Journal of Electrochemistry

Volume 12 | Issue 1

2006-02-28

Special Photoelectrochemical Response of Nano-crystalline TiO_2 Electrode

Bi-bo LAN

Jian-zhang ZHOU

Yan-yan XI

Hong-xiang CHEN

Guang-hua YAO

Zhong-hua LIN

Recommended Citation

Bi-bo LAN, Jian-zhang ZHOU, Yan-yan XI, Hong-xiang CHEN, Guang-hua YAO, Zhong-hua LIN. Special Photoelectrochemical Response of Nano-crystalline TiO_2 Electrode[J]. *Journal of Electrochemistry*, 2006 , 12(1): 16-19. DOI: 10.61558/2993-074X.1690 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss1/3

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)01-0016-004

纳米 TD₂电极的特殊光电化学响应

蓝碧波,周剑章,席燕燕,陈红香,姚光华,林仲华^{*} 厦门大学固体表面物理化学国家重点实验室,厦门大学化学系,福建厦门 361005)

摘要: 应用涂膜法、电沉积法和溶胶 凝胶法制备纳米 TD2电极.实验发现,纳米 TD2具有特殊的光电化学响应,其光电流 ~电位变化出现光电流峰,这一特殊的光电化学性质乃与纳米半导体电极的纳米结构及其特殊的光诱导氧化还原反应机理密切相关.

关键词: 纳米 TD₂电极;光电流 ~电位响应;光电化学 中图分类号: 0 646;0 482 **文献标识码**: A

由于纳米 TD₂电极具有庞大的比表面和许多 优异的性质,在光电化学太阳能电池、光催化、化学 电源和燃料电池等领域具有广泛的应用^[1-2].纳米 半导体电极是由纳米粒子组成的多孔性电极,溶液 可以渗透到电极的每个纳米粒子以及基底上.自从 Gratzel报道了经染料敏化的 TD₂多孔光阳极以 来,纳米 TD₂电极的研究非常活跃.它具有与一般 半导体电极的光电流 ~电位变化关系中,从平带电 位开始产生光电流,并且迅速达到饱和.本文分别 应用涂膜法、电沉积法和溶胶 凝胶法制备纳米 TD₂电极,实验发现纳米 TD₂稳态光电流 ~电位变 化关系不同于块体理想半导体,与作者以往的研究 类似^[3],结合暗态极化曲线,进一步探索其产生原 因.

1 实验部分

7

1.1 纳米 TD2电极的制备方法

1)涂膜法制备:在适量无水乙醇中分散 TO₂ 粉末 (from Aldrich)成悬浊液.依次用丙酮、无水乙 醇和三次水超声清洗导电玻璃 (IID).然后将 TO₂ 悬浊液均匀地涂在清洗过的 IIO上,即得纳米 TO₂电极 L粒径约为 150 nm.

2)电沉积法制备:用 NaOH调节三氯化铁溶液的 pH值至 2.2,将清洗过的 IIO电极放入三氯化

钛溶液,恒定电位 +0.1 V阳极极化 30 min,便可 在 IIO上形成钛 ()水化膜,清洗后室温干燥,置 于红外干燥箱中干燥 20 min,再于马福炉中 450 空气氛中恒温 0.5 h,然后冷却至室温,即得纳米 TO2电极,粒径约为 30 nm.

3)溶胶 凝胶法制备:以乙酞乙酸乙醋作保护剂,水解钛酸四丁酯,得到 TO2透明溶胶.使用提 拉法将透明溶胶转移到清洗过的 ITO上,放在红外 干燥箱中干燥 20 min,再于马福炉中 450 空气氛 中恒温 0.5 h,然后冷却至室温,即得纳米 TO2电 极班,粒径约为 30 nm.

