Journal of Electrochemistry

Volume 12 | Issue 2

2006-05-28

Effects of Eelectrolyte Salt to the SEI Layer of LiCoO_2 Material

Ming-sen ZHENG

Recommended Citation

Ming-sen ZHENG. Effects of Eelectrolyte Salt to the SEI Layer of LiCoO_2 Material[J]. *Journal of Electrochemistry*, 2006, 12(2): 223-226. DOI: 10.61558/2993-074X.1727 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss2/19

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)02-0223-04

电解质对锂离子电池正极材料界面特性的影响

郑明森^{1,2},董全峰^{*1,2},朱亚薇¹,詹亚丁¹,林祖赓¹

(1. 厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005;2. 厦大宝龙电池研究所,福建 厦门 361005)

摘要: 研究 LiPF₆、LiCD₄和 LBF₄ 3种电解质对 LiCoO₂材料界面特性的影响.结果表明:化成后的 LiCoO₂表面存在固态电解质膜 (SEI膜);在不同成分的电解液中,LiCoO₂表面 SEI膜的形成电位、形貌特征以及材料的可逆容量、平均放电电压和电化学反应阻抗不同.

关键词: 锂离子电池;电解质;SEI膜 中图分类号: O 646 54;TM 911.1

锂离子电池电极表面固态电解质膜(SEI膜) 与电池的电化学性能紧密相关,有关 SEI膜的研究 始终是锂离子电池领域的热点之一.以往研究主要 集中在阳极方面^[18],这是由于阳极表面 SEI膜的 形成能有效地防止溶剂分子的共嵌入,从而大大提 高阳极材料的循环性能;但同时,该膜的形成也消 耗了部分锂离子,使得首次充放电不可逆容量增 加,降低了阳极材料的充放电效率.阴极表面同样 存在着 SEI膜,也同样影响着电池的性能,但有关 它的相关研究直到最近才逐渐引起人们的注 意^[910].阴极表面 SEI膜的研究是对阳极 SEI膜研 究的继续.深入认识阴极表面 SEI膜的性质,可以 全面了解 SEI膜在锂离子电池中的作用,为进一步 改善锂离子电池的性能提供理论指导.

本文应用 SEM方法证实化成后 LiCoO₂材料表 面 SEI膜的存在,研究了 LiCoO₂分别在 LiPF₆、 LiCO₄和 LBF₄ 3种电解质中其表面 SEI膜的形成 电位和形貌特征以及该膜的形成对电化学性能的 影响.

1 实 验

-7

1.1 电池制备

按 80% (by mass) LiCoO₂ (天津巴莫)、10% PVDF-HPF黏合剂 (KENAR FLEX LBG, Elf-ato文献标识码: A

chem)和 10%乙炔黑 (河南焦作)制备电极浆料, 然后把浆料均匀地涂覆在粗糙化的铝片上制成极 片.铝片于涂覆前经丙酮和蒸馏水清洗,并准确称 其质量.将涂覆好的极片放在 120 的真空烘箱中 干燥 12 h,称重后用粉末压力机以 10 MPa加压成 型,将成型的极片放入手套箱 (水分含量 <1 × $10^{-6}, O_2$ 含量 <100 × 10^{-6}).以锂片作对电极,Celgard 2400聚丙烯复合膜为隔膜,由微量注射器加 入适量的电解液 (张家港国泰华荣),经封口机冲 压封口密封制成实验用纽扣电池.实验电池电解液 分别为 1 mol·L⁻¹LiPF₆/(EC (碳酸乙烯酯) + DMC (碳酸二甲酯))、1 mol·L⁻¹LiCD₄/(EC + DMC)和 1 mol·L⁻¹LBF₄/(EC + DMC),其中 EC 与 DMC的体积比为 1 1.

1.2 电池测试和表征

电池的化成使用 Arbin电池测试仪. 电流量程 5 mA,电压量程 5 V,控制精度 0.1%. 化成的步骤 如下: (1)以 0.2 C倍率恒流充电至 4.3 V; (2)在 4.3 V下恒压充电至电流小于 0.02C倍率电流; (3)以 0.2 C倍率恒流放电至电压 3.3 V; (4)重复 上述步骤 3次.

SEM 测试使用 S-520 扫描电子显微镜 (日本 日立). 交流阻抗实验使用 M6型阻抗频谱分析仪 (ZAHNER Me technik GmbH & Co. KG德国). 阻

收稿日期:2006-01-22 * 通讯作者, Tel: (86-592)2185905; E-mail: qfdong@xmu edu cn 973项目(2002CB211800),国家自然科学基金(20373058),厦门市科技计划项目(3502Z20055018)资助

抗测试前,实验电池在恒温箱 (重庆维尔)中以指 定的温度恒温 4 h,精度 ±0.1 .

