Journal of Electrochemistry

Volume 12 | Issue 3

2006-08-28

Investigations on Electrochemical Characteristics of LiV_(3)O_(8) Electrode in Lithium Sulfate-water-ethanol Electrolytes

An-bao YUAN

Recommended Citation

An-bao YUAN. Investigations on Electrochemical Characteristics of LiV_(3)O_(8) Electrode in Lithium Sulfate-water-ethanol Electrolytes[J]. *Journal of Electrochemistry*, 2006, 12(3): 250-256. DOI: 10.61558/2993-074X.1731

Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss3/3

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

Article D: 1006-3471 (2006) 03-0250-007

Investigations on Electrochem ical Characteristics of L iV₃O₈ Electrode in L ith ium Sulfate-water-ethanol Electrolytes

YUAN An-bao^{*}, SONG W ei-xiang

(Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China)

Abstract: The active material of LN_3O_8 prepared using low-temperature pre-reaction in solution followed by intermediate-temperature calcination at 450 . The product was characterized by X-ray diffraction analysis and scanning electron microscope observation The performance of LN_3O_8 electrode in neutral lithium sulfate-waterethanol electrolytes was investigated using electrochemical methods Galvanostatic charge/discharge results indicated that the specific capacity of LN_3O_8 electrode decreases with ethanol content increasing in electrolyte. The most appropriate water/ethanol volumetric ratio is 4 1 in terms of conductivity of the electrolyte and stability of the electrode AC impedance measurements demonstrated that the ohmic resistance of the electrolyte as well as the charge transfer resistance of the electrode/electrolyte interface increases with ethanol content increasing Kev words: Lithium trivanadate, Electrochemical characteristics, Lithium sulfate-water-ethanol lectrolyte

CLC Number: $\mathbb{T}M$ 912

Document Code : A

1 Introduction

Lithium ion batteries have been applied to many fields such as communication, portable computer and so on, owing to the advantages of high specific energy, long cycle life and environmentally friendship. However, there are some disadvantages with nonaqueous lithium ion batteries such as safety problem in utilization, high manufacturing cost and low conductivity of organic electrolyte. These drawbacks limited its application to some areas, for example, in application to electric vehicles

From 1994, studies on lithium ion batteries or Li^+ insertion/extraction electrode materials using aqueous electrolyte containing lithium ions were reported^[1-8]. Lithium trivanadate, LNO_8 ($Li_{1+x}VO_8$) have been intensively investigated as positive electrode materials in nonaqueous lithium batteries^[9-17]. It is well

known that the Li^+ insertion/extraction potential of $L_1V_3O_8$ is lower than that of L_1COO_2 and $L_1N_1O_2$. Hence, J. Köhler et al^[8] studied the battery with $LiV_{3}O_{8}$ ($Li_{1+x}V_{3}O_{8}$) as negative electrode, LNi_{1+81} $Co_{0,19}O_2$ as positive electrode and 1 mol/L Li₂SO₄ aqueous solution as electrolyte. Wherein, the LNQ_8 crystal was prepared by conventional high-temperature solid method. In our previous work^[18], the $L_1V_2O_8$ material was prepared using low-temperature solution reaction followed by intermediate-temperature calcination method (ascribed to solution method) and its electrochemical performance as negative electrode in 1 $mol/L Li_{5} SO_{4}$ aqueous electrolyte was examined. We found that the charge/discharge capacity of the solution-method $LN_{3}O_{8}$ was higher than that of the solidmethod one Nevertheless, the capacity degradation of the $L N_3 O_8$ electrode upon cycling was still quick

Received date: 2005-11-24 * Corresponding author, Tel: (86-21) 66134851, E-mail: abyuan@staff shu edu cn

due to the aqueous electrolyte Alternatively, in the present study, lithium sulfate-water-ethanol solution electrolytes were employed and the influence of different water/ethanol volumetric ratios on the electrochem ical performance of $L W_3 O_8$ electrode was investigated

