Journal of Electrochemistry

Volume 12 | Issue 2

2006-05-28

Application of Electrolessplating Technology in Interconnection Manufacturing of Ultralarge-scale Integration

Zeng-lin WANG

Recommended Citation

Zeng-lin WANG. Application of Electrolessplating Technology in Interconnection Manufacturing of Ultralarge-scale Integration[J]. *Journal of Electrochemistry*, 2006, 12(2): 125-133. DOI: 10.61558/2993-074X.1710 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss2/2

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)02-0125-09

化学镀技术在超大规模集成电路 互连线制造过程的应用

王增林^{*1},刘志鹃¹,姜洪艳¹,王秀文¹,新宫原 正三²

(1.陕西师范大学 化学与材料科学学院,陕西 西安,710062;
 2 关西大学 工学部机械工学科.日本 大阪,5648680)

摘要: 总结自大马士革铜工艺建立以来,电化学工作者利用化学镀技术围绕该工艺而开展的一系列相关研究,介绍了应用化学镀沉积镍三元合金防扩散层和化学镀铜种子层的研究以及离子束沉积法(bnized Cluster Beam, ICB)形成 Pd催化层后的化学镀铜技术和超级化学镀铜方法.简要叙述化学镀铜技术在超大规模集成电路中的应用,总结化学镀铜技术的研究进展,并指出了今后的发展方向.

关键词: 化学镀铜;超级化学镀;大马士革铜互连线;种子层;防扩散层 中图分类号: TO153.1⁺4 **文献标识码**: A

随着全球竞争压力的不断增加和信息产业的 发展,对大存储量、小体积、轻量化的半导体集成电 路(半导体芯片)的要求也不断提高,从而作为微 系统核心部件的存储密度也在不断增加,用于连接 每一个信息点的互连线宽度也越来越小.当芯片中 互连线的宽度在 0.13µm以下时, RC延迟 (R为 芯片中用于连接各个功能点的互连线的电阻, C为 基板的电容)成为影响半导体芯片速率的主要因 素.为了解决 RC信号延迟.人们采取 3种方法: (1)改进和完善集成电路设计方案,尽量减少连接 导线的长度,从而降低导线电阻;(2)使用低电阻 率()的基材,即Low-K材料以降低基材的电容. 关于 Low-K材料的研究,是近年来半导体材料的 一个热点领域,每年相关的国际会议,如 International Electron Devices Meeting (IEDM), IEEE International Interconnect Technology Conference (IIIC), Solid State Devices and Materials (SSDM), 以及 Advanced Metallization Conference (ADMETA) 等都有大量的报道. (3)使用铜线代替铝线以降低 导线电阻.由于铜的电阻率为 1.68 · cm,比铝的 电阻率 (2.78 · cm) 低了 40%, 同时铜具有非常

-7

好的抗电子迁移性能,有利于提高芯片的可靠性.因此,1995年 BM率先提出用铜线代替铝线作为 半导体集成电路的互连线方案,并于 1998年推出 第一个用铜互连线制作的新一代半导体芯片^[1-2].

1 大马士革铜互连线工艺

图 1表示了大马士革铜互连线工艺过程,主要 由 4步组成.首先,在二氧化硅的基材上,通过涂布 光敏的有机高分子层 (Mask)和光腐蚀形成道沟 (Trench)和连接孔 (Via)的结构 (a). 然后,在基板 和道沟的表面形成防扩散层和种子层 (b).由于铜 的自由电子在加热的情况下易于向二氧化硅 硅基 材扩散,从而影响半导体的特性.为了阻止铜的自 由电子向二氧化硅 硅扩散,需要在金属铜膜和二 氧化硅膜之间加上一层防扩散层,如 TaN、TN、WN 等^[35].由于 TaN 防扩散层电阻率比较大,不能直 接实现均匀的电化学镀铜,故需在防扩层表面形成 一铜层作为导电或种子层.防扩散层和铜种子层一 般采用真空溅射 (Sputtering)或物理气相沉积 (Physical Vapor Deposition, PVD)形成.然后在铜 种子层上再电化学镀铜填充道沟 (c).为了避免在

