Journal of Electrochemistry

Volume 12 | Issue 3

2006-08-28

Investigation of the Direct Electrochemical Reduction of Cr_(2)O_(3) Powder in Molten CaCl_(2) by a Metallic Cavity Electrode

Guo-hong QIU

Di-hua WANG

Xian-bo JIN

Xiao-hong HU

Zheng CHEN

Recommended Citation

Guo-hong QIU, Di-hua WANG, Xian-bo JIN, Xiao-hong HU, Zheng CHEN. Investigation of the Direct Electrochemical Reduction of Cr_(2)O_(3) Powder in Molten CaCl_(2) by a Metallic Cavity Electrode[J]. *Journal of Electrochemistry*, 2006, 12(3): 304-309. DOI: 10.61558/2993-074X.1742 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss3/14

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)03-0304-006

Cr₂O₃ 粉末在 CaCl 熔盐中直接电化学还原的 金属通腔电极研究

邱国红,汪的华,金先波,胡晓宏,陈 政

(武汉大学化学与分子科学学院,湖北武汉 430072)

摘要: 应用金属通腔电极研究 Cr_EO₃粉末于熔盐中的电化学行为,验证了 900 下 Cr_EO₃粉末在含镁量 <0.005%氯化钙熔盐中的分步还原机理,估算其电化学还原动力学参数;并由扫描电镜观察产物形貌,分析 电解电位和时间对金属颗粒尺寸的影响.

关键词: 金属通腔电极;直接电化学还原;氧化铬粉末;循环伏安法;计时电流法;熔盐

中图分类号: TQ 151.9; TF 111. 52⁺2

熔盐电化学还原固态氧化物是制备高熔点活 泼金属及其合金的一种崭新方法^[1-2],在电解制备 金属 $t^{[1]}$ 、 $t^{[3]}$ 、 $t^{[4-5]}$ 和 $t^{[6-7]}$ 等方面已有报道. 研究熔盐中氧化物粉末的电化学还原机理可为电 解工艺的发展提供理论支持. 然而,制备高温环境 的氧化物粉末电极却非易事.文献报道主要有两种 高温氧化物电极:(1)纯金属在空气中高温氧化形 成表面氧化物薄膜电极^[1,8];(2)氧化物粉末烧结 块电极^[5]前者在它的氧化产物膜的断面上存在 氧的浓度梯度,成分较复杂,包含多种价态的氧化 物,难以准确体现单一氧化物的电化学本性;后者 的氧化物量较大,质量达 1g左右,其于单周电位扫 描中难以完全还原,而极化电流又往往达到几百 mA甚至数安培,从而导致严重的 R 降.本文作者 依据粉末微电极的优点^[9],设计并制备了孔径约 0.5 mm的金属双孔通腔电极,此种新型电极极化 电流小并可方便地进行非原位检测.以此电极研究 NID和 Cr₅O₃粉末在含镁量 0.3 % (by mass)的 CaCl」熔盐中的电化学行为^[10],发现 Cl₂O₃电化学 还原的第一步有复合氧化物 Mg Cr O, 生成, 但无 相应的含钙物种^[10].本工作进一步使用金属钼通 腔电极研究在含镁量很低的 CaCl熔盐中 (可认为

7

文献标识码: A

不存在镁的干扰)C₅O₃粉末的电化学行为,揭示 C₅O₃在纯 CaC₁熔盐中的还原机理.

- 1 试验部分
- 1.1 试剂与材料

Ct₂O₃粉末 (分析纯,粒径:0.1~0.2 µm), CaCl₂ · 2H₂O (分析纯), Na: ~0.02 % (by mass), Mg: < 0.005 % (by mass,上海生物工程 有限公司),钼片 (纯度 99.9%),石墨坩埚.

1.2 钼片金属通腔电极的制备

将厚度为 0.5 mm的钼片切割成宽 1.0 mm, 长 15.0 cm的条形片.并于其上打两个与底端平 行、直径约为 0.5 mm的小孔 (见图 1a).切割打孔 后的钼片经细砂纸打磨后,置于浓 NaOH溶液中煮 30 min,除去表面的氧化物.再经蒸馏水漂洗,用 丙酮溶液超声洗涤除表面油污.

