Journal of Electrochemistry

Volume 12 | Issue 2

2006-05-28

Structure and Properties of Electrodeposited Sn-Co Alloy Electrodes as Anode Material for Lithium-Ion Secondary Batteries

Hong-hong JIANG

Ling HUANG

Recommended Citation

Hong-hong JIANG, Ling HUANG. Structure and Properties of Electrodeposited Sn-Co Alloy Electrodes as Anode Material for Lithium-Ion Secondary Batteries[J]. *Journal of Electrochemistry*, 2006, 12(2): 183-187. DOI: 10.61558/2993-074X.1719

Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss2/11

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)02-0183-05

锡钴合金电沉积层的结构与锂离子嵌脱行为

江宏宏,黄 令^{*},周顺维,柯福生,杨防祖,樊小勇,孙世刚 _{厦门大学化学化工学院} 化学系,福建 厦门 361005)</sub>

摘要: 应用电沉积方法制备 Sn-Co合金镀层. X射线衍射和扫描电子显微镜分析表明,该 Sn-Co合金镀层 为六方固溶体结构,含 Co量为 20%的 Sn-Co合金,其沉积层呈现 (110)择优取向.表面微孔随沉积层 Co含 量的增加而增多.以 Sn-Co合金镀层作锂离子电极材料,电化学性能测试表明,其首次充电曲线表现出锡钴 合金、锡及锡氧化物与锂合金化的多个反应综合特征,随后的充电曲线趋于稳定,呈现 Li-Sn-Co合金化反应特 征;具有择优取向和多孔结构的 Sn-Co合金电极材料的充放电性能较好,首次库仑效率为 63.9%,经过 20次 充放电循环后,其充电容量为 461mAg/h,库仑效率为 99%.

关键词: 电沉积; Sn-Co合金; 锂离子电池; 电化学性能

中图分类号: ™ 911 **文献标识码**: A

近年来, 锂离子二次电池由于其优异的电性 能和安全无公害等特点,发展极快,深受各国重视. 锂离子二次电池的容量在很大程度上取决于负极 的锂嵌入量,为提高电池的性能,锂离子电池的负 极材料已成为人们研究的热点之一^[1-2].目前已商 品化的锂离子电池负极是各类碳材料,其理论质量 比容量为 372 mAh/g^[3],与之相比,金属类负极材 料具有更高的理论比容量。例如.Al Cd Ga Si Sn 等均可与 Li形成合金,其中, Sn的理论比容量为 994 mAh/g, 因此锡金属材料被认为是最具应用前 景的材料之一,但由于锂的反复嵌脱导致材料体积 变化较大,该类电极在充放电过程中逐渐粉化,致 使活性材料失效,因此这类材料存在首次充放电效 率低和循环性能较差等缺点,至今未能实现商业 化.近年来国内外许多学者致力于改善金属负极材 料的性能等方面的研究,相继出现合金类负极材 料,特别是锡基合金,研究较多的有 Sn-Sb^[4-11]、Sn-Cu^[12-17]、Sn-Co^[18-19]等. 米常焕等^[18]利用 Co()、 Sn()盐与 NaOH在室温下的固相反应制备了钴 锡的复合氧化物,然后在加热条件下通 H₂还原得 到超细 Co-Sn合金粉体,用它作为锂离子电池的电

7

极材料,其首次放电容量为 550 mAh/g左右,但首 次充放电效率低,其不可逆容量损失高达 450 mAh/g N. Tamura等^[19]分别在光滑和粗糙表面的 铜箔上电沉积 Sn-Co合金,并分别用它作为锂离子 电池的电极材料,在电流密度递减(0,25,0,13, 0.05 mA/cm^2)的条件下进行充放电测试.结果表 明,其首次放电容量为 586 mAh/g 但经 15次循环 后,以粗糙表面铜作基体的锡钴合金电极表现出更 高的库仑效率和质量比容量. 较之化学还原法,电 沉积方法具有操作简单,能直接在铜集流体上沉 积一层可与锂反应的活性材料,并且还可通过控 制沉积条件改变活性材料结构等的优点.本文应 用电沉积方法制备两种不同组分的 Sn-Co合金镀 层.经 X射线衍射和扫描电镜分析该材料的相结 构和表面形貌,再以它作正极,金属锂为负极组装 成 2025 扣式电池,测试其性能.