收稿日期: 2005-11-25,修订日期: 2005-12-26 通讯作者: Tel: (86-29) 85303746, E-mail: wangzl@ snnu edu cn 国家自然科学基金 (20573073)、陕西省自然科学基金 (2005B13)资助

图 1 大马士革铜互连线工艺过程

a) 道沟连接孔的形成,b) 防扩散层和铜种子层的形成,c) 电化学镀铜填充,d) 化学机械抛光

Fig 1 Damascene process for copper interconnections

a) trench and via definition, b) barrier and seedlayer deposition, c) electroplating, d) CMP process

道沟底部形成空洞或缝隙,可通过超级电化学镀铜 来填充微细的道沟. 多余的铜经化学机械抛光 (Chemical-Mechanical Polishing, CMP)去除(d). 传 统的铝互连线制作工艺均为干法(Dry Process),但 因金属铜很难用离子束(bn Beam)刻蚀(Etching),故该干法工艺不能用于铜互连线的制作. 另 外,大马士革湿法工艺过程(Wet Process)具有操作 简单方便,同时大大的降低了真空设备费用、有利 于降低成本等优点.

2 化学镀在超大规模集成电路中 的应用

化学镀是一种不同于一般电镀的沉积方法,它 主要是利用氧化还原反应使金属离子被还原而沉 积在基板表面^[6].其主要特点有 3:(1)能够在非金 属材料、陶瓷材料、高分子材料等非导体表面沉积, 不需要种子层;(2)能够沉积在任何形状的镀件表 面,沉积速率均匀,且不受镀件的形状、尺寸的影 响;(3)设备简单低廉,反应条件温和,易于控制, 大大降低了产品的成本.化学镀技术不仅应用于金

7

属、非金属材料的表面装饰,而且长期应用于印刷 电路板的制造.对大马士革铜互连线工艺,其防扩 散层和铜种子层的形成均采用干法的真空溅射或 物理气相沉积.由于这两种方法都需要昂贵的设 备,增加了产品的成本,因此,当 BM 1995年推出 大马士革铜互连线工艺后,相继出现了许多用化学 镀代替真空溅射或物理气相沉积形成防扩散层、种 子层及完全填充微孔的研究工作.

2.1 化学镀沉积镍三元合金作防扩散层

BM 公司的 Sullivan等首先提出,采用化学镀 技术沉积 Ni-P或 Co-P二元合金代替现行的 TaN、 TN 或 WN 作防扩散层^[7],但并未做进一步的研 究.早稻田大学的逢坂教授研究小组最先在二氧化 硅表面沉积了 NW P, N IR eP三元合金,并对其防扩 散性能进行了研究^[8-10].为增加二氧化硅与防扩散 层之间的粘接强度,先用过氧水和硫酸溶液处理, 去除二氧化硅表面的有机物(见图 2),之后用含有 氨基、吡啶基等功能团的有机硅烷分子,如 3氨基 丙基三甲氧基硅烷, N-(2氨基乙基)-3氨基丙基-

图 2 二氧化硅表面沉积防散层的流程图

Fig 2 Schemitic representation of the barrier deposition on SD_2

三甲氧基硅烷等,在苯或甲苯溶液中与二氧化硅反 应,使二氧化硅表面形成一层有机硅的单分子膜 (SAM).再通过氨基、吡啶基等功能团对 Pd离子 的吸附作用活化基板表面,然后直接插入化学镀 液,可使 NWP或 NiReP三元合金沉积出来.由于 氨基、吡啶对镍的配位作用,而使三元合金膜与二 氧化硅之间的粘接强度增大. SAM 既作为中间粘 接层又作为表面活化层.