1.2 仪器及实验条件

使用自行研制的联用系统作光电化学测量,电 解池为带石英窗口的三电极电解池,工作电极为纳 晶 TO₂电极, Pt电极为对电极,饱和甘汞电极 (SCE)为参比电极.文中所指电极电位均相对于 SCE 电解质为 0.2 mol/L Na₂ SO₄溶液.使用恒电位 仪 (Model 273 EG&G PARC)分别作控电位或电位 扫描的光电化学测试,以 200 W 氮灯为光源,入射 光经单色仪控制波长后,光斩波器 (Model 194 EG&G PARC,频率为 30 Hz)调制,照射到工作电 极,用锁定放大器 (Model 5206 EG&G PARC)检测 光电流作用谱和光电流~电位变化曲线,实验数据 用计算机采集处理.

收稿日期:2005-09-07 *通讯作者: Tel: (86-592)2189663, E-mail: zhlin@xmu edu cn 国家自然科学基金 (20373057,20433040)资助 室温 (20)下实验,所用试剂均为分析纯.

2 结果和讨论

图 1是分别用涂膜法、电沉积法和溶胶 凝胶 法制备的 TO₂在 0.2 mol/L Na₂ SO₄溶液中的光电 流谱图.由图可见,除了起动能量有所差别外,3种 方法制备的 TO₂的光电流谱的光谱范围基本相 似.

- 图 1 不同方法制备的 TO₂在 0.2 mol/L Na₂ SO₄溶液中控 电位 800 mV的光电流谱图 a)涂膜,b)电沉积,c)溶胶 凝胶法
- Fig 1 Photocurrent spectra for the TiO₂ p repared with different methods in 0. 2 mol/L Na₂ SO₄ solution at 800 mV a) spreaded, b) electrodeposited, c) sol-gel

图 2~图 4分别给出以上 3种方法制备的纳 米 TD₂电极的光电流 ~电位变化关系和暗态极化 曲线 (扫速 0.8 mV/s).显然,由 3种方法制备的 TD₂其产生的光电流都为阳极光电流,并且随着电 位正移光电流先是迅速增大,至极大处出现光电流 峰,然后衰减下来,变化平缓.作者认为,这一不同 于块体理想半导体的光电响应乃与构成纳米半导 体电极的纳米颗粒的光电性质及其光诱导氧化还 原反应机理的特殊性有关.

由于纳米半导体粒子能带基本不弯曲,很难形 成空间电荷区,其光生电子和空穴通过扩散到达微 粒表面,电荷分离主要受半导体/溶液界面的动力 学控制.又因电解质可穿透到 IIO导电层上的整个 微粒膜,每个半导体微粒都能够和溶液发生接触, 光照时,半导体微粒吸收光,产生电子、空穴对,并 扩散到微粒表面,此时,若还原物种捕捉空穴速率 较快,就会产生阳极光电流,反之,产生阴极光电

- 图 2 涂膜法制备的纳米 TD₂电极在 0 2 mol/L Na₂ SO₄ 溶液中于白光照射下的光电流 ~电位变化 (a)和暗 态极化曲线 (b)
- Fig 2 $L_{ph} \sim E$ curve under illuination (a) and polarization curve under dark (b) for the nanocrystalline TiO₂ electrode prepared by spreaded in 0. 2 mol/L Na₂SO₄ solution

- 图 3 电沉积法制备的纳米 TO₂电极在 0.2 mol/L Na₂ SO₄中 于白光照射下的光电流 ~电位变化 (a)和暗态极化曲线 (b)
- Fig 3 $I_{\rm ph} \sim E$ curve under illuination (a) and polarization curve under dark (b) for the nanocrystalline TiO₂ electrode prepared by electeoposition in 0. 2 mol/L Na₂ SO₄ solution

流.可见,依照溶液中氧化还原电对捕捉空穴和电 子之速率快慢,每个独立的半导体微粒和整个纳米 电极都可能产生阳极或阴极光电流,呈现 n型或 p 型半导体的性质^[1].对 Na₂ SO₄溶液,存在 H_2O/H_2 和 O₂/H₂O电对,相较其标准电极电位,纳米 TO₂ 电极的价带电位正于 O₂/H₂O的幅度远大于导带