1 实 验

1.1 锡钴合金电极的制备

1)样品 A:电解液由 75 g/L 锡酸钠,150 g/L 酒石酸钾钠,20 g/L 柠檬酸钾,4 g/L 氯化钴组成, 以盐酸调节溶液 pH = 7.5,纯紫 Cu 圆片

收稿日期: 2005-11-15, 修订日期: 2005-12-01 * 通讯作者, Tel: (86-592) 2181436, E-mail: huangl@ xmu edu cn 国家 "973 项目 (2002CB 211804)资助

(99.99%,直径为 1.2cm)作阴极,金属钛网为阳极. 沉积电流 10 mA/cm²,温度 55 .

2)样品 B:电镀液组成及工艺参数与样品 A 基本相同,仅将氯化钴的浓度改为 5g/L. 电沉积前 铜基底经丙酮,稀酸处理后用二次蒸馏水冲洗.所 用试剂皆为分析纯,溶液用二次蒸馏水配制. 将施 镀后的 Sn-Co合金镀片于 105 下真空干燥 24 h, 立刻放入充满氩气的手套箱备用.

1.2 锡钴合金镀层的物相及表面形貌分析

用 X pert PRO X射线衍射仪作试样的 X射 线衍射分析,Cu靶,K辐射源,管电压 40 kV,管电 流 30.0 mA,扫描范围 30~110°,2 步长 0.016°, 每步时隔 8 s

试样的表面形貌分析使用 LEO-1530场发射 扫描电镜.

1.3 锡钴合金电极的电化学性能测试

在充满氩气的手套箱中将活性材料组装成 2025型扣式电池,以纯锂片为负极,Sn-Co合金电 极为正极,电池隔膜为微孔聚丙烯膜 (Celgard2400),注入适量的1mol/LLiPF₆/EC+ DMC+DEC(体积比11)电解液.将装配后的 电池取出手套箱迅速封口.用BTS型电池通用测 试仪(新威)以0.2mA/cm²的电流密度在0.02~ 20V范围内作恒流充放电测试.

2 结果与讨论

2.1 锡钴合金镀层的 X射线衍射分析结果

图 1为 Sn-Co合金镀层样品 A (含钴: 18% (by mass))、B (含钴 20% (by mass))的 XRD 图谱. 对照标准卡可知,样品 A、B 均属六方晶系的 Co₃ Sn₂ 合金,表明该锡钴合金当为六方固溶体结构,锡为 溶剂,钴是溶质.由于体系存在消光,故相应的 XRD谱线出现部分衍射峰.含钴 18%的样品 A主 要沿着 (110)、(200)晶面生长.而含钴 20%的样 品 B,则 (110)晶面的衍射峰强度增强而 (200)、 (002)和 (102)晶面的衍射峰强度变弱.据此可 知:在同一条件下,只要改变镀液中钴离子的浓度, 便可得到 (110)择优取向的 Sn-Co合金镀层.

图 1 Sn-Co合金镀层的 XRD图谱

Fig 1 XRD patterns of the Sn-Co alloy coating Co contents /% (by mass): A) 18, B) 20

2 2 锡钴合金镀层表面的扫描电镜 分析结果

图 2示出 Sn-Co合金镀层 A、B样品的 SEM 图 片 (放大倍数为 2 000倍).如图可见,两样品表面 平整,但有少数球形颗粒,粒径大小不均一.样品 A表面较光滑,颗粒粒径较小.镀层有少许裂纹, 且有少量的孔存在,而样品 B的颗粒粒径较大,镀 层存在较多的孔,这可能是镀液中由于 Co²⁺浓度 之增加而降低了 H₂析出过电位,从而使析 H₂现象 更为严重所致.

