Journal of Electrochemistry

Volume 12 | Issue 1

2006-02-28

Conductivity of Comb Polyether Pure Solid Polymer Electrolyte

Lin YE

Recommended Citation Lin YE. Conductivity of Comb Polyether Pure Solid Polymer Electrolyte[J]. *Journal of Electrochemistry*, 2006, 12(1): 29-34. DOI: 10.61558/2993-074X.1693 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss1/6

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

Vol 12 No 1 Feb 2006

文章编号:1006-3471(2006)01-0029-006

梳形聚醚全固态聚合物电解质的电导率研究

叶 霖¹,高 鹏¹,冯增国^{*1},吴 锋^{2,3},陈 实^{2,3},王国庆^{2,3}

(1.北京理工大学材料科学与工程学院,北京 100081;2北京理工大学化工与环境学院,北京 100081;3.国家高技术绿色材料发展中心,北京 100081)

摘要: 应用阳离子开环聚合反应合成含二缩三乙二醇单甲醚侧链的梳形聚醚 POE,并与高氯酸锂复配制成聚合物电解质.交流阻抗测试表明,当 POE电解质内的氧锂比 (O/Li)为 20时,其电导率最高,室温下为 10^{-4 43} S/cm, 80 时则达到 10^{-3 44} S/cm.用 DSC和 XPS分别表征了链段运动能力和锂盐在 POE中的溶解状态对电导率的影响.

关键词: 氧杂环丁烷单体;梳形聚醚;聚合物电解质;电导率 中图分类号: 0 631.1 **文献标识码**: A

从上世纪 70年代 Wright和 Amand发现聚氧化 乙烯 (PBO) - 碱金属盐的离子导电性并提出聚合物 电解质的概念以来^{[11},用聚合物电解质代替液体电解 质应用于锂离子电池便成为众多科学工作者的研究 热点^[2].聚醚因其结构单元的醚氧原子具有较强的给 电子能力,较强的链段运动能力和较好的电化学稳定 性而受到人们青睐.围绕这一体系,Miwa^[3],Hvistled^[4],Pasini^[5],Jannasch^[6],Nishimoto^[7],Takahito^[8] 等分别合成了一系列的支化、超支化、梳状以及共聚 的聚醚聚合物电解质,其中室温电导率最高达 10⁻⁵~ 10⁻⁴ S/cm,已接近了实用目标 (10⁻³ S/cm).

本文应用阳离子开环聚合反应由 3羟甲基-3 '甲基氧杂环丁烷单体合成了一种含二缩三乙二 醇单甲醚侧链的梳形聚醚 POE,然后与高氯酸锂 复配制成聚合物电解质,应用交流阻抗谱测定了其 含不同锂盐浓度的电导率.通过 DSC、XPS等测试 手段研究锂离子浓度对这类聚合物链段运动能力 的影响,锂离子在聚合物中的溶解状态等.希望能 够为设计、合成及表征具有更高离子电导率的聚合 物电解质提供一定依据.

1 实验部分

7

1.1 试剂与仪器

三羟甲基乙烷和二缩三乙二醇单甲醚为 Fluka

产品;碳酸二乙酯、丁二醇、BF。乙醚、四丁基溴化 铵为中国医药集团上海化学试剂公司生产.二氯甲 烷(北京化工厂),分析纯,使用前用 CaH2重新蒸 馏纯化.

红外测试使用 Shimadzu IR Prestinge-21 红外 光谱仪;¹H NMR 由 B ruker ARX 400核磁仪测定, 以 CDC 操作溶剂,四甲基硅烷为内标;元素分析使 用 Vario EL 元素分析仪;DSC测试使用 Netzsch 的 PC-200热分析仪,N₂保护,先升温后淬冷消除热 历史,正常测试升温速率 10 /min XPS数据采集 使用 (PERKN-ELMER Physics Electronics) PH I 5300谱仪,MgK 靶 (hv = 1.253.6 eV),功率为 250 W (12.5 kV ×20 mA),以固定通能 (FAT-Fixed Analyzer Transmission)模式工作:全扫描 81.95 eV,窄 扫描 35.75 eV,步长分别为 0.10 eV和 0.05 eV,本 底真空优于 10⁻⁷ Pa(10⁻⁹ Torr). 电导率测试使用电 化学工作站 (CH 1660A,上海辰华),从 30 至 80

,每 5 测试一次. GPC使用 Waters 2414凝胶渗 透色谱仪,以聚苯乙烯作标样,四氢呋喃为流动相, 测量温度为 35 .