1.3 电解池的组成

图 1b示出研究金属通腔电极的熔盐电解池实验装置,将底部密封直径为 30.0 cm的石英管垂直放入马弗炉炉膛中,CaCl.·2H2O按文献[8]方法除水,取适量干燥后的 CaCl.粉末装入石墨坩埚(内径 25.0 mm,壁厚 5.0 mm,高 200.0 mm),坩埚

收稿日期: 2006-01-07,修订日期: 2006-04-04 *通讯作者, Tel: (86-27) 68756319, E-mail: mel@whu edu cn 国家杰出青年科学基金 (20125308),国家自然科学基金 (20573081)资助

用导线引出兼作对电极. 升温至 900 后,用直径 2 0 mm 的铁丝或者钼丝作阴极,石墨坩埚作阳极, 2 6 V 下预电解 6~8 h,插入 Ag/AgCl参比电 $W^{[11]}$,于钼片通孔中填入 C_EO₃粉末作工作电极置 入电解液中组成电化学测量的 3电极体系.

图 1 钼金属通腔电极扫描电镜图 (a)和研究 MCE的三电 极电解池装置 (b)

Fig 1 SEM image of the Mo⁺MCE (a) and schematic diagram (b) of the three-electrode cell sealed in a quartz tube in a fumace for the investigation of redox active powder filled MCE in molten salt

1.4 仪器与设备

循环伏安和恒电位电解测试使用 CH 1660 (上 海辰华)电化学工作站.用场发射扫描电镜 (SR F ON-FEG)观察电解产物形貌,并结合 EDX作分析.

2 结果与讨论

2.1 Cr2O3粉末在 CaClz熔盐中的还原机理

金属 Mo在 900 、纯度 96%的 CaCl₂ (Mg + 碱金属: ~0.3%, by mass)熔盐中有近 2.0 V的 电化学窗口^[10].本实验使用纯度更高的 CaCl₂ · 2H₂O制备熔盐 (以下称 CaCl₂熔盐),得到更宽的 电化学窗口 (> 2.1 V). 但因上述两种 CaCl₂的碱 及碱土金属含量不同,致使参比电极的电位有所漂 移^[9].图 2示出 CE₂O₃粉末在 900 CaCl₂熔盐中 的循环伏安曲线.如图,在 10 mV/s扫速下,电流不 超过 50 mA,因而不会引起太大的 *I* R 降,与文献 [5]相比较更有利于伏安分析.图中显示, CE₂O₃粉 末在 0.4 V (vs Ag/AgCl)左右开始被还原,在 0.2 V处显示一小的还原电流峰 (a1),随后电流不断

增大,在 - 0.2 V 附近出现第 2 个还原电流峰

图 2 Cr₂O₃粉末在 900 的 CaCl₂熔盐中的循环伏安曲线 a):10 mV/s, b):空白, 50 mV/s

Potential/V(vs. Ag/AgCl)

Fig 2 CVs of the double cavity MoMCE with (a) and without Cr_2O_3 powder (b)

图 3示出 Cr₅O₃于不同恒电位电解条件下,电 解产物的 SEM 照片和 EDX分析结果,由图可见: 1)在 0.4 V下电解 30 min产物基本仍为 Cr₅O₃ (图 3a),说明 Cr₂O₃在此电位下难以被还原. 2)于 0.2 V(参见图 2, a1峰)电解 30 min,则可发现腔中 Cr5 O₃被部分还原 (图 3b),产物为缺氧的铬氧化物 (接近 Cr₄O₅),氧含量约为 55.9%, (by atom ratio). 附带指出,对含镁量较高的熔盐,此电位区间 的还原峰电流相对较强^[10],此时除了部分氧离子 迁出外,为保持电中性,熔盐中的 Mg²⁺同时向氧化 物电极迁移、导致电流强度增加、进入氧化物电极 内部的 Mg^{2+} 或现场形成的 MgO 与部分脱氧的 Cr_x $O_y(y/x < 1.5)$ 反应形成复合氧化物;而在含镁量 非常低的熔盐体系中,没有 Mg²⁺参与反应,所以图 2中的 al峰电流相对较小. 3)在 -0.1 V 下电解 20 min.由图 3c可见.产物基本上为金属 Cr

