Journal of Electrochemistry

Volume 12 | Issue 4

2006-11-28

Electrochemical Characterization of Positive Electrode Material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 in Different Electrolytes

Jing-jing LIU

Wei-hua QIU

Ling-yan YU

Hai-lei ZHAO

Tao LI

Recommended Citation

Jing-jing LIU, Wei-hua QIU, Ling-yan YU, Hai-lei ZHAO, Tao LI. Electrochemical Characterization of Positive Electrode Material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 in Different Electrolytes[J]. *Journal of Electrochemistry*, 2006, 12(4): 373-377. DOI: 10.61558/2993-074X.1755 Available at: https://jelectrochem.xmu.edu.cn/journal/vol12/iss4/4

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2006)04-0373-005

锂离子电池正极材料 L Ni/3 Co/3 Mn1/3 O2 在不同电解液中的性能研究

刘静静,仇卫华*,于凌燕,赵海雷,李 涛

(北京科技大学 材料科学与工程学院 无机非金属材料系 北京 100083)

摘要: 应用低热固相合成法制备锂离子电池正极材料 LiCo_{1/3}Ni_{1/3}Mn_{1/3}O₂. 研究该材料的结构与形貌,并比 较它在商品 LiPF₆盐和在实验室合成的 LBOB (LB(C₂O₄)₂) 盐电解液中的电化学性能.在 LiPF₆ / EC +DMC +DEC电解液中,该材料表现出优良的电化学性能,其于 0 5C, 1C, 1. 5C, 2C, 3C放电倍率的初始比容量依次 为 167、163、163、157、147mAh/g,电池的循环性能也较好,说明低热固相合成的材料的有较好的高倍率性能. 在 LBOB /EC +DEC +DEC +DE电解液中, 0.5C倍率下比容量为 160 mAh/g,较之 LiPF₆盐电解液的相差不大,但在 高倍率下的比容量有所下降.

关键词: 锂离子电池;正极材料;LNi₁/3C01/3Mn1/3O2;电解液 中图分类号: ™ 912 9 文献标识码: A

近年来,层状多元正极材料引起了广泛关 注^[1-2],其中,层状钴镍锰复合正极材料LN $i_{1/3}$ Co_{1/3}Mn_{1/3}O₂是一种极具发展前景的材料,与 LCOO₂、LNO₂和LMnO₂相比,具有成本低、放电容 量大、循环性能好、热稳定性好、结构比较稳定等优 点,可以弥补LNO₂和LMnO₂的不足,并且价格比 LCOO₂低廉,已成为目前最具有发展前景的新型锂 离子电池正极材料之一^[35].

关于锂离子电池,电解液性能的改良也是十分 关键的一项.目前,商品锂离子电池应用最为普遍 的电解质锂盐是 LiPF₆,但 LiPF₆一遇微量杂质水, 便立刻水解,产生的 HF会腐蚀正极材料及集流 体,从而降低电池的循环寿命.此外热稳定性差等 缺点,从而限制了它的应用.另一种电解质锂盐是 LBOB,它能在纯 PC溶剂中稳定石墨负极,此乃其 他盐所不具备的性质,同时还拓宽了电池的使用温 度范围,有利于提高电池的高温循环寿命,能够有 效地提高电池的安全性.同制备条件苛刻,污染严 重的 LiPF₆相比,LBOB 原料易得,制备方法简单,

7

符合环保要求,在锂离子动力电池领域具有很大的 应用潜力和发展前景^[67].

本文应用低热固相合成法合成 LNi_{1/3} Co_{1/3} Mn_{1/3}O₂,并研究该材料在 LiPF₆ /EC +DMC +EMC (体积比为 1 1 1)和 LBOB /EC +DEC + EMC (体 积比为 1 1 1)电解液中的电化学性能及电极 /电 解液界面的状态.

1 实 验

1.1 低热固相法合成 LiCo_{1/3}N i_{1/3}M n_{1/3}O₂

将 $H_2C_2O_4 \cdot 2H_2O$ 和 LDH · H_2O 按摩尔比 1 混合,适当滴加少量去离子水,球磨 2 h,将乙 酸钴、乙酸镍、乙酸锰按化学计量比称量,用混料机 混合均匀后置于球磨罐中球磨 4 ~ 5 h,取出粉红色 糊状物,在 150 下真空干燥 24 h,之后研磨成细 粉,得到前驱体.从室温开始加热前驱体,升温速率 为 5 /min,在 350~400 时保温 4 h,再继续升 温至 700 ,保温 15 h 按 5 /min降至室温,过 240目筛,600 回火处理 6 h

按文献 [8]方法合成锂盐 LBOB,经多次提纯

收稿日期:2005-12-29,修订日期:2006-02-27 *通讯作者,Tel:(86-10)62334863,Email: qiuwh@vip.sina.com.cn 国家自然科学基金(50472093)资助 后备用.在氩气手套箱中按化学计量比称取电解质 锂盐 L BOB 与有机溶剂 EC +DEC + EMC(1 1 1) 配制成电解液.