逢坂教授的研究小组成功地实现了全湿法大 马士革铜互连线工艺的制作过程.在形成 SAM研 究的基础上,又采用组成如表 1的化学镀镍液,成 功的沉积 NB二元合金膜于道沟中.图 3为 NB膜 形成后的道沟断面 SEM照片,显示出 该膜在 SAM 的表面的均匀沉积.NB的防扩散性能测试研究表 明,400 以下,50 mm厚的 NB膜能完全阻挡金属 铜往二氧化硅里扩散.由于 NB的电阻率比较低, 故可直接用于电化学镀铜,不需于其上再加铜种子 层,并能使铜完全填充整个道沟 (见图 4).多余的 铜经化学机械研磨 (CMP) 去除后,再浸入 PdCL水 溶液,使其表面活化,然后沉积 NB二元合金膜作 为保护层,从而完成大马士革铜互连线工艺.

2

- 表 1化学镀 NB溶液的主要组成
- Tab 1 The composition of NB electroless plating solution

Chem icals	Concentration/mol \cdot dm ⁻³
Sodium citrate/mol \cdot dm ⁻³	0. 2
$NiSO_4 /mol \cdot dm^{-3}$	0. 1
DMAH /mol \cdot dm ⁻³	0. 05
рН	9. 0
Bath temperature	70

图 3 NB化学镀膜道沟的断面 SEM 图

Fig 3 Cross-sectional SEM image of trenches after NB electroless plating

图 4 电镀铜填充道沟的断面 SEM 图

Fig 4 Cross-sectional SEM image of trenches after copper electrop lating

表 2化学镀 CoW P溶液的主要组成

Tab. 2	The c	composition	of CoW P	electroless	p lating	so lution
--------	-------	-------------	----------	-------------	----------	-----------

Chem icals	Concentration / $g \cdot L^{-1}$
$(NH_4)_2WO_4$	10
$CoCl_2 \cdot 6H_2O$	30
$Na_3C_6H_4O_7 \cdot 2H_2O$	80
$Na_2H_2PO_2$	20
Surfactant-RE610	0. 05

另外,美国康奈尔大学的 Shacham Điam and研 究小组和台湾清华大学的万其超研究小组分别报 告了以 CoW P和 NW P/NMoP三元合金膜作为防 扩散层的工作^[11-15]. CoW P三元化学镀液主要构 成如表 2所示.由化学镀沉积的 CoW P,其电阻率 为 25~47 μ · cm.电阻率和二次离子质谱测试 表明,当 CoW P膜的厚度为 50 nm 时,经过 400 的热处理后,即具良好的防扩散性能.

2.2 化学镀铜种子层

a) 湿法活化 TaN和 TN表面的化学镀铜

近年来,人们又提出用置换反应来活化防扩散 层表面. Shacham Diam and研究小组发现,TaN 防扩 散层表面经 PdCl./HF溶液处理,可使 Pd金属粒 子沉积在 TaN 的表面,然后再用化学镀铜法形成 均匀的铜种子层.另外,Hsu 报道了用 PdCl./HF/ HNO3体系对 TaN 的表面处理过程,SEM 照片显示 Pd粒子由于置换反应被还原而均匀的沉积于 TaN 表面^[16];Nakahara等报道了 HF浓度对 Pd沉积的 影响^[17-18];Patterson研究了用 HF/PdCl.来活化 TN 的过程,包括 HF去除表面氧化层和 Pd在洁净的 TN 表面沉积^[19-20].这些方法都使用酸性溶液,其 中包含了吸附等复杂过程.

