Journal of Electrochemistry

Volume 12 | Issue 1

2006-02-28

Effects of SRB Biofilm and Corrosion Product Films on Corrosion Behavior of Carbon Steel

Jing LIN

Recommended Citation

Jing LIN. Effects of SRB Biofilm and Corrosion Product Films on Corrosion Behavior of Carbon Steel[J]. *Journal of Electrochemistry*, 2006, 12(1): 93-97. DOI: 10.61558/2993-074X.1706 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss1/19

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)01-0093-005

生物膜和腐蚀产物膜对 A3钢的腐蚀作用研究

林 晶^{*1,2},阎永贵²,陈光章²,刘光州²,李庆芬¹

(1:哈尔滨工程大学机电工程学院,黑龙江,哈尔滨,154001:2 海洋腐蚀与防护国防科技重点实验室,山东,青岛,266071)

摘要: 应用电化学方法和表面分析技术 (ABM和 SBM)研究硫酸盐还原菌 (SRBB) (生物环境)及其腐蚀产 物 (非生物环境)对 A3钢腐蚀行为的影响以及 A3钢在两种不同环境下的腐蚀特征.结果表明:于不同时期生 成的微生物膜和腐蚀产物膜,对材料的腐蚀起着不同的作用,生成的生物膜越厚越容易剥落,而不均匀的微生 物膜将引起材料的局部腐蚀.在非生物环境中生成的腐蚀产物膜比在生物环境中生成的膜更加紧密地黏附 于金属的表面.

关键词: SRB:硫离子:硫化物:生物膜:A3钢 中图分类号: TG 172 7

文献标识码:

微生物腐蚀是指微生物引起的腐蚀或受微生 物影响的腐蚀 (Microbiologically Influenced Corrosion). 当金属表面存在微生物膜时,金属表面 微 生物膜界面的 pH 值、溶解氧的浓度、有机和无机 物的种类及其浓度都大大有别于本底溶液.生物膜 内的反应改变了腐蚀的机理和速率^[1],由硫酸盐 还原菌 (SRB)新陈代谢引起的于金属和溶液界面 之间可产生几种硫的化合物,诸如最终的代谢产物 (硫化物,二硫化物,硫化氢)和中间代谢产物(硫 代硫酸盐,连多硫酸盐),这些化合物主要通过阳 极极化来促进腐蚀^[2].因而在 A3钢的微生物腐蚀 过程中所产生的硫化物膜,其特征和结构对腐蚀的 影响很大, 金属 微生物膜 溶液界面之间的环境特 征和溶液的 pH,氧含量等都影响硫化物膜的物理 化学特性.可以把保护性的膜变化成促进腐蚀的 膜,或者反之.然而薄的 FeS层具有保护作用,厚的 疏松的沉积物促进腐蚀^[3].

1 实验材料及方法

1.1 试样

工作电极为 A3 钢,成分为:w(C) = 0.2%,w-0.4%, w (Si) 0.10%, w (P) (Mn)

0.016%, w (S) 0.08%, w (A1) 0. 011%, w (Fe).余量,圆柱形试样,截面积 1 cm^2 .除留一面 为工作面外,其余部分用环氧树脂封装,用于 SEM 和 AFM 观察的试样电极尺寸为: 20 mm × 20 mm × 2 mm 该电极依次经 400[#]、600[#]、800[#]、1200[#]砂纸逐 级打磨后,丙酮除油,蒸馏水洗净后放置干燥器内 备用.

1.2 菌种来源、培养基及培养条件

SRB 菌种取自青岛海泥中的未经纯化的细菌, 放在 Poatgare C培养基中,于容量瓶密封培养,并 利用培养基加满的方式排出氧气,取得相对的厌氧 环境,恒温 30 ,3 d后 Postgare C变黑,并闻到刺 鼻的 H₂S气味,证明培养基中有 SRB存在,将该容 量瓶置于冰箱中冷藏保存,作为本实验的菌种.