 $LiPF_6$ / EC + DMC + EMC 电解液为商品电解液.

1.2 材料表征

LNi_{1/3}Co_{1/3}Mn_{1/3}O₂的 XRD分析使用 D/max-A 型转靶 X射线衍射仪 (日本理学),扫描范围 10 °~ 90 °扫描电镜 (Japan, Hitachi, S-3500N)观察该材 料的微观形貌.

1.3 充放电测试

按正极活性物质 导电剂乙炔黑 粘结剂聚四 氟乙烯 (PTFE) = 85 10 5 (by mass)混合均匀,加 入少量异丙醇,在红外灯下烘干后用双辊压机碾压 成厚度约为 100 µm的薄膜,制成二次锂离子电池 正极膜.以Li片作负极,隔膜为聚丙烯微孔膜 Celgard 2400,电解液分别为 1 mol/L LiPF₆ / EC + DMC + EMC (1 1 1)和 0.8 mol/L LBOB / EC + DEC + EMC (1 1 1),在氩气手套箱内组装成双电极实 验电池.

使用 LAND BT1-10 蓝电电池测试系统,对实验电池作恒电流限制电压充放电测试及不同倍率放电测试. CH 1660a电化学工作站(上海辰华)作交流阻抗测试.

2 结果与分析

2.1 XRD分析

图 1示出上述 700 合成的 LNi_{1/3} Co_{1/3}Mn_{1/3} O₂样品的 XRD分析结果,由图可见,该材料各衍射 峰峰位皆与 R $\overline{3m}$ 空间群的一致,峰型尖锐,且没有 杂质相产生,说明结晶度良好.其 l_{03}/I_{04} 比值为 1.06,即阳离子混排程度较小^[9],这可能是焙烧温 度比较低,不容易发生混排之故.根据 Rietveld精 修,得其晶胞参数为: a = 0.285 3 nm, c = 1.420 4 nm,比文献 [3]的略小 (a = 0.286 7 nm, c = 1.420 4 nm).此处 c/a值为 4.98,且衍射峰 (006)和 (012)、(108)和 (110)发生明显分裂,说明形成了 很好的层状结构^[10].

2.2 材料的微观形貌

从图 2 SEM 照片可见,该材料粒径分布比较 均匀,颗粒细小,尺寸在 0.1~0.5µm之间,颗粒之 间发生团聚,团聚体呈不规则形状.颗粒边缘光

hitspace is a constrained of the second state is a constrained of the second state is a constrained state is constrained state is a con

图 1 700 合成的 LNi_{1/3}Co_{1/3}Mn_{1/3}O₂样品 XRD谱

Fig 1 X-ray diffraction pattern of the

 $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ synthesized at 700

- 图 2 700 合成的 L N i_{1/3} Co_{1/3}M n_{1/3}O₂样品 SEM 照片
- Fig 2 SEM image of the L i (N $i_{1/3} Co_{1/3} M n_{1/3}$) O_2 synthesized at 700

滑,结晶状态良好.

2.3 电化学性能

在恒电流 100 mA/g(0.5C),充放电电压 2.75 ~4.35 V范围内分别测定上述 LNi_{1/3} Co_{1/3}Mn_{1/3}O₂ 材料在两种电解液中的比容量,结果如图 3、图 4 所示.如图,在 LBOB 盐的电解液里,其首次循环 比容量和充放电效率分别为 161 mAh/g 84%,比 LiPF。盐电解液中 167 mAh/g 89%稍低,但经 20次 循环后,两者比容量保持率则相差不多.