作者等报道了一种简单而又能直接进行化学 镀铜的方法^[21-25],这一方法不需要对防扩散层作 活化预处理,而是先把基材用化学刻蚀的方法除去 表面氧化物,然后直接插入化学镀铜的溶液中.由 于 TaN和 WN的氧化还原电位比铜低(如表 3)而 使溶液中的铜离子被还原,金属铜的沉积使防扩散 层表面被活化,从而使化学镀铜反应在防扩散层表 面进行.又因 TN 的氧化还原电位比铜高, TN 与 铜离子之间不能进行置换沉积,因而,化学铜不在

表 3 化学镀铜溶液中防扩散层和铜电极的起始电位

Tab 3 The initial potential of barrier layer and Cu electrode in electroless pating solution

	Temperature/	Initial potential/mV
Cu	25	- 8
Cu	60	- 314
Cu	70	- 383
TN	70	- 8
TaN	70	- 594
WN	60	- 358

-7

TN表面析出.用这一方法,无需活化处理,而能成 功的填充化学镀铜于微小的沟道中,经过 CMP处 理后,制得了大马士革铜互连线.从图 5可以看出, 化学镀的铜完全填充了微小的沟道,且没有空洞或 狭缝出现.经四极电位法测定,该铜互连线的电阻 率为 2.2 µ · cm,铜膜与防扩散层之间的粘接力 为 1.1N/cm,这满足化学机械抛光过程的要求.

图 5 化学镀铜填充道沟断面 TEM 照片

Fig 5 Cross-sectional TEM image of trenches after electroless plating

图 6 PVD 铜种子层和化学镀修补 PVD 铜种子层后电镀 铜填充微孔的 SEM 照片

Fig 6 Cross-sectional SEM image of the via holes filled by copper electrodeposition for the PVD seed alone and following electroless Cu

b) 化学镀铜法修补真空溅射的铜种子层 目前,工业上铜种子层的沉积依然是真空溅射

图 7 化学镀铜膜与 TaN 层粘接强度随 ICB-I'd 厚度 的变化关系

Fig. 7 Veriation in peel strength of electroless plated Cu film on TaN layer with thickness of the ICB-Pd layer

法或物理气相沉积,然而对于微孔直径小于 0.14 μm、孔的深径比大于 3的微孔或道沟,真空溅射法 很难在微孔的侧面下部形成连续的铜种子层,导致 后续的电化学镀铜产生空洞.Gandikota等和 Andrynschenko等分别报道了先用真空溅射法和物理 气相沉积法 (PVD)形成不均匀的铜种子层^[26-27], 经 H₂ SO4处理去除表面的氧化层,再用化学镀修 补,就能使电化学镀铜成功地填充高深径比的微 孔.实验结果表明 (见图 6),当铜种子层厚度为 25 μm和 75 μm时,用直接电镀法无法填充直径为 0.13 μm、深径比为 6的微孔,而经过 22.5 μm的 化学镀铜修补后,在同样的电镀条件下,完全填充 了该类微孔,没有出现空洞.

C) 离子束沉积法 (ICB) 形成 Pd催化层后的 化学镀铜技术

鉴于由湿法得到的铜种子层和防扩散层之间 的粘接力较差,而且一般的化学镀技术也很难填充 高深径比的微孔.离子束沉积法是一个新的沉积技 术.其沉积过程首先是金属被电离而形成离子束. 在强电场的作用下,离子束带有非常大的能量 (~10 keV)^[28].进入基板的表层,增加了催化层和 沉积层间的粘接强度.另外,离子束沉积法可以均 匀的填充高深径的微孔.作者进行了利用离子束沉 积法沉积金属钯(ICB-Pd)再化学镀的研究.结果 表明,ICB-Pd催化层有利于提高 TaN 防扩散层和 化学镀铜间的粘接强度.图 7给出了化学镀铜和 TaN 层之间的粘接强度随 ICB-Pd厚度的变化关 系,可以看出,随着 ICB-Pd层厚度的减小,粘接性 能变化不大,即使 ICB-Pd厚度为 1 nm, TaN 与化学