2 结果与讨论

2.1 表面形貌

· 224 ·

图 1为化成前的 LiCoO₂ (A)和 LiCoO₂在 3种 不同电解液中化成后 (B~D)的 SEM 照片. 如图可 见,化成前的 LiCoO₂材料,其表面较为平坦,并具 有明显的层状结构特征,但形状则较不规则,颗粒 棱角分明. 而化成后的 LiCoO₂,则表面平整度下 降、颗粒棱角较为模糊、层与层之间界线不清晰,表 面都覆盖一层表面层,这就是 SEI膜.

再比较使用不同电解液化成的 $LiCoO_2$,其表 面形貌也有明显差异.以 $1 mol \cdot L^{-1}LiPF_6 / (EC + DMC)化成的 LiCoO_2 (B),其颗粒结构与化成前的$ 较为接近,棱角也较清晰,说明该材料形成的 SEI $膜厚度不大.而以 <math>1 mol \cdot L^{-1}LiCO_4 / (EC + DMC)$ 或 $1 \mod L^{-1}LBF_4 / (EC + DMC) 化成的 LiCoO_2$ (C,D),则其表面形成的 SEI膜较厚,但前者的 SEI膜光滑而紧密,而后者的则粗糙而疏松.可见 电解液成分对 LiCoO₂表面 SE 膜形态有较大影响.

2.2 充放电曲线

图 2为 LiCoO₂电极在不同电解液中化成的首 次和第 2周的充放电曲线,表 1列出其首次充放电 数据.说明如下:

1)在 3种不同电解液中化成的 LiCoO₂,其各 自首次充电曲线和第 2周充电曲线均存在些许差 别.由于首次充电过程除锂离子的脱嵌反应外,还 存在其它电化学反应,故其充电容量高于第 2周的 充电容量.但放电曲线则首次和第 2周的基本重 合,第 2周的充电和放电容量也基本相同.据此似 可推断 LiCoO₂表面能发生电化学反应并形成 SEI 膜,而该电化学反应主要发生在首次充电过程.

2)比较不同的电解液,LiCoO2的充放电曲线也

- 图 1 化成前 (A)和化成后 (B、C、D) LiCoO₂极片 SEM 照片
- Fig 1 SEM images of the $LiCoO_2$ electrodes before charge/discharge (A) and after charge/discharge in electrolyte solution of 1 mol·L⁻¹ LiPF₆/(EC+DMC) (B), 1mol·L⁻¹ LiCO₄/(EC+DMC) (C) and 1 mol·L⁻¹ LiBF4/(EC + DMC) (D)

彼此存在一定差异.即如表 1所见,在 $1mol \cdot L^{-1}$ LBF₄/(EC + DMC)电解液中,LiCoO₂电极的放电 容量、首次充 放电效率和平均放电电压最高,依次 为 149.9 mAh/g 94.6%和 3.965 V;而在 1 mol · L⁻¹LiCD₄/(EC + DMC)电解液中,则其充电容量 最高而充 放电效率最低,各为 169.9 mAh/g和

- 图 2 LiCoO₂在不同电解液中的首次 (虚线)和第 2 周 (直线)的充放电曲线
- Fig 2 1^{st} (dash) and 2^{nd} (line) charge/discharge curves of LiCoO₂ electrodes in 1 mol \cdot L⁻¹ LiPF₆/(EC + DMC) (A), 1 mol \cdot L⁻¹ Li-CO₄/(EC + DMC) (B) and 1 mol \cdot L⁻¹ LiBF₄/(EC + DMC) (C) electrolyte solution

7

85%;对 1 mol · L⁻¹L BF₄ / (EC + DMC)电解液,则 其平均放电电压最低,为 3.942 V.充 放电容量和 首次充 放电效率的不同反映了 L CoO₂表面 SE I膜 形成与电解质成分有关,而平均放电电压的差别则 说明该 SE I膜的确对材料的电化学性能有所影响. 3)充电曲线 (图 1)给出,在 3种电解液中

- 图 3 LiCoO₂ 电极在不同电解液中的 Nyquist图谱 25
- Fig 3 Nyquist p lots of $LiCoO_2$ electrodes in $1 \mod \cdot L^{-1}$ $LiPF_6 / (EC + DMC) (A), 1 \mod \cdot L^{-1} LiCO_4 / (EC + DMC) (B)$ and $1 \mod \cdot L^{-1} LiBF_4 / (EC + DMC) (C)$ electrolyte solution at 25

Tab 1 The 1 st cycle charge/discharge date of L iCoO ₂ electrodes in different electrolyte solution					
Electrolyte solution	Charge capacity $/mAh \cdot g^{-1}$	D ischarge capacity $/mAh \cdot g^{-1}$	Efficiency /%	Average charge voltage/V	Average discharge voltage/V
$\frac{1 \text{ mol} \cdot \text{L}^{-1} \text{LiPF}_{6}}{(\text{EC} + \text{DMC})}$	165. 8	148 9	89. 8	4. 074	3. 942
$\frac{1 \text{ mol} \cdot L^{-1} \text{ LiCD}_4}{(\text{EC} + \text{DMC})}$	169. 9	144. 6	85. 0	4. 010	3. 955
$\frac{1 \text{ mol} \cdot \text{L}^{-1} \text{L} \text{I} \text{B} \text{F}_4}{(\text{EC} + \text{DMC})}$	158. 4	149. 9	94. 6	4. 014	3. 965

表 1 LiCoO2材料在不同电解液中化成的首次充放电数据

L iCoO₂表面 SE I膜的形成电位依次为, 1 mol·L⁻¹ L iPF₆ / (EC + DMC)的约 4.0 V 附近, 1 mol·L⁻¹ L iCO₄ / (EC + DMC)和 1 mol·L⁻¹LBF₄ / (EC + DMC)的约在 3.9 V 附近,比较之下,前者的形成 电位略高一些.