图 2 Sn-Co合金镀层的扫描电镜照片

Fig 2 SEM micrographs of the Sn-Co alloy coating Co contents /% (by mass): A) 18, B) 20

2.2 锡钴合金电极的电化学性能

图 3示出以 Sn-Co合金 (样品 B)作为锂离子 活性电极材料在 0.2 mA/cm²恒流充放电下的充放 电曲线.图中,与放电曲线电压下降相对应的过程 是锂的嵌入;而与充电曲线电压上升相对应的过程 则为锂的脱出.图内插图是第 1周放电曲线的局 部放大,参照文献 [18],可将图中第 1周放电曲线

图 3 Sn-Co合金 (样品 B)的充放电曲线

分为 4个区域:1)在 2 0~1.5 V电位区间,电压呈 直线下降,放电容量几乎不变,不发生嵌锂反应,仅 对应于锡钴合金表面氧化物的分解^[20];2)在 1.5 ~1.0 V电位区间内,电位已降至合金化反应的范 围,此时嵌锂反应和锡钴合金表面氧化物的分解反 应同时发生(在随后的循环中这一曲线斜坡仍出 现,但斜率更陡);3)1.0~0.4 V电位区间,电池进 入正常的工作状态,对应的充电曲线于 0.5~0.6 V区间出现了充电平台,这是典型的 Li-Co合金的 反应^[21];4)此后,电位从 0.4 V开始缓慢下降最后 接近 0.02 V,应归结为 Li-Sn 的多步合金化反 应^[22],在这个电位区间内,Li-Sn合金接近富锂相 (Li₄ Sn)^[23]. 其嵌入比容量高达 500 mAh/g 对第 2周及其后的循环,其充放电曲线与文献 [19 报道 的相近. N. Tamura等由 XRD分析证实了锂离子 在嵌入锡钴合金电极时并不形成 Li-Sn合金,而是 生成像 Li-Sn-Co这样的无定形合金^[19]. 作者认 为,对电沉积得到的锡钴合金镀层,其表面与体相 的存在形式略微有所不同,体相中的仍是锡钴合 金,而表面的则可能是锡钴合金、金属钴及锡的氧 化物混合相,这可能就是造成第 1周循环比容量大 大高于随后循环比容量的原因.

图 4为以 Sn-Co合金镀层作正极,金属锂作负 极的组装电池前 20次充放电循环性能曲线及其库 仑效率曲线. 据图 4a,可将样品 A的放电曲线分 为 3个区间依次为:第 1至 4周放电容量下降;第 5 至 10周,放电容量上升;第 10周以后上升趋势趋 于稳定.样品 B的放电曲线于前 4次循环的放电 容量也呈下降趋势,其后转而上升并趋于稳定. A、 B两者于前 4次循环过程放电容量的下降可能是 由于电解液的聚合、分解以及锂离子反复嵌 脱导 致活性材料结构变化造成的.不过,结构变化在随 后的循环中已逐渐消失. 样品 A因镀层比较光滑, 颗粒较小且紧密,其活性物质是逐步地参与锂的合 金化反应,这就使得该样品在第 5~10周循环中容 量逐渐上升,此后由于活性材料结构不再明显变

图 4 Sn-Co合金镀层的循环性能

Fig 4 Cycle performance of the Sn-Co alloy coating Co contents / % (by mass): A, 18; B, 20 a) Charge /D ischarge capacity, b) Coulombic efficiency

化,放电容量就趋于稳定.而在样品 B中,其大量 存在的孔穴为活性物质与锂合金化提供了便捷通 道,从而使电极过程快速达到稳定状态,而且孔穴 的存在也能部分抑制活性材料结构的变化,为此, 样品 B的放电容量明显高于样品 A的.