1.2 POE聚合物的合成

POE合成路线如下:

收稿日期: 2005-07-08,修订日期: 2005-07-29 *通讯作者, Tel: (86-10) 68912650, E-mail: sainfeng@bit edu cn 国家 "973 计划 (2002CB211800)资助

2006年

1)3羟甲基-3 '甲基氧杂环丁烷 (HMO)合成

· 30 ·

将 120 g三羟甲基乙烷,118 g碳酸二乙酯和 5 mL KOH的乙醇溶液 (0.2 g/mL)放入圆底烧瓶,于 氮气保护下 110 回流 1 h 常压蒸馏除去乙醇,再 减压蒸馏,油浴加热至 275 ,收集 120~140 馏 分,反复蒸馏两次得到 51.60 g无色液体—HMO, 得率为 51%.FTR/cm⁻¹: 3 404 (O—H),1047 (C—O),969 (环上 C—O—C);¹ H NMR/10⁻⁶: 1.233(3H, CH₃),3 144 (1H, OH),3 603 (2H, CH₂—O),4 315~4 473 (4H,环上 CH₂).

2) 3-[甲氧基 (三乙氧基)]甲基-3 '甲基氧杂 环丁烷 (HMOPEO)合成

将 30.67 g 35%的 NaOH的水溶液缓慢加入 到对甲苯磺酰氯 (24.30 g, 0.172 mol)和四丁基溴 化铵 (2.80 g, 0.008 6 mol)的甲苯 (100 mL)溶液 中. 再于 10 下, 1 h内逐滴加入 25.80 g(0.157 mol)的二缩三乙二醇单甲醚,室温反应 4 h 然后 将 16.01 g(0.157 mol) HMO 缓慢加入反应体系, 并于 1 h之内加入 9.26 gNaOH颗粒.60 下反应 1 h,回流 4 h,结束反应. 添加 100 mL水溶解 NaCl, 用 100 mL甲苯萃取反应物. 有机相用 50 mL的水 洗涤两次,无水硫酸钠干燥.旋转蒸发除去溶剂甲 苯,减压蒸馏两次,油浴加热至 275 .收集 140~ 165 的馏分—HMOPEO,得率为 21.4%. FTℝ/ cm⁻¹: 2 878 (CH₂), 1 112 (直链 C—O—C), 969 (环 \perp C-O-C);¹ H NMR/10⁻⁶: 1. 314 (3H, CH₃), 3.381 (3H, CH₃ O), 3.535 ~ 3.557 (2H, CH₂-OCH₃), 3. 566 (2H, C-CH₂-O), 3. 639 ~ 3. 667 (10H, O—CH₂—CH₂, CH₂—CH₂—O—CH₃), 4.335~4.525(4H,环上 CH₂);元素分析实测(计 算值)/%:C 57.83(58.06),H 9.61(9.68).

3)聚 3-[甲氧基 (三乙氧基)]甲基 -3 '甲基氧 杂环丁烷 (POE)的合成

在冰水浴和氮气保护下将 5 mL CH₂Cl₃放入干燥的圆底烧瓶,用微量进样器加入 0.045 g (0.000 5 mol)丁二醇,0.142 g(0.001 mol)BF₃ · 乙醚,陈化 30 min 然后缓慢加入 2 g(0.015 mol) HMOPEO,反应 6 h,用甲醇终止反应.然后加入正 己烷作沉淀剂,反复溶解沉淀 3次,得到无定形的 聚合物—POE,真空干燥.FTR/cm⁻¹:3 403 (OH), 2 902 (CH₂),1 115 (直链 C—O—C);¹ H NMR/ 10⁻⁶:0.902 (3H, CH₃),3.185 (4H, 主链 CH₂), 3.294 (2H, C—CH₂—O),3.383 (3H, CH₃O), 3.533 ~ 3.565 (4H, C—CH₂—O—CH₂, CH₂— OCH₃),3.605 ~ 3.630 (2H, CH₂—CH₂—O— CH₃),3.641 ~ 3.667 (6H, O—CH₂—CH₂—O); GPC:M_n = 3666,M_w/M_n = 1.60.

1.3 聚合物电解质的制备

取 4 g POE溶解于 15 mL CH₂ Cl₂中,在氮气保 护下加入 5 g乙酸酐,反应 5 h 加入正己烷作沉淀 剂,反复溶解沉淀 3次,得到封端的无定形聚合物, 真空干燥.将该聚合物分别溶解于不同浓度的高氯 酸锂的四氢呋喃溶液,90 下真空干燥至恒重.即 得到不同氧锂比的 POE电解质.