实验时,取上述的菌种 30 mL置于 1L容量瓶 中,用新鲜的培养基加满,在生化培养箱 30 培养 3 d.备作实验初始菌液,菌液中的细菌数量为 10⁵ 个 /mL. 细菌用 MPN 法测量, 硫酸盐还原菌记数按 APIRP-38执行.

使用 APIRP-38 推荐的培养基.培养温度为 37 ±1 . 成分为: K₂ HPO₄ 0. 5 g, NH₄ Cl 1. 0 g,

收稿日期: 2005-10-25,修改日期: 2005-10-31 *通讯作者, Tel: (86-532) 88639530, Email: linlin681020@ yahoa.com 国家自然科学基金"十五 项目三级项目 (50499332-02)资助

NaSO₄ 2 26 g, CaCl₂ 0. 1g, MgSO₄ · 7H₂O 2 0 g, NaCl 20 g, 维生素 C 0. 1 g, 50% ~ 60% 乳酸钠 5 mL,酵母汁 1. 0 g,海水 1 000 mL,用 NaOH调节 pH 值至 7. 2,在灭菌锅里消毒 20 min,冷却后加入经 紫外线消毒的硫酸亚铁按.

1.3 电解池

使用 1000 mL 的双三孔电解池如图 1所示^[4-5],其左侧装有培养基溶液并接种 SRB,右侧是 灭菌海水,两侧由当中夹有微孔滤膜的过滤器连 接.这样,左侧的 SRB 代谢产物 S²⁻和有机酸便可 以通过滤膜扩散到右侧.工作电极为 A3钢,对电 极为铂丝,参比电极为饱和甘汞电极.

图 1 A3钢微生物腐蚀的双电解池测定装置

Fig 1 Double electrolytic cell

1.4 电化学方法

动电位极化曲线的测量使用 M273 腐蚀测试 系统 (EG&G公司). 扫描范围 - 880 ~ - 220 mV, 之后再回扫,扫描速率 0.5 mV · S⁻¹,电化学阻抗 使用 M273交流阻抗测试系统 (EG&G公司),交流 幅度 ±10 mV,频率范围 100 kHz~5 mHz

1.5 表面分析方法

7

以云母片作基体,把它和 A3钢挂片同时放入

接种了 SRB 的电解池中,用原子力显微镜 (AFM) 的接触模式观察细菌的形态、细菌在云母片上的吸 附和聚集^[6*3]. AFM 使用 150 μ m的扫描器,微悬臂 的材料是 Si₃N₄, k = 0.09 N/m,扫描速率 1 Hz 用 扫描电子显微镜 (SFM)观察微生物膜的腐蚀产物 膜形貌,配套的电子能谱仪 (EDXA)分析腐蚀产物 的组成.取出的腐蚀产物经蒸馏水轻轻清洗,再依 次用 30%、50%和 70%的乙醇脱水 10 min,最后用 95%的乙醇脱水 20 min放入干燥器中待用.

2 结果和讨论

2.1 不同体系的动电位极化曲线

图 2为应用动电位扫描法测量 A3钢在双电 解池于含和不含 SRB 溶液中经不同浸泡 (接种)时 间后于其两侧的极化曲线.图 2a示明,浸泡 1 d没 有明显的滞后环产生,可见在此期间内 SRB 的生 长还处于滞留期,腐蚀产物很少,材料基体表面也 还没有形成微生物膜和腐蚀产物膜.只发生以活性 溶解为主要特征的腐蚀.至浸泡 7 d (图 2b), SRB 正处于对数生长期,由于该微生物膜和吸附的腐蚀 产物已在材料表面形成了一层保护膜,使接种 SRB 一侧 (左侧)的极化曲线出现很大的滞后环,并有 明显的钝化行为.从实验中可以看到挂片的表面上 有一层滑粘的膜,把它清除后又露出一层黑色的腐 蚀产物膜,经 XRD分析是 FeS,此时溶液的 pH值 相应减小,发生了以钝化为主要特征的腐蚀.但腐 蚀产物从左侧扩散到右侧的还很少,没有形成致密 的腐蚀产物膜. 浸泡 14 d (图 2c)后, 接种 SRB侧 的滞后环继续增大,但钝化趋势减小,说明微生物 膜和腐蚀产物膜脱落,腐蚀加剧.腐蚀产物侧的极 化曲线有明显的滞后环和钝化现象,并出现了黑色