从图 4还可看出,以 Sn-Co合金镀层作为锂离 子电池的电极材料,其首次放电容量都较高,分别 为 A 512 mAh/g, B 643 mAh/g, 而首次不可逆容量 损失则各为 220 mAh/g和 230 mAh/g,较之文献 [19],明显有所改善.造成不可逆容量损失的可能 原因是:电池在初次充放电时,存在一系列的副反 应.如样品表面上少量的锡、钴氧化物将导致电解 液的聚合、分解以及电极表面 SEI膜的形成.即如 图 4所见,经过 20次充放电循环之后, B 的充电 容量为 461mAh/g, 而 A的充电容量仅 401mAh/g, 前者的充放电效率高达 99%. 与 A 相比, B 的各次 放电质量比容量和库仑效率都较高或略高。这可 能是由于具有择优取向的样品 B.其 (110)晶面在 充放电时产生的副反应少,而样品 A则因在充放 电过程中易发生结构变化并引起较大的体积膨胀, 导致材料粉化,使得一部分材料集流体失去了电子 通道,造成嵌入的锂出现了滞留或积累现象.图 2 SEM 照片显示, B 样品为多孔结构, 孔穴的存在能 够部分缓解锂嵌入 脱出时引起的合金结构变化, 部分抑制由于体积膨胀而导致的活性物质粉化失 效,同时也就减缓了锂的滞留或积累现象,并因此 而提高该合金电极的充放电效率和循环性能,总 之,多孔结构的活性材料必能改善合金电极的充放 电性能.

3 结 论

1) 由电沉积方法制备的锡钴合金镀层,只要 改变镀液中钴离子浓度便可得到呈现 (110)择优 取向和多孔结构的 Sn-Co合金镀层.

2) 以该合金镀层材料作正极,金属锂作负极 组装成的电池,经过 20次充放电循环后,其充电容 量为 461mAg/h, 库仑效率达 99%.

3) Sn-Co合金镀层的多孔结构有利于缓解合 金电极的结构变化,能够更有效地抑制活性物质的 粉化,从而减缓锂嵌入比容量下降的趋势,同时也 减弱了锂的滞留或积累现象,表现出较好的充放电 性能.

参考文献 (References):

- Li N C, Martin C R. Nanostructured Sn-based anode prepared using sol-gel template synthesis [J]. J. Electrochem. Soc., 2001, 148 (2): A164.
- [2] Read J, Foster D, Wolfenstine J, et al SnO₂-carbon composites for lithium-ion battery anodes[J]. J. Power Source, 2001, 96 (2): 277.
- [3] Wu Sheng-hui(吴升晖), You Jin-kua(尤金跨), Lin Zu-geng(林祖赓), et al Study on carbon negative electrode for lithium ion batteries[J]. Chinese Journal of Power Sources(电源技术), 1998, 22(1): 35.
- [4] Yang J, Wachtler M, Winter M, et al Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries [J]. Electrochem. Solid State Lett, 1999(2):161.
 - Yang J, Winter M, Besenhard J O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries [J]. Solid State bnics, 1996, 90: 281.
 - [6] Besenhard J O, Yang J, WinterM. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
 [J]. J. Power Sources, 1997, 68: 87.
 - W achtler M, W inter M, Besenhard J O. Tin and tinbased intermetallics as new anode materials for lithiumion cells[J]. J. Power Sources, 2001, 94: 189.
 - [8] Huggins R A. Polyphase alloys as rechargeable electrodes in advanced battery systems [J]. J. Power Sources, 1988, 22: 341.
 - [9] Wachtler M, Winter M, Besenhard J O. Anodic materials for rechargeable Libatteries [J]. J. Power Sources, 2002, 105: 151.
 - [10] Cheng Xin-qun (程新群), Shi Peng-fei (史鹏飞). Study on the tin-ba sed anode for Li-ion battery[J]. Chinese Journal of Power Sources (电源技术), 2003, 27: 172.
 - [11] Shu Jie (舒杰), Cheng Xin-qun (程新群), Shi Pengfei(史鹏飞). Study on electrochemical properties of tin-based composite electrode [J]. Journal of Harbin Institute of Technobgy (哈尔滨工业大学学报), 2004, 36(11): 1502
 - [12] Kepler KD, Vaughey J T, Thackeray M M. LixCu₆ Sn₅
 (0 < x < 13): An intermetallic insertion electrode for rechargeable lithium batteries [J]. Electrochem. Solid State Lett , 1999, 2: 307.
 - [13] Larcher D, Beaulieu L Y, MacNeil D D, et al In situ X-ray study of the electrochemical reaction of Li with eta ¹Cu₆ Sn₅ [J]. J. Electrochem. Soc , 2000, 147: 1658.