图 1 POE电解质的交流阻抗谱 Fig 1 AC impedance spectra of the POE electrolyte

2 结果与讨论

2.1 电导率的测试

高氯酸锂的阴阳离子半径都比较小($\chi_{i^+} = 0.07 \,\mathrm{nm}, \kappa_{D_4} = 0.144 \,\mathrm{nm}$),易于迁移;所以文中选 用高氯酸锂与 POE复配制取 POE电解质^[9],其电 导率与体电阻存在如下关系^[10]:

$$= l/(R_b \times S) \tag{2}$$

式中, l为电解质的厚度, s为工作电极面积. 若使 l/s = 1,则 $= l/R_b$.图 1示出氧锂比 (O/Li) 为 20的 POE电解质在 45 和 80 下的交流阻 抗谱. 如图,在较低的 45 下,阻抗谱线在高频端 呈现一个不规则的半圆,圆弧与实轴的右交点即为 电解质的体电阻 R_b ,其低频部分为一直线,这是由 扩散阻抗而引起的;而在较高的 80 下,由于电导 率的提高使高频端的半圆变小并移向更高频端,而 低频端的直线与实轴的交点同为体电阻.

图 2是不同高氯酸锂浓度的 POE电解质电导 率随温度的变化曲线. 图中样品 POE示明的数字 即代表该聚合物电解质中的氧锂比 (包括主侧链 上全部氧原子和锂离子的摩尔比). 如图可见,在 氧锂比从 40到 5的变化范围内,聚合物电解质的 电导率呈先上升而后下降的趋势,其中电导率达到 最高的氧锂比最佳值是 20, POE20的室温电导率 为 10^{-4.43} S/cm,80 下则达 10^{-3.44} S/cm.一般而 言,决定聚合物电导率优劣的主要有两个关键因 素,即聚合物中有效的载流子数 (自由锂离子)和 聚合物链段的运动能力.但这两个影响因素是相互 矛盾的,对 POE电解质,一方面锂盐的加入会提高 有效载流子数目,但另一方面却同时降低了链段的 运动能力,因此自然存在一个最佳的锂盐添加量配 比值.

关于聚合物电解质的电导率()与温度之间 的关系,若简单以 lg ~1/T作图 (即所谓的 A rrhenius方程),得到的往往是一条向上凸的曲线^[9,11], 其结果即如图 2所见.但若应用 VTF方程便可更 好地描述电导率随温度变化的直线关系^[9,11-12].

 $=A \times T^{-0.5} \times \exp[-E_a/(T - T_0)]$ (3) 式中, A 为指前因子, E_a为活化能, T为测量温度, 常数 T₀与玻璃化温度有关,本文取实测的玻璃化 温度 T₂作 T₀^[9,13].式 3可以改写为:

 $\ln(\mathbf{x}T^{0.5}) = \ln A - E_a / (T - T_g)$ (4)

对 POE 20,以 ln($xT^{0.5}$) ~ $1/(T - T_g)$ 图,即得 如图 3所示直线,其斜率的值就是活化能 E_a ,线性相 关系数达到 0 996,其它锂盐浓度的 POE电解质的 VTF方程相关数据见表 1. VTF方程之所以能够较好 地表征离子电导率与温度的关系,原因即在引入了玻 璃化温度这个参数.玻璃化温度是表征聚合物链段运

动能力的重要参数,与聚合物的结构有关.式 3指明 了要寻求更高离子电导率的聚合物电解质,首先就要 设计出具有更低玻璃化温度的新结构聚合物. 2 2 聚合物电解质链段运动能力的表 征—DSC热分析

聚合物的运动能力也可以用玻璃化温度来表征,玻璃化温度越低聚合物链段的运动性能越好.

2

图 4示出 POE电解质的 DSC曲线,而由 DSC 曲线测定的各 POE的玻璃化温度(*T_s*)同时列于表 1.可以看出,锂盐添加的越多,玻璃化温度越高,链 段的运动能力越差.这是因为加入的锂盐和聚合物 主侧链上的醚氧原子都有一定的配位作用,从而降 低了链段的运动能力.因此,从链段运动能力这一 角度看.较少的锂盐添加量有利于电导率的提高.

表 1 聚合物电解质的 VTF方程参数及玻璃化温度

Tab 1 The VTF parameters and glass transition temperature of polymer electrolyte

Samp le	O Li	$E_{\rm a}$ /	Correlation	$T_{ m g}$ /
nanc		KJ • IIIOI	coefficient	
POE 5	5 1	8 125	0. 995	- 24. 5
POE 10	10 1	8 435	0. 996	- 25. 9
POE 20	20 1	6. 536	0. 996	- 43. 0
POE 30	30 1	6.052	0. 996	- 51. 2
POE 40	40 1	5. 935	0. 995	- 52 4

2.3 聚合物电解质有效载流子数目的 表征——XPS分析

在 POE电解质中,自由锂离子与聚合物主侧 链上的醚氧原子存在一定的络合作用,而未完全解 离的锂离子则以离子键形式和 CD4⁻¹结合.因此, 只有完全解离的"自由 锂离子才能作为载流子起 到导电的作用.图 5是 POE 5和 POE 30的 XPS谱 图,从图 5a可看出, POE 5 谱线明显存在两个峰, 其结合能各为 56 1 eV和 53.6 eV,分别表征未完 全解离的锂离子和自由态的锂离子,而在图 5b中, POE30的谱线则只出现结合能为 52 8 eV表征自 由态锂离子的峰. XPS实验同时表明,对 POE电解 质,氧锂比为 20是比较合适的锂盐浓度,在这个浓 度下溶解于 POE内的锂盐基本上可完全解离,这 一结论与 2 1节电导率测试结果也相吻合.