图 2 在含和不含 SRB 溶液中浸泡时间对 A3钢动电位极化曲线的影响

Fig 2 Influence of immersing time on potentidynamic polarization of A3 steel in the solution with SRB and without SRB a) 1d , b) 7 d , c) 14 d

图 3 A3钢在生物和非生物介质中经不同浸泡时间的阻抗谱 Fig 3 EIS of the A3 steel immersed in biogenic solution(a) and abiotic solution(b) with different immersed time

的 FeS膜.也就是说随着溶液中 Fe²⁺和 S²⁻的增 多,FeS膜变得致密,发生以钝化为主的腐蚀.电解 池两侧没有同时生成 FeS膜的原因可能是由于扩 散到右侧的 S²⁻与左侧的 S²⁻存在量互有不同所 致.

2.2 不同体系的电化学阻抗谱

图 3是 A3钢在双电解池两侧浸泡不同时间 的阻抗谱,图中表明,在接种 1 d的电解池左侧,A3 钢的表面极化电阻 (图 3a) R_p 经等效电路 (图 4)拟 合为 34 k ,而浸泡 7 d的 R_p 为 87 k ,浸泡 14 d 后, R_p 则下降至 23 k .由此可知,在 SRB生长初期 (1~7 d),可能是由于此时生成的微生物膜和腐蚀 产物膜对金属的腐蚀有一定的阻滞作用,因而 R_p 上升,意味着腐蚀减弱.但 14 d后急剧下降表明生 物膜下的金属进入快速腐蚀状态.右侧的阻抗变化 (图 3b)从 1 d到 7 d,其极化电阻 R_p 都处于不断减 小的过程,可见这时的腐蚀产物 S^2 和有机酸都促

进了腐蚀,但经过 14 d浸泡后,随着左侧扩散过来 的 S^2 增多,并和基体表面的 Fe^{2+} 形成了致密的 FeS膜,从而 A3钢表面的极化电阻相应变大.

图 4 A3钢电极的等效电路图

Fig 4 Equivalent circuit of the A3 steel electrodes

2.3 表面分析

1)云母片上细菌的吸附和聚集

图 5是在接种 SRB的海水中经浸泡 4 h后云 母片上的细菌吸附的 AFM 映像. 如图, SRB的形态 为长杆形,无鞭毛,其细胞尺寸为 1.474 µm ×

图 5 由 AFM 的接触模式观察到的吸附在云母表面的单个 SRB 照片 a) 2维, b) 3维 Fig 5 Contact mode AFM images of a mica surface with a SRB cell a) 2-D display, b) 3-D display

图 6 由 AFM 接触模式观察到的云母表面的 SRB 聚集 a) 2维 b) 3维

· 96 ·

Fig 6 Contact mode AFM images of a mica surface with clustered SRB cells a) 2-D display b) 3-D display

图 7 A3钢浸泡 7 d后表面生成的微生物膜 (a)和腐蚀产物膜 (b)的 SEM 照片

Fig 7 SEM image of the A3 steel of biofins (a) and corrosion product films(b) after immersed 7 d

图 8 A3钢于含和不含 SRB溶液中经浸泡 14 d的腐蚀形貌 a)接种 SRB b)无 SRB Fig 8 SEM micrographs of A3 steel exposed to SRB (a) and without SRB (b) after immersed 14 d

0.706 µm x0.24 µm.图 6是浸泡 1 d后取出的云 母片,可以看到此际细菌紧密地聚集在云母片上, 细菌的形态清晰可见,微生物膜在整个云母片的表 面呈不均匀的分布.