-7

镀铜之间的粘接强度可达 0.58 kg/cm,比真空溅 射得到的 (0.39 kg/cm)还高.虽然大马士革铜互 连线的电阻率随着 ICB-Pd厚度的增加而增大,但 是当 ICB-Pd厚度为 1mm时,铜线的电阻率降为 2. 1μ · cm,且电阻率不随热处理而增加 (见图 8). 作者利用这种技术成功的沉积化学铜于直径为 0.32 μm、深径比为 4的微孔内.控制适当的化学 镀铜条件,又可在微孔内形成 10 mm厚的铜种子层 沉积^[29-31].图 9是化学铜沉积的微孔断面 TEM和 SEM照片.如图,不管是在微孔的低部还是侧面, 都形成了均匀的、连续的 10 mm厚的铜种子层.断 面 TEM照片显示铜完全填充整个微孔,没有发现 空洞或缝隙存在.由于高的粘接性、电阻率和完全 的填充能力,这种技术可以适用于填充高深径比的 铜互连线.

2 3 超级化学镀铜填充技术

(Bottom-up Filling)

随着铜互连线尺寸设计的不断缩小,当孔的直径小于 0.09 µm时,传统的化学镀技术很难满足要求.最近,作者等通过大量研究发现,当向化学镀铜液加入以聚二硫酰丙烷磺酸钠(SPS)为主要成分的添加剂后,铜在微孔底部的沉积速率远远大于其表面的沉积速率,从而在国际上率先实现了超级化学铜填充^[32-33].图 10是当化学镀液中的 SPS添加剂浓度为 0.5 mg/L时,不同施镀时间下铜填充微孔的断面 SEM照片.由图可见,随着化学镀时间的延长,铜在微孔下部的沉积厚度远远大于基板表面的沉积速率,当沉积时间为 40min时,铜已经完

Fig. 9 Cross-sectional TEM a) and SEM b) images of via holes coated with electrolessplated Cu

图 10 化学镀铜填充微孔的断面 SEM 随施镀时间 的变化

微孔直径:0.5 μm,微孔深度:2.3 μm,SPS 浓 度:0.5 mg/L

Fig. 10 Cross-sectional SEM images of holes with plating time of copper electroless hole diameter: 0.5µm, hole depth: 2.3µm, SPS concentration: 0.5mg/L

全填充了整个微孔,且没有任何空洞或缝隙出现. 另外,作者考察了添加剂浓度、微孔的直径等对超级化学沉积形态的影响.并利用超级化学镀技术成功地填充了直径100 nm、深1000 nm的微孔,透射

200nm

- 图 11 超级化学镀铜填充直径 100nm 微孔的 TEM 照片 SPS 浓度:0.5mg/L
- Fig. 11 Cross-sectional TEM image of 100 nm via hole filled with bottom up copper placting SPS concentration; 0.5 mg/L

电子显微镜 (TEM)分析表明 (图 11),该微孔没有 出现任何空洞或缝隙,这也是现时能够填充的直径 最小、深径比最大的微孔.这一独创性的研究工作, 具有独立的知识产权和强大的应用前景,引起日本

1

媒体和日本半导体制造企业的重视.日本的媒体于 2003年 12月 9日对作者的研究成果进行了详细 报道.多家半导体公司与我们合作,共同开发新一 代三维印刷电路板.由于加入添加剂抑制了化学铜 在基板表面的沉积,使得用超级化学铜技术填充微 孔表面比较平滑,没有出现过多沉积(Overgrowth) 现象,简化了化学机械抛光(CMP)过程,降低了成 本^[34-36].图 12是由超级化学镀技术填充的 0.31 µm微孔的 ABM、SEM 照片,照片表明微孔被完全 填充,无过多沉积现象,并且得到的铜膜平均表面 粗糙度为 15.2 nm.