如上分析,在高纯的 CaCl₂熔盐中,Cr₂O₃的还 原可能按如下步骤进行:

 $n \operatorname{Cr}_{2}\operatorname{O}_{3} + m (3x - 2y) e \longrightarrow m \operatorname{Cr}_{x}\operatorname{O}_{y} +$ m (1. 5x - y) O²⁻ (mx = 2n) (1) Cr_xO_y + 2y e \longrightarrow x \operatorname{Cr} + y O²⁻ (2) 需要说明的是,文献^[4-5]曾报道在 CaCb熔盐

中恒电压电解数量较多的 Cr₂O₃粉末压片,可以得 到钙、铬复合氧化物.但本研究使用微量粉末,有利 于钙、氧从电极中快速脱除,因而不利于钙、铬复合 氧化物的生成.换言之,即使钙、铬复合氧化物作为 中间产物在还原过程中生成,其寿命也非常短,因 而无法在产物中检测到.

2.2 Ct₂O₃粉末于 CaCl₂熔盐中电化学

还原动力学

金属通腔电极内填充的粉末量仅约 170 µg, 高温下 C_EO₃具有一定的电子导电性 (脱除部分氧 后,电子导电性可能增加^[12]),其于金属腔中的电 化学还原速率很快,可以近似认为它类似于薄层电极反应.图4给出了 CEO,粉末通腔电极于不同扫速下的循环伏安曲线.实验表明,其还原峰电流与扫速呈线性关系 (图4b),斜率0.731;而峰电位则随扫速增加而负移,两者之间呈半对数关系 (图4c),斜率-0.105,此与完全不可逆的薄层电化学反应的特征吻合^[13].进一步分析于不同电位下电解的产物,则可近似认为图2中的a2还原峰当对应于一个二电子反应.根据薄层电化学理论,由图

图 3 不同电解条件下产物的 SEM 及其 EDX分析

Fig 3 SEM images and EDX analysis of the electrolysis products at different electrolysis conditions a) 0.4 V, 30 min, b) 0. 2 V, 30 min, the part of the cavity center, c) - 0.1V, 20 min 4b直线斜率估算该出该过程传递系数 约为 0.23,与含杂质镁体系得到的结果(0.21)¹⁰¹基本 一致.但需要指出的是,由于激光打孔并不是很规则,得到的金属通腔电极的形状与尺寸都互有不 同,使得填充的氧化物粉末质量以及氧化物和通腔 电极接触的面积等也不能很好地保持一致,从而导 致测量误差.图 4b, c给出的斜率与文献报道值略 有差别,以之算得的 值也稍有不同.

2 3 电解电位和电解时间对还原金属 颗粒大小的影响

由于通腔电极可容纳氧化物粉末甚少,能够在 短时间内被还原完全,可以借助非原位的显微实验 快速观察电解电位和还原时间对还原产物的颗粒 尺寸,还原程度及其含氧量的影响.图 5示出不同 电解条件下产物的 SEM 形貌.由图可见,于 0 V 下 电解 10 min,就能得到粒径小于 1 µm的金属 Cr颗

图 4 Cr₂O₃粉末在 900 的 CaCl₂熔盐中的循环伏安曲线 (a),扫速与峰电流之间的关系 (b),扫速与峰电位之间的关系 (c)

Fig 4 CVs for the MoMCE (double holes) with $C_{E}O_3$ powder in the molten CaCl_k at 900 (a), and the linear correlations be-

图 5 不同电解电位和电解时间产物 SBM 照片

Fig 5 SEM images of the electrolysis products at different electrolysis potential and time a) 0 V, 10 min, b) 0 V, 20 min, c) - 0.1 V, 20 min, d) - 0.4 V, 20 min 粒;电解延长至 20 min,颗粒长大到 1.5 µm左右. 在更负的电位(-0.4 V)下电解 20 min,金属颗粒 尺寸达到 2 0 µm. 这是因为随着电解时间的延 长,金属中的含氧量下降,金属更易于烧结,同时由 于烧结时间相应增加,极化电位越负,还原速率越 快,导致产物中的含氧量更低,故而金属颗粒粒径 变得越大.此外,EDX分析也证实了样品氧含量随 电解时间延长和电位变负而降低,事实上,于-0.4 V下电解 20 min的实验样品,已无法通过 EDX检 测氧.以上说明,在给定的实验条件下若无严重的 传质障碍和欧姆极化,少量氧化铬的还原可以较快 的速率进行.若要依此法大量制备铬粉,则由大量 粉末形成的块体电极的浓差极化和欧姆极化将是 影响还原速度的主要因素,故优化阴极结构将是提 高电解速度的重要途径.