2 Experimental

2. 1 Preparation of $L iV_3O_8 M$ a terial

The LN_3O_8 material was prepared according to the method described in literature^[13]. L½ CO₃ and NH₄VO₃ (analytical grade) with a molar ratio of Li V = 1 3 were added to distilled water in a beaker, then heated to boiling with magnetic stirring Boiling for about 1 h, the solids were thoroughly dissolved After boiling off the water completely, a solid mixture (precursor) was produced The precursor was heated to 450 and maintained for 10 h (calcination) in an electric furnace and cooled down to room temperature, thus the LN₃O₈ material was obtained

2. 2 Thermal Analysis, Structure Characterization and Morphology Observation

The mogravimetric and differential the mal analysis (TG-DTA) of the precursor (pre-reaction product) was performed using a microcomputer controlled WCT-1A differential the mal analysis unit (Beijing, China). The temperature rise rate was controlled at 10 min⁻¹ heating from 26 to 500 , and the mass of the sample was about 10 mg The crystal structure of LN₃O₈ active material was characterized by powder X-ray diffraction (XRD) analysis using a Rigaku D/ max-RB X-ray diffractometer with CuK radiation (40 kV /40 mA). Morphology observations of the LN₃O₈ product and the precursor were conducted on a Hitachi S-350 scanning electron microscope (SEM).

2.3 Preparation of L iV₃O₈ Electrodes

A given amount of LN_3O_8 and 10% (by mass) acetylene black were mixed, then 5% poly (tetrafluoroethylene) emulsion was added to the mixture and mixed thoroughly again. The obtained paste was filled into foamed nickel with 2 cm \times 2 cm dimensions The pasted electrode was dried at 70 for 12 h and then roll-pressured to a thickness of 0.6 mm.

2.4 Electrochem ical Testing

Charge/discharge performance of $LN_3 O_8$ electrodes was performed using LAND auto-cycler (China). The working electrode was $LN_3 O_8$ electrode, the counter electrode was LNO_2 electrode with higher capacity relatively, and the reference electrode was saturated calomel electrode (SCE). 2 mol/L Li₂ SO₄ water-ethanol solutions were used as electrolytes The charge and discharge cut off potentials were - 1. 5 and - 0.2 V (vs SCE) respectively.

Electrochem ical impedance spectroscopy (EIS) of $L N_3 O_8$ electrodes were carried out using CH 1660A Electrochem ical Work Station with the three-electrode system same as the above

3 Results and D iscussion

3.1 TG-DTA Curves of the Precursor and the Preparation Reaction

The pre-reaction in solution can be described by the following equation^[13]:

 $6NH_4VO_3 + L_{\frac{1}{2}}CO_3 - 2NH_4V_3O_8 \cdot xH_2O + L_{\frac{1}{2}}CO_3 + 4NH_3 + 2(1 - x) H_2O$ (1) In Eq (1), NH_4VO_3 changed to $NH_4V_3O_8 \cdot xH_2O$ and in the meanwhile, NH_3 and H_2O were given off Whereas, $L_{\frac{1}{2}}CO_3$ underwent no net change in the reaction, but its presence in this process helped to form homogeneous mixture (precursor) and would be convenient for the solid reaction in the subsequent calcination process:

 $2NH_{4}V_{3}O_{8}. xH_{2}O + L_{2}i_{2}CO_{3} - 2LN_{3}O_{8} \cdot yH_{2}O + 2NH_{3} + CO_{2} + (1 + 2x - 2y) H_{2}O (2) \\ LN_{3}O_{8} \cdot yH_{2}O - LN_{3}O_{8} + yH_{2}O (3)$

The thermograms of the precursor are shown in Fig 1. Wherein the first mass loss before 150 is due to the dehydration of free water in the mixture. The second weight loss in the range of $150 \sim 230$ with the DTA peak at 190 should be ascribed to the escape of NH₃, CO₂ and H₂ O^[13] which corresponding to the reaction (2). The third weight loss between $230 \sim 320$ should be attributed to the re-

Fig 1 TG-DTA curves of the precursor

Fig 2 XRD pattern of the LN_3O_8 powders

moval of the intercalated water in $L N_3 O_8 \cdot y H_2 O$

Fig 3 SEM images of the precursor (a) and the LN_3O_8 (b)

interlayer This process corresponds to the equation (3). The residual water in $V_3 O_8$ layer could be removed completely after 320 . In this study, a temperature of 450 was selected as calcination temperature for the $L N_3 O_8$ preparation

