Journal of Electrochemistry

Volume 12 | Issue 1

2006-02-28

Electroless Nickel Plating on Carbon Nanotube with Nonpalladium Activation Procedure

Guang-hui HU

Hui-huang WU

YANGFang-zu YANGFang-zu

Recommended Citation

Guang-hui HU, Hui-huang WU, YANGFang-zu YANGFang-zu. Electroless Nickel Plating on Carbon Nanotube with Non-palladium Activation Procedure[J]. *Journal of Electrochemistry*, 2006, 12(1): 25-28. DOI: 10.61558/2993-074X.1692

Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss1/5

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)01-0025-004

碳纳米管表面的无钯活化化学镀镍研究

胡光辉,吴辉煌*,杨防祖

(厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建厦门 361005)

摘要: 本文提出碳纳米管表面无钯活化的化学镀镍方法.碳纳米管经硝酸氧化和碱中和后表面生成羧基, 利用羧基吸附镍离子,之后吸附的镍离子被化学还原为镍的纳米微粒并成为化学镀镍的催化活性中心.红外 吸收光谱和电子显微镜观察等证实了上述活化过程的机理.实验表明,新的活化方法对碳纳米管表面化学镀 是切实可行的,文中同时对化学沉积层的不同形貌进行讨论.

关键词: 碳纳米管:表面活化:化学镀镍

中图分类号: 0 646

文献标识码: A

碳纳米管具有诱人的机械性能,如抗张强度可 达 150 GPa^[1],平均 Young s模量为 18 TPa^[2],抗弯 曲强度高达 14.2 GPa^[1]等.碳纳米管的用途之一 是制备高性能复合材料^[34],如碳纳米管增强的 SiC陶瓷复合材料,其抗弯曲强度和断裂韧度均比 单一的 SiC陶瓷提高了 10%^[5].碳纳米管经化学 镀 Ni-P合金后,耐磨性比 Ni-P, Ni-P-SiC及 Ni-P-石墨的高,而摩擦系数更低^[6].碳纳米管表面化学 镀需要预先活化处理,目前通常采用 SnCl₂敏化和 PdCl₂活化的二步法^[7],或用胶体钯法^[8].由于钯 的价格高,而且钯活化溶液如果配制不当,就得不 到满意的活性.本文作者探索了一种化学镀镍无钯 的活化方法,其优点不仅是有利于降低成本,而且 可避免镀层中引入 Sn等杂质.当碳纳米管被用作 电极材料时, Sn等杂质的存在可能是有害的.

1 实验

7

碳纳米管在化学镀镍之前须经以下预处理:先 用硝酸、后用 80 的 0.1 mol·L⁻¹NaOH浸泡 10 min,使碳表面羧基化;经去离子水超声清洗后,再 用 0.2 mol·L⁻¹NiSO4于室温浸泡 10 min,以使其 表面吸附 N $^{2^+}$;水洗后,用 KBH4还原吸附的 N $^{2^+}$, 生成的 Ni微粒即成化学镀镍的催化活性中心.预 处理后的碳纳米管经过水洗即可施镀,镀液组成 为:NiSO₄ · 6H₂O 25 g·L⁻¹, NaH₂ PO₂ · H₂O 20 g ·L⁻¹, Na₅C₆H₅O₇ · 2H₂O (柠檬酸钠) 20 g·L⁻¹, NaAc(无水)5 g·L⁻¹, pH 6 0. 镀槽为 250 mL烧 杯,置于 HH-S型电热恒温水浴锅中,温度 80 , 不加搅拌.在上述镀液组成和沉积条件下,其 NiP 镀层的 P含量为 11. 0% (by mass).

LEO 1530场发射扫描电子显微镜 (德国 LEO 公司)用于镀层表面形貌观察,实验参数为 EHT = 20.0 kV,真空度 2.58 × 10^{-7} Pa D/MAX-RC转靶 X射线粉末衍射仪 (日本 R IGA KU 公司)用于镀层 结构测定,Cu靶 k 射线,管电压 40 kV,管电流 30 mA,以石墨单色器滤波,扫描速率 8 °min JEM-100CX II型透射电子显微镜 (日本电子株式会社) 用于观察镀层表面形貌,加速电压为 100 kV. 吸附 物种的红外吸收光谱测定使用 N icolet OMN I A vatar System 360 (Ge, DTGS),探测器为 DTGS KB r

2 结果与讨论

2.1 无钯活化过程的机理

碳纳米管表面本身不存在化学镀镍的催化活 性中心,因此施镀之前必先经过预处理,以使表面 活化.而本文直接用镍盐代替钯盐进行预处理,其 主要步骤包括碳表面羧基化、N²⁺离子的吸附和吸 附 N²⁺离子的化学还原.即如实验部分所述,预处

收稿日期: 2005-06-30;修订日期: 2005-07-25 *通讯作者, Tel: (86-592)2181436, E-mail: hhwu@xmu edu cn 国家自然科学基金 (20073035)资助 理时碳纳米管首先用硝酸氧化处理,该步骤除了清除管中存在的杂质外,主要是使管表面氧化生成羟基(—OH)、羧基(—COOH)和羰基(C=O)等基团,从而提高其亲水性.碳纳米管氧化后,在 NaOH溶液中浸泡以中和残留在管中的 HNO₃,同时使羧基(—COOH)离子化,为下一步 Ni²⁺的吸附作准备.之后,在 NiSO₄溶液中,表面通过羟基(—OH)、羧基(—COO⁻)吸附 Ni²⁺离子.吸附的 Ni²⁺被KBH₄还原后即在管上形成镍的微晶,此即化学镀镍所需的催化活性中心.