2) 扫描电子显微镜观察表面形貌

于双电解池的两侧同时挂入 A3钢挂片,经过 不同的浸泡(接种)时间取出观察.其生成的微生 物膜的形貌结构如图 7所示.由图可见,接种了 SRS的一侧经浸泡 7 d形成比较致密的微生物膜 (a),而在腐蚀产物一侧(b)则表面变得凹凸不平, 能谱分析显示,突起处含有较多的 S 而对含有 SRB的左侧电解池的试片,去除腐蚀产物后可发现 开始有点蚀发生,而且电蚀坑里含有较多的 S 至 浸泡 14 d去除腐蚀产物后,即如图 8所示,其左侧 试片可观察到较深的腐蚀坑(a),而右侧的试片腐 蚀较轻,整个表面呈现出均匀腐蚀状态(b).

3 结 论

1) SRB的存在对 A3钢的腐蚀影响显著. 微生 物膜的形成是由于细菌的吸附系以菌落的形式出 现,菌落下富含腐蚀产物,进而形成局部腐蚀电池, 促进 A3钢表面点蚀形成和发展,所以 A3钢的微 生物腐蚀以点蚀形式为主.

2)非生物环境中形成的腐蚀产物膜也影响了 A3钢的腐蚀,但较生物环境中微生物膜的影响小 很多,这也与扩散产生的 S²⁻和有机酸量不同有 关.

参考文献 (References):

- [1] Evans T E Chart A, Skedgell A N, et al The colored film on stainless steel [J]. Trans Inst of Metal Finish, 1973, 51 (3): 108 ~ 112
- [2] Videla H étor A. Biocorrosion and biofouling of metals and alloys of industrial usage Present state of the art at the beginning of the new millennium [J]. Revista de Motalurgia (Madrid), 2003, spec volume: 256 ~ 264.
- [3] Videla Hector A. Compatative study of the corrosion

pro-duct films formed in biotic and abiotic media (reprint No. 163) [C]. Corrosion, NACE International, USA, 1999: 1 ~ 12

- [4] Mcneil M B, Little B J. Mackinawite Formation During Microbial Corrosion [J]. Corrosion, 1990, 46: 599 ~ 600.
- [5] Little B J, Wagner P. Involvement of a thermophilic bacterium in corrosion processes [J]. Corrosion, 1986, 42: 533.
- [6] Wadsak M, Schreiner M. A comparison of preparation methods of copper surfaces for in situ scanning force microscopy investigations[J]. Applied Surface Science, 2000, 157: 39 ~ 46
- [7] Fang Herbert H P, Chan Kwong-yu, Xu Li-chong Quantification of bacterial adhesion forces using atom ic force m icroscopy[J]. Journal of M icrobiological Methods, 2000, 40: 89 ~ 97.
- [8] Xu Li-Chong, Chan Kwong-Yu Application of atomic force microscopy in the study of microbiologically influenced corrosion [J]. Materials Characterization, 2002, 48: 195 ~ 203.

Effects of SRB Biofilm and Corrosion Product Films on Corrosion Behavior of Carbon Steel

L N Jing^{*1,2}, YAN Yong-gu², CHEN Guang-zhang²,

L U Guang-zhou², L I Q ing-fen¹

(1. Mechanics&ElectronicsEngineeringSchool, HarbinEngineeringUniversity, Harbin154001, Heilongjiang, China,
2. State Key Laboratory for Marine Corrosion and Protection, Qingdao 266071, Shandong, China)

Abs tract: Electrochemical techniques and surface analysis techniques were applied to study corrosion characteristic of A3 steel The effects on corrosion behavior of A3 steel by sulfate-reducing bacteria (SRB) (biotic media) and corrosion product (abiotic media) were studied The results showed that biofilms and corrosion product films play different role during different stages Biofilms were easier flaky with increasing of its thickness Non-uniform biofilms reduced pitting corrosion of the specimens The corrosion product films formed under abiotic conditions were more adherently to the surface of the metal than those formed in biogenic media

Key words: SRB, S iron, Sulfide, B iofilms, A3 steel