3.2 XRD Analysis and SEM Observation

Fig 2 shows the powder X-ray diffraction pattern of the LN_3O_8 . It can be seen from Fig 2 that the characteristic peaks for LN_3O_8 are presented in 2 = 13. 92 °, 23. 28 °, 28. 36 °, 30. 86 °, 41. 04 °, 42. 30 ° and 50. 70 ° respectively. This suggests that the prepared LN_3O_8 is a pure single-phase compound

The SEM images of the precursor and the LNO_8 product are shown in Fig 3a and b respectively. The precursor exhibits polycrystalline aggregation of the mixture While, the LN_3O_8 crystal presents wide particle size distribution

3. 3 Charge /D ischarge Character istics and AC In pedance Spectra Analysis of the L iV₃O₈ Electrode

Fig 4 shows the first charge/discharge curves of the LN_3O_8 electrode in 2 mol/L $L_{\frac{1}{2}}SO_4$ -water-ethanol electrolytes with different water/ethanol volumetric ratios On charging process, the L_i^+ ions in solution are intercalated to $L_{\frac{1}{4}+x}V_3O_8$ and the electrode potential decreases While on discharging, the L_i^+ ions in $L_{\frac{1}{4}+x}V_3O_8$ are deintercalated to solution and the electrode potential increases W ith ethanol content in-

 Fig 4 First charge/discharge curves of the LN₃O₈ electrode in 2 mol/L Li₂ SO₄ -water-ethanol electrolytes with different water/ethanol volumetric ratios

creasing in electrolyte, the average charge potential decreases and the average discharge potential increases. The maximal charge/discharge specific capacity was obtained with a water/ethanol volumetric ratio of 4 1. Nevertheless, we found from experiment that if the ethanol content decreases further, the electrode would become unstable in the electrolyte. Hence, the water/ethanol volumetric ratio of 4 1 is considered to be the most appropriate for simultaneously considering the conductivity of the electrolyte (see below) and the stability of the electrode

To correlate the above charge/discharge results with AC impedance behavior, the AC impedance spectra for the LN_3O_8 electrode in 2 mol/L L is SO_4 -water-eth-anol electrolytes with different water/ethanol volumetric ratios were obtained and displayed in Fig 5. Before AC impedance measurements, the electrode had

gone through an initial charge/discharge cycle for activation The AC impedance were measured at discharged state (i e 0 % SOC, State Of Charge) with the frequency range from 10^5 to 10^{-3} Hz Fig 5b is the close up view of Fig 5a at high frequency region Seen from Fig 5a that the impedance spectra are all composed of a semicircle and a straight line. The semicircle at the higher frequency region should be attributed to the charge transfer resistance of the electrode/electrolyte interface, and the straight line at the lower frequency region corresponds to the Warburg diffusion impedance of Li⁺ in solid The charge transfer resistance increases with ethanol content increasing in electrolyte. On the other hand, seen from Fig 5b that the ohm ic resistance increases with ethanol content increasing in electrolyte. This is because that the conductivity of the solution decreases with ethanol content increasing Therefore, it comes to the conclusion that with ethanol content increasing in electrolyte, not only ohmic resistance of the electrolyte, but also the charge transfer resistance of the electrode/electrolyte interface are increased

Fig 6 shows the charge/discharge curves of the LN_3O_8 electrode at different specific currents in 2 mol/L Li₂SO₄ -water-ethanol-electrolyte. With charge/discharge specific currents increasing, the average charge potential and the average discharge potential shift toward more negative and more positive respectively, and hence the charge/discharge capacity decreases The capacity at specific current of 20 mA \cdot g⁻¹ decreased not significantly compared with that at 10 mA \cdot g⁻¹, but the capacity at 30 or 50 mA \cdot g⁻¹

Fig 5 AC impedance spectra for the LN_3O_8 electrode in 2 mol/L $L_{\frac{1}{2}}SO_4$ -water-ethanol electrolytes with different water/ethanol volumetric ratios

decreased obviously.