3 结 论

交流阻抗测定 POE系列的电导率,最高者为 POE20,室温下 = $10^{-4.43}$ S/cm,80 时则达 $10^{-3.44}$ S/ cm. DSC表明该聚合物电解质链段的运动能力随着锂 盐浓度的增加而下降, XPS测试证实,在高浓度下会 出现对导电不起作用未完全解离的锂离子.

参考文献 (References):

- Fenton D E, Park J M, Wright P V. Complexes of alkali metal ions with poly (ethylene oxide) [J], Polymer, 1973, 14: 589 ~ 589.
- [2] REN Tian-Bin, Huang Xiao-Bin, ZHAO Xi-An, et al Studies on the ion states and ion transport mechanism of solid polymer electrolyte [J]. Acta Polymerica Sinica, 2003, 3: 362
- [3] Miwa Y, Tsutsumi H, Oishi T Novel polymer electrolytes based on mono-and bis-oxrtane monomers with oligo (ethylene oxide) units[J]. Electrochemistry, 2002, 70 (4): 264
- [4] Jankova K, Jannasch P, Hvilsted S bn conducting solid polymer electrolytes based on polypentafluorostyrene-bpolyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization [J]. Journal of Materials Chemistry, 2004, 14 (19): 2902
- [5] Blazquez E, Mustarelli P, Pasini D, et al Thermal and conductivity properties of poly (ethylene glycol) -based cycbpolymers[J]. Journal of Materials Chemistry, 2004, 14 (16): 2524
- [6] Jannasch P. bn conducting electrolytes based on aggregating comblike poly (propylene oxide) [J]. polymer, 2001, 42: 8 629 ~ 8 635.
- [7] Itoh T, Ikeda M, Hirata N. bnic conductivity of the hyperbranched polymer-lithium metal salt systems [J]. Journal of Power Sources, 1999, 81 82: 824 ~ 829.
- [8] Nishimoto A, Watanabe M, IkedaY, et al High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers [J]. Electrochimica Acta, 1998, 43, (10~11): 1 177~1 184
- [9] QILi, LN Yun-Qin, Jing Xia-Bin, et al bnic conductivity of novel comblike polymer electrolyte[J]. Chemical Research and Application, 1998, 10(4): 356
- [10] DU Hong-Yan CHENG Hu, YANG Yong Study on electrochemical properties of PBO₂ based composite polymer electrolytes[J]. Electrochemistry, 2004, 10 (4): 215 ~ 221.
- [11] GU Ning-Yu, Q AN Xin-Ming, ZHAO Feng, et al Conductive behavior and ionic conductivity of composite polymer electrolytes[J]. Chinese Journal of Analytical Chemistry, 2002, 30(1):1~5
- [12] FANG B in, WANG Xin-Ling, TANG Xiao Zheng The application and rectification of free volume theory in ionic conductivity of Poly (ethylene oxide) -U rethane salt complex[J]. PolymerMaterials Science & Engineering, 2003, 19(1): 199 ~ 204
- [13] ZHAO Feng, Q AN Xin-Ming, WANG Er-Kang, et al Advances in ionic conductive polymer electrolytes [J]. Progress in Chemistry, 2002, 14(5): 374 ~ 383

Conductivity of Camb Polyether Pure Solid Polymer Electrolyte

YE L in¹, GAO Peng¹, FENG Zeng-guo^{*1}, WU Feng^{2,3}, CHEN Shi^{2,3}, WANG Guo-qing^{2,3}

(1 School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China,

2 School of Chen ical Engineering & Environment, Beijing Institute of Technology, Beijing 100081, China,

3 Laboratory of National Development Center of Hi-Tech Green Materials, Beijing 100081, China)

Abstract: A comb polymer was synthesized through cationic ring-opening polymerization starting from a monomer 3hydroxymethyl-3-methyl-oxetane The ion conductivity was measured by CH K60A electrochemical station under various lithium salt concentrations and various temperatures The highest ion conductivity was recorded to be $10^{-4.43}$ S/cm at room temperature and $10^{-3.44}$ S/cm at 80 . DSC results showed that the segment moves more difficultly with the increasing of lithium salts concentration XPS found the existence of aggregating lithium ions in POE5 and POE10, and it suggested that POE20 had a suitable lithium concentration for polymer electrolyte.

Key words: Oxetane, Comb polyether, Polymer electrolyte, bn conductivity

7