturated solutions containing small amounts of hydrogen sSulfide [J]. Corrosion, 1995, 51 (4): 260 ~ 269.
- [4] Hong T, Sun Y H, Jepson W P. Study on corrosion inhibitor in large pipelines under multiphase flow using EIS [J]. Corrosion Science, 2002, 44: 101 ~112.
- [5] Videm K, Koren A M. Corrosion, passivity, and pitting of carbon steel in aqueous solutions of  $HCO_3^-$ ,  $CO_2$ , and Cl<sup>-</sup> [J]. Corrosion, 1993, 49 (9): 746 ~ 754.

- [6] Jasinski R. Corrosion of N80 type steel by CO<sub>2</sub> /water mixtures[J]. Corrosion, 1987, 43 (4): 214 ~ 218
- [7] XU Liming (许立铭), DONG Zhehua (董泽华),
  FAN Hanxiang (范汉香). Effect of CO<sub>2</sub>, HCO<sub>3</sub> on the corrosion of carbon steel in oil and gas fields productive water [J]. Natural Gas Industry, 1996, 16 (4): 57~60.
- [8] Ogundele G I, White W E Some observations on corrosion of carbon steel in aqueous environments containing

carbon dioxide [J]. Corrosion, 1986, 42 (2): 71 ~ 78

- [9] Nesic S, Postlethwaite J, Olsen S An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52 (4): 280 ~ 294.
- [10] PAN ZHoulu (潘兆橹). Crystallography and Mineralogy (next) [M]. Beijing: geology press, 1994. 247 ~256.

# Effect of HCO<sub>3</sub> Concentration on CO<sub>2</sub> Corrosion in Gas and Oil Fields

#### ZHANG Guo-an<sup>\*</sup>, LU M in-xu, WU Yin-shun

(Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: The effecs of HCO<sub>3</sub> concentration on CO<sub>2</sub> corrosion in gas and oil fields were investigated by carrying out potentiodynamic scans and weight bass tests Potentiodynamic polarization curves showed that the cathodic current density decreased with cm increase of HCO<sub>3</sub> concentration when [HCO<sub>3</sub>] was lower than 0 042 mol/L. The cathodic reations were promoted by increasing [HCO<sub>3</sub>] when it reached 0. 126 mol/L, Anodic behavior was an active process at low er [HCO<sub>3</sub>] concentration and the anodic current density decreased with the increase of [HCO<sub>3</sub>] concentration. An evident active passive behavior exhibited in anodic process at 0. 126 mol/L HCO<sub>3</sub>]. Under high pressure and high temperature, the corrosion rate of steel X65 decreased with the increase of HCO<sub>3</sub> concentration while pH increased SEM, EDS, XRD results of the corrosion scales indicated that a typical FeCO<sub>3</sub> crystallite was found at low HCO<sub>3</sub> concentration but Ca (Fe,Mg) (CO<sub>3</sub>)<sub>2</sub> at high HCO<sub>3</sub> concentration Ca<sup>2+</sup>, Mg<sup>2+</sup> precipitated prior to Fe<sup>2+</sup> at high pH value

Key words: Oil and gas fields, CO<sub>2</sub> corrosion, HCO<sub>3</sub> concentration, Polarization curves