图 4显示,在含 LBOB 盐的电解液中,该电池 的极化现象较为严重.究其原因,主要是该电解液 的电导率相对较低,室温下仅为 6 mS/cm,而 LiPF。 的电导率为 10 mS/cm. 但也可能是溶剂与盐的匹 配还存在一些问题,有待进一步探索. 此外,其第 1

Fig 3 Cycling performance of the LN $i_{1/3}\,Co_{1/3}M\,n_{1/3}\,O_2$ in two different electrolyte

- 图 4 LNi_{1/3}Co_{1/3}Mn_{1/3}O₂在两种电解液中的充放电曲线
- Fig 4 Charge/discharge curves of the L N $i_{1/3}\,Co_{1/3}M\,n_{1/3}O_2$ in different electrolyte

次不可逆容量增大的原因可能与电解液在正极表 面形成膜的性质有关.

图 5为 LNi_{1/3}Co_{1/3}Mn_{1/3}O₂合成样品在两种电 解液中分步增加放电倍率的测试结果.如图,在 0.5 C倍率下,该材料于 LiPF₆和 LBOB电解液中 的比容量分别为 167 mAh/g和 160 mAh/g,两者相 差不大,仅 7 mAh/g 增加放电倍率,差距明显增 大,如 1C时,二者差距为 18 mAh/g 2C时,比容量 各为 91 mAh/g 24 mAh/g 由此可见,对三元正极 材料,其于 LBOB盐电解液中的高倍率性能较差, 这除了与该电解液电导率较低,故而在大电流放电 过程中会影响它的电池性能有关外,也可能由于首 次充放电制度会影响电极表面膜的质量,致使材料 的高倍率性能下降.

图 5 合成的 L N i_{1/3}Co_{1/3}M n_{1/3}O₂样品在两种电解液中 的分步放电倍率比较

Fig 5 Rate capabilities of the as-synthesized $LN i_{1/3} Co_{1/3}$ $Mn_{1/3}O_2$ in different electrolyte

- 图 6 LNi_{1/3}Co_{1/3}Mn_{1/3}O₂在 LiPF₆/EC + DMC + EMC电 解液中不同倍率放电下的比容量变化曲线
- Fig 6 Rate capability of the $L N i_{1/3} Co_{1/3} M n_{1/3} O_2$ in $L i PF_6 / EC + DMC + EMC$

图 6和图 7分别为合成材料在两种电解液中 不同倍率放电条件下的比容量测试结果.如图,在 LiPF。盐电解液中,0.5C、2C倍率下的初始比容量 为 167 mAh/g,157 mAh/g,在LBOB盐电解液中的 初始比容量分别为 160 mAh/g 155 mAh/g 二者 2C倍率的比容量均远远高于图 5中的,说明初始 充放电倍率对电池材料界面影响不同.

2.4 交流阻抗测试

由图 8可以看出,新组装电池的阻抗谱线(1) 由一个半圆和一条斜线组成,而充放 3次后的电池 阻抗谱线(2)由两个半圆和一条斜线组成,高频部

Fig 7 The rate capability of L N $i_{1/3}$ Co $_{1/3}$ M $n_{1/3}$ O_2 in L BOB / EC +DEC + EMC

分半圆表征电极表面膜电阻,中频部分半圆表征反 应电阻.图中,0.8mol/LLBOB/EC+DEC+BMC 电解液的溶液电阻、电池的膜电阻均大于 1mol/L LiPF₆/EC+DMC+DEC电解液的电阻,影响了电 池的电化学性能.

表 1列出在 1C和 2C放电倍率下电池的交流 阻抗变化.如表,对使用 LiPF₆ / EC + DMC + DEC 电解液的电池,不同的初始放电倍率对电池界面表 面膜电阻影响较小,均在 30 左右.而采用 Li-BOB / EC + DEC + EMC电解液的电池,则在 2C倍 率化成时界面阻抗减小了 40 ,这就是图 7中 2C

Tab. 1 Impedances of the $L i/L N i_{1/3} Co_{1/3} M n_{1/3} O_2$ batteries at various discharging rate in different electrolyte

LiPF6/LiBOB	1C	2C
New cell/	120/400	350/520
1 st Charge /	35/150	30/130
1 st D ischarge /	30/150	30/110
10 th Discharge /	35/170	35/110

倍率放电的比容量高于图 5 2C倍率放电的原因. 说明了以 LBOB 作为电解质盐,其首次充放电倍 率非常重要.

3 结 论

应用低热固相合成方法制备的 LNi_{1/3} Co_{1/3} Mn_{1/3}O₂表现出了优良的电化学性能. 对以 LiPF₆ / EC +DMC +DEC作电解液和以上述材料作正极的 二次锂离子电池,其 0.5C, 1C, 1.5C, 2C和 3C放电 倍率的初始比容量依次为 167、163、163、157、147 mAh/g,电池的循环性能也较好. 但如以 LBOB / EC +DEC +EMC作电解液时,则 0.5C倍率的放 电比容量为 160 mAh/g,在高倍率 (如 2C)下放电 性能明显下降. 电池的首次充放电制度会影响电 池的界面反应,合理的化成制度是很重要的.