3 化学镀铜液的主要组成及作用

在印刷电路板的化学镀铜工艺中,主要以甲醛 作还原剂,氢氧化钠为 pH调节剂的化学镀铜液, 添加剂有联二吡啶、聚乙二醇等,由于甲醛蒸汽压 比较高,易于挥发,且有毒,特别是容易致癌,在日 本、美国和欧洲的使用受到了限制,2008年以后印 刷电路板行业将禁止使用甲醛.因此上世纪90年 代美国康乃尔大学的 Shacham Diam and 研究小组 开展了以乙醛酸作为化学镀铜还原剂的研究工 作^[37].乙醛酸无毒,无污染,且蒸汽压非常低,不易 挥发.研究发现,以乙醛酸代替甲醛作还原剂可以 获得相同的沉积速率,且铜膜的质量优于使用甲 醛.另外,当碱金属离子如钠离子、钾离子等遇到单 晶硅或二氧化硅基板时,容易向基板中扩散,从而 影响半导体的特性.为了能使化学镀技术应用于新 一代半导体制造工艺,Shacham Diam and 研究小组 首先利用了广泛用于半导体行业的有机碱,氢氧化 四甲铵(TMAH)代替氢氧化钠或氢氧化钾作为 pH 调节剂,其化学镀铜液的主要成分如表 4所示.

表 4 乙醛酸化学镀铜液的主要成分

Tab 4 Main components of the electroless-plating Cu solution with glyoxylil acid

Component	
$Cu_2 SO_4 \cdot 5H_2O /mol \cdot L^{-1}$	0. 0305
glyoxylic acid/mol \cdot L ⁻¹	0. 054 ~ 0. 11 mol/L
ED TA /mol \cdot L ⁻¹	0. 0351
Surfactant(RE610) /g · L ⁻¹	0. 004
Polyethylene glycol/g \cdot L ⁻¹	0. 05
2-2 B IPYR DYL /mg \cdot L $^{-1}$	10 ~ 20
TMAH pH adjuster	
pH	11. 4 ~ 13. 0
Temperature /	30 ~ 80

4 展 望

随着全球半导体集成电路技术的不断发展,传统的化学镀技术将为实现高集成度且价格合适的 半导体集成电路产品发挥更大的作用.为了降低基 板的介电系数,大量 Low-K材料的使用将成为现 实.化学镀铜和 Low-K材料间的紧密连接技术将

图 12 超级化学镀技术填充 0.31µm微孔的表面粗糙度

SPS浓度: 0.5 mg/L,沉积时间: 40m in a) AEM 照片, b) 表面粗糙度的线性轮廓, c) 断面 SEM 照片

Fig 12 Surface roughness of electroless plated Cu filling in 0. 31µm holes SPS concentration: 0. 5 mg/L, plating time: 40 min a) AFM image, b) line profile of surface roughness, c) cross-sectional SEM image

成为其工艺工业化的基础;由于 CB 技术对沉积 0.07µm以下的微孔受到限制,以原子束外延沉积 (Atom ic Layer Deposition, ALD)和超级化学镀相结 合来形成更细的铜互连线将成为半导体集成电路 中应用的另一个热点;由于欧洲、日本、美国等相关 环保法律的出台,使用甲醛作为化学镀铜溶液的还 原剂将变得十分困难,而寻找廉价的、化学稳定的、 且无环境污染的还原剂将也是化学镀技术目前所 面临的紧迫问题.

参考文献 (References):