- 图 4 溶胶 凝胶法制备的纳米 TO₂电极在 0.2 mol/L Na₂ SO₄溶液中于白光照射下的光电流 ~电位变化 (a)和 暗态极化曲线 (b)
- Fig 4 $I_{\rm ph} \sim E$ curve under illuination (a) and polarisation curve under dark (b) for the nanocrystalline TiO₂ electrode prepared by sol-gel in 0.2 mol/L Na₂ SO₄ solution

- 图 5 光照下于 TD₂微粒上发生的反应 (a)和 TD₂微粒 n 型半导体响应 (b)示意图
- Fig 5 Schematic diagrams of reactions occurred on the TD₂ particles(a) and n-type semiconductor response of the nanocrystalline TD₂ films(b)

电位负于 H₂O/H₂的幅度.于是光生空穴即被还原 物种 H₂O分子捕捉,生成 O₂分子,又因储荷效应的 作用,光生电子在 TD2微粒和导电玻璃的导电层 之间出现浓度梯度,并驱动电子通过导电玻璃流向 外电路 ,形成阳极光电流 (见图 5). 然而 ,与块体理 想半导体显著不同的是 ,电极电位正移 ,光电流反 而衰减下来.由图 2b、图 3b和图 4b显示的暗态极 化曲线可见,在光电流开始衰减的电极电位附近, 阳极电流显著增大,有较多的氧化物种开始产生, 生成的氧化物种可捕捉光生电子,从而降低了流过 外电路的光电流. 电位越正, 一方面, 导电层 溶液 和 TD₂ 溶液界面电位较正,有利于电子、空穴对 的分离;另一方面又有利于氧化物种产生,其捕捉 光生电子的作用也越强、致使流过外电路的光电流 下降,二者制约的结果导致出现图 2,图 3和图 4 中的光电流 ~电位变化曲线出现了于光电流峰之 后的起伏衰减波形.

参考文献 (References):

- [1] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanomystalline Systems [J]. Chem. Rev., 1995, 95: 49 ~68.
- [2] Hoffmann M R, Martin S T, Bahnemann D W, et al Environmental application of sem iconductor photocatalysis[J], Chem. Rev., 1995, 95: 69.
- [3] Luo Jin (罗瑾), Su Lian-yong (苏连永), Xie Lei (谢 雷), et al Studies on photoelectrochem ical behavior of nanocrystaMne TD2 film [J]. Acta Phys Chim. Sin, 1998, 14: 315~319.
- [4] Lv Hong-hui (吕红辉), Wen Zi (文子), Liu Yan-mei (刘艳梅), et al The effect of the suface state of TD2 nanoparticles on the photocurrent response[J]. Acta Scientianum Naturalium Universitatis Jilinensis, 2001, 2: 95 ~98

Special Photoelectrochem ical Response of Nano-crystalline TD₂ Electrode

LAN Bi-bo, ZHOU Jian-zhang, XI Yan-yan, CHEN Hong-xiang, YAO Guang-hua, L N Zhong-hua^{*} (State Key Laboratory of Physical Chemistry of the Solid Surface, Department of Chemistry, Xiam en Universty, Xiam en 361005, Fujian, China)

Abstract: The nano-crystalline TO_2 electrodes were prepared by spread method, electrodeposition and sol-gel method. The experimental results show that the nano-crystalline TO_2 electrodes have special photoelectrochem ical response-the photocrrent-potential curves appear peaks. The special photoelectrochem ical behaviors of nanocrystalline TO_2 electrodes are ascribed to nano-structure as well as special light induced redox reaction mechanism of nano-crystalline semiconductor electrodes

Key words: Nano-structured TO₂ electrodes, Photoeurrent-potential response, Photoelectrochemistry