3 结 论

通孔电极中氧化铬的还原具有类似薄层电极 反应特征, C_EO₃粉末在高纯 CaCl₂熔盐中的电化学 还原机理包括 2个步骤. C_EO₃电化学还原的电荷 传递系数约为 0.23. 电解电位和电解时间条件对 还原产物的颗粒大小都有影响:提高电解电压,延 长电解时间,金属 Cr中氧含量相应降低, -0.4 V 下电解 20 min之内的金属铬粒径由亚微米增大到 2 μm.

参考文献(References):

- [1] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J]. Nature, 2000, 407: 361 ~ 364.
- [2] Wang Dihua (汪的华), Chen Zheng (陈政). Innovation in molten salt electrochem istry [J]. Electrochem istry (in Chinese), 2005, 11(2):119~124.
- [3] Yan X Y, Fray D J. Electrochemical studies on reduc-

tion of solid Nb_2O_5 in molten CaCl₂-NaCl eutectic [J]. J. Electrochem. Soc. 2005, 152 (1):D12 ~D21.

- [4] Chen G Z, Gordo E, Fray D J. Direct electrolytic preparation of chromium powder [J]. Metall Mater Trans B., 2004, 35: 223 ~ 233.
- [5] Gordo E, Chen G Z, Fray D J. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts [J]. Electrochim. Acta, 2004, 49: 2195 ~ 2208.
- [6] Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nat Mater, 2003, 2: 397 ~ 401.
- [7] Jin Xianbo, Gao Pei, Wang Dihua, et al Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride [J]. Angew. Chem. Int Ed., 2004, 43: 733 ~ 736
- [8] Chen G Z, Fray D J. Voltammertic studies of the oxygen-titanium binary system in molten calcium chloride [J]. J. Electrochem. Soc , 2002, 149 (11): E455 ~ E467.
- [9] CHA C. S (查全性). Introduction to Electrode Kinetics[M]. 3rd Ed, Beijing: Science Press, 2002.
- [10] Qiu Guohong, MaMeng, Wang Dihua, et al Metallic cavity electrode for investigation of powders: electrochem ical reduction of N/D and Cr₂O₃ powder in molten CaCl₂ [J]. J. Electrochem. Soc., 2005, 152: E328 ~ E336
- [11] Gao Pei, Jin Xianbo, Wang Dihua, et al A quartz sealed Ag/AgC1 reference electrode for CaCL based molten salts[J]. J. Electroanal Chem., 2005, 579: 321 ~ 328.
- [12] Liu H, Stack M M, Lyon S B. Reactive element effects on the ionic transport processes in Cr₂O₃ scales
 [J]. Solid State bnics, 1998, 109: 247 ~ 257.
- [13] Bard A J, Faulkner L R. Electrochemical Methods— Fundamentals and Applications [M]. 1st and 2nd Ed, New York: John Wiley & Sons, Inc., 1980 ~ 2001.

Investigation of the D irect Electrochem ical Reduction of $Cr_2 O_3$ Powder in M olten CaCl by a M etallic Cavity Electrode

Q U Guo-hong, WANG D i-hua, J N Xian-bo, HU Xiao-hong, CHEN Zheng^{*}

(College of Chan istry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China)

Abstract: A metallic cavity electrode is used for further investigation of the electrochemical behaviour of $C_{12}O_3$ powder in molten CaC_{12} (Na: ~0.02% by mass, Mg: < 0.005% by mass) at 900 . The $C_{12}O_3$ powder reduction mechanism was confirmed in line with EDX and SEM analysis of the potentiostatic electrolysis products. The correlations between the particle size of metallised product and the electrolysis potential, or electrolysis time were analysed

Key words: Metallic cavity electrode, Direct electrochemical reduction, Chromium oxide powder, Cyclic voltammetry, Chronoamperometry, Molten salt