· 132 ·

- Andricacos P C, Uzoh C, Dukovic J O, et al Damascene copper electroplating for chip interconnections
 BM J. Res Dev., 1998, 42 (5): 567 ~ 574.
- [2] Datta M. Applications of electrochemical microfabrication: An introduction [J]. BM J. Res Dev., 1998, 42 (5): 563 ~ 566.
- [3] Chang J C, Chen M C. Passivation of Cu by sputter-deposited Ta and reactively sputter-deposited Ta-nitride layers[J]. J. Electrochem. Soc., 1998, 145: 3170.
- [4] Chen X, Peterson G G, Goldberg C, et al Displacement activation of tanlalum diffusion barrier layer electroless coper deposition [J]. J. Mater Res, 1999, 14: 2043.
- [5] Chang J C, Chen M C. Properties of thin Ta-N films reactively sputtered on Cu/SD/Si substrates [J]. Thin Solid Films, 1998, 322: 213.
- [6] Hayashi Tadao, Matsuoka Masao, Nawafune Hidemi Electrolesss Plating, Foundation and Application [M].
 Tokyo: Nikan Technology Publish, 1998 109.
- [7] Sullivan E J O, Schrott A G, Paunovic M, et al Electrolessly deposited diffusion barriers for microlectronics
 [J]. BM J. Res Dev., 1998, 42: 607.
- [8] Osaka T, Takano N, Kurokawa T, et al Fabrication of electroless NiReP barrier layer on SiO₂ without sputtered seed layer[J]. Solid-State Letter, 2002, 5 (1): C7 ~ C10.
- [9] Osaka T, Takano N, Kurokawa T, et al Electroless nickel ternary alby deposition on SiO₂ for application to diffusion barrier layer in copper interconnect technology
 [J]. J. Electrochem. Soc , 2002, 149 (11): C573 ~ C578
- [10] Hasegawa M, Negishi Y, Nakanishi T, et al Effects of additives on copper electrodeposition in submicrometer trenches [J]. J. Electrochem. Soc , 2005, 152 (4): C221.

- [11] Shacham-Diamand Y, Sverdlov Y, Petrov N. Electroless deposition of thin-film cobalt-tungsten-phosphorus layers using tungsten phosphoric acid (H₃ [P (W₃ O₁₀)₄]) for ULSI and MEMS applications [J]. J. Electrochem. Soc , 2001, 148 (3): C162 ~ C167.
- [12] Shacham-Diamand Y, Dubin V, Angyal M. Electroless copper deposition for ULS I[J]. Thin Solid Films, 1995, 262: 93 ~ 103.
- [13] Shacham-Diam and Y, Dubin V. Copper electroless deposition technology for ultra-large-scale integration (ULSI) metallization [J]. Microelectric Engineering, 1997, 33: 47~58.
- [14] Shacham-Diamand Y, Lopatin S High aspect ratio quarter-micron electroless copper integrated technology
 [J]. Microelectric Engineering, 1997, 37 ~ 38: 77 ~ 78
- [15] Wu Y, Wan C C, Wang Y Y. Fabrication of a potential N MoP diffusion barrier/seed layer for Cu interconnect via electroless deposition [J]. Journal of the Electronic Material, 2005, 345 (5): 541.
- [16] Hsu H H, Hsieh C C, Chen M H, et al Displacement activation of tantalum diffusion barrier layer for electroless copper deposition [J]. J. Electrochem. Soc., 2001, 148: C598 ~ C590.
- [17] Nakahara L A, Ohmori T, Hashimoto K The influence of hydrofluoric acid concentration on electroless copper deposition onto silicon [J]. J. Electroanal Chem., 1992, 333: 363.
- [18] Nakahara L A, Ohmori T, Hashimoto K, et al Effects of HF solution in the electroless deposition process on silicon surfaces[J]. J. Vac. Sci Technol A, 1993, 11: 763.
- [19] Patterson J C, ORelly M, Crean G M, et al Selective electroless copper metallization on a titanium nitride barrier layer [J]. Microelectron Eng, 1997, 33: 65 ~ 73.
- [20] Patterson J C, Dheasuna C N, Barrett J, et al Eletroless copper metallization of titanium nitride [J]. Appl Surf Sci, 1993, 91: 124 ~ 128
- [21] Wang ZL, Ida T, Sakaue H, et al Electroless plating of copper on metal-nitride diffusion barriers initiated by displacement plating [J]. Electrochem. Solid-State Lett, 2003, 6(3): C38 ~ C41.
- [22] Shoso Shingubara, Wang Zenglin, Takayuki Takahagi Method of manufacturing multilevel interconnection [P]. Japan Patent: 0330029, 2005.
- [23] Shingubara S, Wang Z, Ida T, et al Direct Electro-

less Copper Plating on Barrier Metals without Pd Catalyst[Z]. IEEE Int Interconnect Conf , 2002, 176