2.3 电化学交流阻抗

· 226 ·

图 3给出 25 下,化成后的 LiCoO₂ 电极在不 同电解液中的交流阻抗谱,电池的电压为 4 20 V. 显然,在 3种电解液中,LiCoO₂ 的阻抗谱图有明显 不同.数据拟合表明,在 1 mol·L⁻¹LiPF₆/(EC + DMC)、1 mol·L⁻¹LiCO₄/(EC +DMC)和 1 mol· L⁻¹LBF₄/(EC +DMC)电解液中,LiCoO₂的电化学 反应阻抗依次为 17.6 、92 3 和 2 3 ,三者相 差甚大.这表明电解质的成分确能影响LiCoO₂的电 化学反应活性。

3 结 论

1)化成后的 LiCoO₂表面能够形成稳定存在的 SE I膜.

2)电解质参与了 LiCoO₂表面 SEI膜的形成, 并影响 LiCoO₂材料该膜的特性,包括形成电位以 及表面形貌.

3)电解质成分会影响 LiCoO₂的电化学性能, 包括电池的容量、平均放电电压以及电化学反应阻 抗等.

参考文献 (References):

 Buiel E, Dahn J R. Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries [J]. J. Electrochem. Soc, 1998, 145: 1977 ~ 1981.

- [2] DONG Quan-Feng (董全峰), ZHENG Ming-Sen (郑明森), HUANG Zhen-Cai (黄镇财), et al The synthesis, characteristics and performance of CNT composites as anodic materials in litium-ion battery [J]. Electro-chemistry (in Chinese), 2005, 11 (2): 152~156
- [3] Buqa H, Golob P, Winter M, et al Modified carbons for improved anodes in lithium ion cells [J]. J. Power Sources, 2001, 97 ~ 98: 122 ~ 125.
- [4] Kumar T P, Stephan A M, Thayananth P, et al Thermally oxidized graphites as anodes for lithium-ion cells
 [J]. J. Power Sources, 2001, 97 ~ 98, 118 ~ 121.
- [5] Chevallier F, Gautier S, Salvetat J P, et al Effects of post-treatments on the performance of hard carbons in lithium cells[J]. J. Power Sources, 2001,97 ~ 98: 143 ~ 145.
- [6] Aurbach D, Ein-EliY, Chusid O, et al The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable " rocking chair" type batteries[J]. J. Electrochem. Soc., 1994, 141: 603 ~ 611.
- [7] Aurbach D, Zaban A, Shechter A, et al The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I Li anodes[J].
 J. Electrochem. Soc., 1995, 142: 2873 ~ 2878
- [8] Aurbach D, Zaban A, Ein-Eli Y, et al Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J]. J. Power Sources, 1997, 68: 91 ~ 98
- [9] Aurbach D, Gamolsky K, Markovsky B, et al The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li_x MO_y Host Materials (M = Ni, Mn) [J]. J. Electrochem. Soc, 2000, 147: 1322 ~ 1331.
- [10] Aurbach D, Levi M D, Levi E, et al Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J]. J. Electrochem. Soc, 1998, 145: 3024 ~ 3034.

Effects of Eelectrolyte Salt to the SEILayer of $L CoO_2$ Material

 $ZHENGM ing-sen^{1,2}$, DONGQ uan-feng^{*1,2}, ZHU Ya-wei¹, ZHAN Ya-ding¹, LN Zu-geng¹

(1. Department of Chemistry and The state Key Laboratory for Physical Chemistry of Solid Surface,

College of Chen istry and Chen ical Engineering, Xiam en University, Xiam en, Fujian 361005, Fujian, China,

2 Xiam en Univ-Pow eiLong Battery Institute, Xiam en Fujian 361005, Fujian, China)

Abs tract: The character of the solid electrolyte interface (SEI layer) on the surface of $LiCoO_2$ formed in the electrolytes contained different salt such as $LiPF_6$, $LiCiO_4$ and $LiBF_4$ were studied in this paper. The results showed that the SEI film exists in all three electrolytes after the processes of charge and discharge. The morphological character and the formation voltage of the SEI layer of $LiCoO_2$ were different in different electrolytes. The electrochem ical performance of the battery such as reversible capacity, average discharge voltage and electrochem ical impedance were affected significantly by SEI film formed in different electrolytes.

Key words: Lithium ion battery, Electrolyte salt, SEI film