· 187 ·

- [14] Pu W H, He X M, Ren J G, et al Electrodeposition of Sn-Cu alloy anodes for lithium batteries [J] Electrochim Acta, 2005, 50 (20): 4140.
- [15] Wang L B, Kitamura S, Obata K, et al Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries [J]. J. Power Sources, 2005, 141 (2): 286
- [16] PuWei-hua(蒲薇华), Ren Jian-guo(任建国), Wan Chun-rong(万春荣), et al Characteristics research of electrodeposited Sn-Cu alloy anode for lithium ion battery[J]. Journal of Inorganic Materials(无机材料学 报), 2004, 19(1): 86.
- [17] Shu Jie (舒杰), Cheng Xin-qun (程新群), Shi Pengfei(史鹏飞), et al Preparation and improvement of Cu-Sn alloy negative electrode for lithium ion batteries[J]. Chinese Journal of Power Sources(电源技术), 2005, 29(4): 218
- [18] MiChang-huan(米常焕), Zhang Xia-gang(张校刚), Cao Gao-shao(曹高邵). Synthesis and characteristic of Co-Sn and Cu-Sn alloys as anode materials in lithium-ion cell[J]. Chinese Journal of Inorganic Chemstry

(无机化学学报),2003,9(3):284.

- [19] Tamura N, Fujimoto M, Kamino M, et al Mechanical stability of Sn-Co alby anodes for lithium secondary batteries[J]. Electrochim. Acta, 2004, 49: 1949.
- [20] SmartM C, Ratnakumar B V, Surampudi S, et al Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries [J]. J. Electrochem. Soc., 1999, 146 (11), 3963.
- [21] Zhang Li-juam (张丽娟), ZhaoXin-bing (赵新兵), Jiang Xiao-bing(蒋小兵), et al Study on the electrochemical performances of in termetallic compound CoSb₃ in lithium-ions batteries [J]. Chinese J. Rare MetalMaterials and Engineering(稀有金属材料与工 程), 2001, 30 (4): 268.
- [22] Zhu Cheng-fei(朱承飞), Cheng Xin-qun (程新群), Shi Peng-fei(史鹏飞). Study on metal tin electrode in lithium-ion battery [J]. Batteries (电池), 2002, 32 (1):10.
- [23] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim. Acta, 1999, 45: 31.

Structure and Properties of Electrodeposited Sn-Co Alloy Electrodes as Anode Material for L ith ium - Ion Secondary Batteries

J ANG Hong-hong, HUANG Ling^{*}, ZHOU Shun-wei, KE Fu-sheng,

YANG Fang-zu, FAN Xiao-yong, SUN Shi-gang

(Department of Chenistry, College of Chenistry and Chenical Engineering, Xiam en University, Xiam en 361005, Fujian, China)

Abs tract: The Sn-Co alloy deposits were prepared by electroplating The structure and electrochemical performance of the electroplated Sn-Co alloys have been investigated in detail Experimental results show that the porous Sn-Co alloy film exhibits hexagonal solid solution, with Sn as the solvent, Co as the solute. The texture of the Sn-Co alloy coating exhibits (110) preferred orientation Electrochemical tests show that the porous Sn-Co alloy coating electrodes can deliver a discharge capacity of 643mAh/g in the first cycle. At the 20^{h} cycle the charge was 461mAh/g At initial charge curve the irreversible capacity is probably associated to a combination of processes, which may include the reduction of small amount of tin dioxide and cobalt oxide on electrode surface, solvent decomposition and the formation of a passivating film on the electrode surface. The porous Sn-Co alloy electrodes can partly accommodate the volume expansion and phase transition during cycling, and would improve the cycle life of the electrode. They are also beneficial to diffusion of Li into /out of macroporous materials, and improve dischargeability/chargeability at charge discharge cycle.

Key words: Electroplating, Porous Sn-Co alloy, Lithium ion battery, Electrochemical performance