- [24] Wang Z, Yaegashi O, Sakaue H, et al Suppression of native oxide growth in sputtered TaN films and its application to Cu electroless plating [J]. J. Appl Phys, 2003, 94(7): 4697 ~ 4701.
- [25] Wang Z, Yaegashi O, Sakaue H, et al Influence of surface oxide of sputtered TaN on displacement plating of Cu[J]. Jpn J. Appl P hys , 2003, 42 (4B): 1843~1846
- [26] Gandikota S, McGurik C, Padhi D, et al Characterization of electroless copper as a seed layer for sub-0.
 1 um interconnects [Z]. IEEE International Interconnect Conference, 2001, 30.
- [27] Andryuschenko T, Reid J. Electroess and electrolytic seed repair effect on damascene feature fill[Z]. IEEE International Interconnect Conference, 2001, 30.
- [28] Yamada Isao, Takaoka G bnized cluster beams: physics and technology [J]. J. Appl Phys, 1993, 32: 2121~2141.
- [29] Wang Z, Yaegashi O, Sakaue H, et al Highly Adhesive Electroless Cu Layer Formation Using an Ultra Thin bnized Cluster Beam (CB)-Pd Catalytic Layer for Sub-100nm Cu Interconnections [J]. Jpn J. Appl Phys Express Letter, 2003, 42 (10B): 1223 ~ 1225.
- [30] Shoso Shingubara, Wang Zenglin, Takayuki Takahagi Method of producing multilayer interconnection structure [P]. Japan Patent: 327715, 2005.

- [31] Wang Z, Sakaue H, Takahagi T, et al Characterization of electroless-plated Cu film over Pd catalytic layer formed by an ionized cluster beam [J]. J. Electrochem. Soc, 2005, 152 (10): C684
- [32] Shingubara S, Wang Z, Yaegashi O, et al Bottom-up fill of copper in high aspect ratio via holes by electro-less plating [c]. Proceedings of IEDM 03, 6 3 1-6 3 4.
- [33] Shingubara S, Wang Z, Yaegashi O, et al Bottom-up fill of copper in deep submicrometer holes by electro-less plating [J]. Electrochem. Solid-State Letter, 2004, 7 (6): C78 ~ C80.
- [34] Wang Z, Yaegashi O, Sakaue H, et al Bottom-up fill for submicrometer copper via holes of ULSIs by electroless plating [J]. J. Electrochem. Soc., 2004, 151 (12): C781 ~ C785.
- [35] Wang Z, Yaegashi O, Sakaue H, et al Effect of additives on hole filling characteristics of electroless copper plating [J]. Jpn J. Appl Phys , 2004, 43 (10): 7000 ~ 7001.
- [36] Wang Z Yaegashi O, Sakaue H, et al Bottom-up copper fill with addition of mercap to alkyl carboxylic acid in electroless [J]. Electrochimica Acta, 2006, 51: 2442
- [37] Shacham-Diamand Y. Electroless copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization [J]. Electrochem. Solid-State Letter, 2000, 3 (6): 279 ~ 282.

Application of Electrolessplating Technology in Interconnection Manufacturing of Ultralarge-scale Integration

 WANG Zeng-lin^{*1}, LU Zhi-juan¹, JANG Hong-yan¹, WANG Xiu-wen¹, Sho so Shingubara²
 (1 School of Chemistry and Materials Science, Shaanxi Normal University, Xian 710062, Shaanxi, China,
 2 Faculty of Engineering, Kansai University, Osaka, 564-8680, Japan)

Abstract: In this paper, research progresses in electroless plating for damascene copper process were reviewed Electroless nickel ternary alloy deposition for barrier layer and electroless copper plating for seed layer were presented Bottom-up copper fill high-aspect-via-hole and electroless plating after ICB-Pd catalytic layer for seed layer were mainly introduced The applications of electroless plating in ultralarge-scale integration were discussed, and the developing tendency was also suggested

Key words: Electroless copper plating, Bottom-up fill, Damascene copper interconnection, Seed layer, Barrier layer