上述预处理过程机制可由红外吸收光谱测定 得到证实.图 1是碳纳米管在经过硝酸氧化、碱浸 泡和吸附 Ni⁺⁺等不同处理步骤后的红外吸收光 谱. 如图可见, 经硝酸氧化处理后的谱线 (1), 在 1 733. 7、1 586. 9、1 387. 6和 1 216. 4 cm⁻¹等处出 现吸收谱带,根据文献[9~11],可依次指认为羧 基 ($-CO_2H$)的伸缩振动 (C=O),羧酸根离子 $(-CO_2^{-1})$ 的反对称伸缩振动 as (CO_2^{-1}) 和对称伸 缩振动 (CO2), 以及 C原子和羟基 (---OH)之 间化学键的振动,即 (COH)和 (C-O). 氧化过 的碳纳米管经 NaOH处理后,对应的红外吸收谱线 (2)发生了下列变化:首先, as (CO₂)明显增强, 表明 NaOH处理使羧酸根离子 (—CO₂)的表面浓 度增大;其次,1465.0 cm⁻¹的振动谱带增强,表明 此时产生了羧酸根离子 (—CO。)的对称伸缩振动 $(CO_2^{-}).$

图 1谱线 3是碳纳米管吸附 N_{1}^{2+} 离子之后的 红外吸收谱,显示出波数为 1 143. 3 和 1 104. 7 cm⁻¹的两新谱带,这两个谱带的出现与 N_{1}^{2+} 离子 吸附变化紧密相关,可认为是 N_{1}^{2+} 离子与羧酸根 离子($-CO_{2}^{-}$)形成了"C-O-Ni"键而引起的. 已有文献表明^[12],羧酸根能与金属离子配位成键, 且成键的方式有多种,如单齿配位、螯合配位和桥 式配位等等. 在本实验条件下羧酸盐根离子 ($-CO_{2}^{-}$)与 N_{1}^{2+} 离子也可能以多种配位方式成 键,不同的配位方式致使 (C-O)振动频率的变 化彼此存在一定的差别,因而在 1 143. 3和 1 104. 7 cm⁻¹处出现两个吸收谱带.

图 2是上述预处理步骤全部完成后碳纳米管的 TEM 照片,可看到表面上形成许多约 8 nm 的球状金属微粒,微粒之间的间隔较大,这些微粒将成为引发化学镀镍的催化活性中心.由于化学还原的纳

图 1 不同预处理阶段的碳纳米管的红外吸收谱图

Fig 1 Infrared absorption spectra of the carbon nanotube after pretreatment at different stages curve: 1) after oxidation by nitric acid, 2) after neutralization with NaOH, 3) after adsorption with NiSO₄

- 图 2 经预处理活化后碳的纳米管 TEM 形貌 (放大 10 万倍)
- Fig 2 TEM image of the activated carbon nanotube after pretreatment, magnification 100K

米镍金属微粒在空气或水中易被氧化,一旦被氧化 必将失去引发化学镀的催化活性,因此预处理后的 碳纳米管应尽快施镀,不宜搁置过久.

2 2 碳纳米管化学镀前后的 XRD分析

图 3示出碳纳米管经硝酸氧化处理、吸附 N²⁺之后和化学镀镍之后的 XRD 谱图. 图中 3种 试样均在 2 = 26 3 处出现尖锐的衍射峰,此外在 2 = 43.6 处也可观察到衍射峰,与文献 [13]的实 验结果相近,其中 26.3 衍射峰和 43.6 衍射峰各 相当于该文献的 d₀₀₂峰和 d₁₀₁峰.前者与石墨的 26.5 衍射峰相近,可见该碳纳米管具有良好的石 墨网状结构.事实上,碳纳米管就是由石墨的网片 状单层卷成的中空圆柱体,层与层之间的距离也与 石墨层间距相近.碳纳米管被氧化后,其六元环被 打开,但不是环上所有的 C原子都被氧化,因而羧 基以及其它基团的生成应当是间隔出现的,而 N²⁺离子的表面吸附又主要是和羧基成键,因此吸 附的 N²⁺离子不是密集分布的,这便导致 Ni微粒 的稀疏分布.

还要指出,碳纳米管在化学镀镍前后,其 26 3 衍 射峰没有显著变化,但 43 6 衍射峰却在镀后明显宽 化,原因是非晶态的 NiP化学镀层本身也在 2 = 43.6 附近出现较宽的衍射峰.换言之,43 6峰的变化 说明碳纳米管上的 NiP沉积物呈非晶态结构.