Fig 6 Charge/discharge curves of the LN₃O₈ electrode at different specific currents in 2 mol/L L <u>b</u> SO₄ -waterethanol electrolyte

Fig 7 Variation of D ischarge capacity with cycle number for the LiN₃O₈ electrode cycled in 2 mol/L Li₂ SO₄ water-ethanol electrolytes with different water/ethanol volumetric ratios

The charge / discharge cyclic stability of the LN_3O_8 electrode at a specific current of 10 mA \cdot g⁻¹ in 2 mol/L L i SO₄ -water-ethanol electrolytes with different water/ethanol ratios are presented in Fig 7. Seen from Fig 7, that the specific discharge capacity of the electrode in the electrolyte with water/ethanol ratio of 4 1 is obviously higher than that in the electrolyte with water/ethanol ratio of 3 1 or 2 1. Moreover, in the initial 5 cycles, the capacity decline rate of the electrode in the electrolyte with water/ethanol ratio of 4 1 is slower than that in the other electrolytes Undergone 20 charge/discharge cycles, the

discharge capacity of the electrode in the electrolyte with water/ethanol ratio of 4 1 decreased to 61 % of the initial value. Although the capacity degradation with cycling is still quick, the cyclic stability is improved in some degree compared to the LN_3O_8 electrode cycled in lithium sulfate-water aqueous electrolyte^[18].

Fig 8 AC impedance spectra of the LN₃O₈ electrode being cycled 1 and 10 cycles in 2 mol/L Li₂SO₄-water-ethanol electrolyte

Fig 8 shows the AC impedance spectra of the LN_3O_8 electrode being cycled 1 and 10 cycles at specific current of 10 mA \cdot g⁻¹ in 2 mol/L L i SO₄ -waterethanol electrolyte with water/ethanol ratio of 4 1. The AC impedance measurements were performed at discharged state (0% SOC) and with the frequency range from 10⁵ to 10⁻³ Hz Seen from Fig 8 that undergone 10 charge/discharge cycles, the semicircle at higher frequency region increased obviously. This indicates that upon cycling, the charge transfer resistance of the electrode/electrolyte interface increased and the electrochemical reactivity of the electrode decreased

4 Conclusions

The LN_3O_8 electrode can intercalate and deintercalate Li^+ ions in lithium sulfate-water-ethanol electrolyte and may be used as negative electrode for lithium ion battery with aqueous electrolyte. The galvanostatic charge/discharge results demonstrated that the charge/discharge specific capacity of the LN_3O_8 electrode decreased with ethanol content increasing in

electrolyte A maximal specific discharge capacity of 110 mAh \cdot g⁻¹ was obtained in the electrolyte with water/ethanol volumetric ratio of 4 1, and this composition is considered to be the most appropriate for simultaneously considering the conductivity and stability. AC impedance results revealed that with ethanol content increasing in electrolyte, not only ohmic resistance of the electrolyte, but also the charge transfer resistance of the electrode/electrolyte interface increased. Cyclic stability investigation showed that undergone 20 charge/discharge cycles, the discharge capacity of the $L N_3 O_8$ electrode in the electrolyte with water/ethanol volumetric ratio of 4 1 decreased to 61 % of the initial value. The charge transfer resistance of the electrode/electrolyte interface was increased upon cycling and this reflects the decreasing of electrochemical reactivity of the electrode.

References :

第 3期

- LiWu, Dahn J R, Wainwright D S Rechargeable lithium batteries with aqueous electrolytes [J]. Science, 1994, 264: 1115~1118
- [2] LiWu, McKinnon W R, Dahn J R. Lithium intercalation from aqueous solutions[J]. J. Electrochem. Soc., 1994, 141(9): 2310~2315.
- [3] LiWu, Dahn J R. Lithium-ion cells with aqueous electrolytes [J]. J. Electrochem. Soc., 1995, 142 (6): 1742 ~ 1745.
- [4] Zhang Mei-jie, Dahn J R. Electrochemical lithium intercalation in VO₂ (B) in aqueous electrolytes [J]. J. Electrochem. Soc., 1996, 143 (9): 2730 ~ 2735.
- [5] Yang H Q, LiD P, Han S, et al Vanadium manganese complex oxides as cathode materials for aqueous solution secondary batteries [J]. J. Power Sources, 1996, 58: 221 ~ 224.
- [6] Yang Hui, Yang Hua-quan, Lu Yin-lin, et al Research of Zn-Mn spinel electrode mateial for aqueous secondary batteries [J]. J. Power Sources, 1996, 62: 223 ~ 227.
- [7] Wang Pei, Yang Hui, Yang Hua-quan Electrochemical

behavior of LiMn spinel electrode mateial in aqueous solution [J]. J. Power Sources, 1996, 63: 275 ~ 278.

- [8] Köhler J, Makihara H, Uegaito H, et al LN₃O₈: Characterization as anode material for an aqueous rechargeable Li-ion battery system [J]. Electrochim Acta, 2000, 46: 59~65.
- [9] Panero S, Pasquali M, Pistoia G Rechargeable $Li/Li_{1+x}V_3 O_8$ cells [J]. J. Electrochem. Soc., 1983, 130(5): 1225 ~ 1227.
- Pistoia G, Pasquali M, Wang G, et al Li/Li_{1+x}V₃O₈ secondary batteries: synthesis and characterization of an amorphous form of the cathode [J]. J. Electrochem. Soc, 1990, 137(8): 2365 ~ 2370.
- [11] West K, Zachau-Christiansen B, Skaarup S, et al Comparison of L₁V₃O₈ cathode materials prepared by different methods [J]. J. Electrochem. Soc , 1996, 143 (3): 820 ~ 825.
- [12] Kumagai N, Yu A. Ultrasonically treated LN_3O_8 as a cathode material for secondary lithium batteries [J]. J. Electrochem. Soc , 1997, 144(3): 830 ~ 834.
- [13] Dai Jin-xiang, Sam F YL, Gao Zhi-qiang, et al Low-temperature synthesized LN₃O₈ as a cathode material for rechargeable lithum batteries[J]. J. Electrochem. Soc., 1998, 145(9): 3057 ~ 3062.
- [14] Kawakita J, Miura T, Kishi T. Charging characteristics of Li_{1+x}V₃O₈ [J]. Solid State bnics, 1999, 118: 141 ~ 147.
- [15] Liu G Q, Zeng C L, Yang K Study on the synthesis and properties of L N₃O₈ rechargeable lithium batteries cathode [J]. Electrochim. Acta, 2002, 47: 3239 ~ 3243.
- [16] Xie Jing-gang, Li Jin-xia, Zhan Hui, et al Low-temperature sol-gel synthesis of Li_{1.2}V₃O₈ from V₂O₅ gel
 [J]. Mater Lett, 2003, 57: 2682 ~ 2687.
- [17] Xu Hai-yan, W ang Hao, Song Zhi-qiang, et al Novel chemical methode for synthesis of L N₃O₈ nanorods as cathode materials for lithium ion batteries[J]. Electrochim. Acta, 2004, 49: 349~353.
- [18] Song Wei-xiang, Yuan An-bao, Zhao Jun Electrochemical properties of LN₃ O₈ prepared by solution method [J]. Battery Binonthly, 2005, 35(2): 91 ~ 92

LiV₃O₈电极在硫酸锂 水 乙醇 电解质中的电化学性能研究

袁安保*, 宋维相

(上海大学理学院化学系,上海 200444)

摘要: 应用低温液相反应再经 450 中温锻烧制备 LN₃O₃活性物质,并用 X射线衍射 (XRD)分析和扫描 电镜 (SEM)表征了产物 LN₃O,结构、形貌. 电化学方法研究 LN₃O,电极在硫酸锂 永 乙醇中性电解质溶液中 的性能. 恒流充放电结果表明, LN3O3电极的比容量随电解质溶液中乙醇含量的增加而降低, 若同时考虑电解 质溶液的电导率和电极的稳定性,水/乙醇体积比4 1最为合适.交流阻抗测试表明,溶液的欧姆电阻以及电 极 电解质界面的电荷转移电阻随溶液中乙醇含量的增加而增大:随着充放电循环的进行,电极 电解质界面 的电荷转移电阻增大,电极的活性降低. WWW.CIUKI.IN

关键词: LN₃O₈;电化学特性;硫酸锂 水 乙醇电解质

-7