图 3 不同处理阶段碳的纳米管 XRD 谱图

Fig 3 XRD patterns of the carbon nanotube after treatment at different stages

> 1) after oxidation by nitric acid, 2) after adsorption with N 1^{2+} ions, 3) after electroless nickel deposition

2.3 碳纳米管化学镀镍后的表面形貌

碳纳米管经预处理后生成的 Ni微粒虽然分布 稀疏,但它们能够有效地引发化学镀镍过程,控制 沉积条件,可望得到表面形貌不同的化学镀镍层. 图 4是碳纳米管上 NiP化学沉积物的 SEM 照片, 图 4a显示该碳纳米管表面上分散着许多球状颗 粒;而在图 4b中,则整根碳纳米管被相互粘结的球 状颗粒包裹着.可以推测,碳纳米管活化处理后生 成的 Ni微粒活性中心在化学镀镍过程中可能沿 3 个方向生长,即沿着管长方向的水平生长、朝垂直 于管壁方向的纵向生长和绕管的环状生长. 从图 4 显示的表面形貌看,纵向和环状生长占优势. Chen

图 4 碳纳米管化学镀镍层的 SEM 照片

Fig 4 SEM images of the electroless nickel plating deposits on carbon nanotube

等^[7]认为碳纳米管上球状颗粒的生长可能与碳纳 米管的曲率半径相关,但是具体机理尚不清楚.作 者认为,图 4出现的两种生长形貌是化学沉积处在 不同阶段所致,图 4b形貌的形成可认为是图 4a沉 积物进一步生长的结果,但具体过程涉及微系统的 新相形成机理,有待进一步研究.

参考文献 (References):

- Wong EW, Sheehan P E, Lieber CM. Nanobeam mechanics: elastieity, strength and toughness of nanorods and nanotubes [J]. Science, 1997, 277: 1 971 ~ 1 975.
- [2] Treacy M M J, Ebbesen TW, Gibson J M. Exceptionally high Young 's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678 ~ 680.
- [3] Tu J P, Yang Y Z, Wang L Y, et al Tribological properties of carbon nanotube reinforced copper composites

[J]. Tribol Lett, 2001, 10: 225~228

- [4] Dong S R, Tu J P, Zhang X B. An investigation of the sliding wear behavior of Cumatrix composite reinfored by carbon nanotubes [J]. Mater Sci Eng A, 2001, 313: 83 ~ 87.
- [5] Ma R Z, Wu J, Wei B Q, et al Processing and properties of carbon nanotubes-nano-SiC ceramic [J]. J. Mater Sci, 1998, 33: 5 243 ~ 5 246
- [6] Chen W X, Tu T P, Gan H Y, et al Electroless preparation and tribological properties of N i-P-CNT composite coatings under lubricated condition [J]. Surf Coat Techn , 2002, 160: 67 ~ 83.
- [7] Chen X H, Xia J T, Peng J C, et al Carbon-nanotube metal-matrix composites prepared by electroless plating
 [J]. Composites Science and Technology, 2000, 60: 301 ~ 306.
- [8] Ang L M, Hor T S A, Xu G Q, et al Decoration of activated carbon nanotubes with copper and nickel [J]. Carbon, 2000, 38: 363 ~ 372

- [9] Dean J A. Lange 's Handbook of Chemistry [M]. 15th Ed McGraw-Hill Book Co. 1999.
- [10] Bemhard Schroder Raman / Infrared A tlas of Oraganic Compounds [M]. Second Edition Weinheim: VCH-Verl -Ges, 1989.
- [11] Pei Z F, Ponec V. On the intermediates of the acetic acid reactions on oxides: an IR study [J]. Applied Surface Science, 1996, 103: 171 ~ 182.
- [12] Deacon G B, Phillips R J. Relationships between the carbon-oxygen stretching freqencies of carbon oxylato complexes and the type of carboxyliate coordination
 [J]. Coordination Chemistry Reviews, 1980, 33: 227 ~ 250
- [13] Chen W X, Tu J P, Gan HY, et al. Electroless preparation and tribological properties of Ni-P-Carbon nano-tube composite coatings under lubricated condition
 [J]. Surface and Coatings Technology, 2002, 160: 68 ~ 73.

Electroless Nickel Plating on Carbon Nanotube with Non-palladium Activation Procedure

HU Guang-hui, WU Hui-huang^{*}, YANG Fang-zu

(College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiam en University, Xiam en 361005, Fujian, Chnia)

Abstract: A new procedure of surface activation without using palladium salt was proposed for electroless nickel plating on carbon nanotubes In the procedure, carbon nanotubes were oxidized by nitric acid and then neutralized with NaOH to create carboxyl surface groups which were used to adsorb $N_1^{2^+}$ ions, thereafter the adsorbed $N_1^{2^+}$ ions were chemically reduced into N i nano-particles as a catalytic center for electroless nickel deposition, all these were further confirmed by infrared absorption spectra and electron microscopic observations. The results indicate that the procedure is feasible to electroless nickel plating on carbon nanotubes. The different morphology of deposits obtained from electroless plating was also discussed

Key words: Carbon nanotube, Surface activation, Electroless nickel plating