图 8 LN i_{1/3}Co_{1/3}Mn_{1/3}O₂分别在 LiPF₆ /EC +DMC + EMC (A)和 LBOB /EC +DEC + EMC (B)电解液中以 0.5C 循环的交流阻抗谱

Fig 8 AC impedance spectrums of the LN $i_{1/3}$ Co_{1/3}M $n_{1/3}$ O₂ in LiPF₆/EC + DMC + EMC and LiBOB/EC + DEC + EMC curve: 1) new cell, 2) 1st discharged cell, 3) 3rd discharged cell

· 376 ·

参考文献 (References):

- [1] Xiao J (肖婕), Zhan H (詹晖), Zhou Y H (周运鸿).
 Synthesis and electrochemical behavior of layered-structure LMn_{1-x} Cr_x O₂ [J]. Electrochemistry (in Chinese), 2004, 10(3): 324 ~ 329.
- [2] Sun Y K, Kang S H, Amine K Synthesis and electrochemical behavior of layered Li(Ni_{0.5-x}Co_{2x}Mn_{0.5-x})O₂ (x = 0 and 0.025) materials prepared by solid-state reaction method [J]. Mater Res Bull, 2004, 39: 819 ~825.
- [3] Ohzuku T, Makimura Y. Layered lithium insertion Material of $LiCo_{1/3} Ni_{1/3} Mn_{1/3} O_2$ for Lithium-bn Batteries [J]. Chem. Lett , 2001, 7: 642 ~ 643
- Yabuuchi N, Ohzuku T. Novel lithium insertion material of L iCo_{1/3}N i_{1/3}M n_{1/3}O₂ for advanced lithium-ion batteries [J]. J. Power Sources, 2003, 119-121: 171 ~ 174.
- [5] Liu J J (刘静静), Qiu W H (仇卫华), Zhao H L (赵海 雷), et al Research progress on layered LMnO₂-based cathode materials for lithium-ion batteries [J]. J. Chinese Ceramic Soc (in Chinese), 2005, 33(9): 1127~ 1132

- [6] Xu K, Zhang S S, Poese B A, et al Lithium bio (ox-alate) borate stabilize graphite anode in propylene carbonate [J]. Electrochem. Solid-state Lett, 2002, 5 (11): A259 ~ A262
- [7] Xu K, Zhang S S, Jow T R, et al LiBOB as salt for lithium-ion batteries [J]. Electrochem. Solid-State Lett, 2002, 5 (1): A26~A29.
- [8] Yu B T, Qiu W H, Li F S, et al The electrochemical characterization of lithium B is (oxalato) borate synthesized by a novel method [J]. Electrochem. Solid-State Lett, 2006, 9 (1): A1 ~A4.
- [9] Shaju KM, Subba Rao GV, Chowdari B V R. Performance of layered Li (Ni_{1/3} Co_{1/3} Mn_{1/3}) O₂ as cathode for Li-ion batteries [J]. Electrochimica Acta, 2002, 48: 145 ~ 151.
- [10] Wang Z X, Sun Y C, Chen L Q, et al Electrochemical characterization of positive electrode material L N i_{1/3} Co_{1/3}M n_{1/3}O₂ and compatibility with electrolyte for lithium-ion batteries [J]. J. Electrochem. Soc, 2004, 151 (6): A914 ~A921.

Electrochem ical Character ization of Positive Electrode Material L $iNi_{1/3}$ Co_{1/3} Mn_{1/3} O₂ in D ifferent Electrolytes

LU Jing-jing, QU Wei-hua, YU Ling-yan, ZHAO Hai-lei, LI Tao

(Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

A b s tract: Cathode materials LN $i_{1/3}$ Co_{1/3}Mn_{1/3}O₂ were prepared by bw-heating solid-state reaction. The micro-structure and morphology of as-synthesized materials have been investigated by using XRD and SEM. The compatibilities of LN $i_{1/3}$ Co_{1/3}Mn_{1/3}O₂ with purchased LiPF₆ / EC +DMC +DEC electrolyte and prepared LBOB / EC +DEC + EMC electrolyte have also been studied. The Li/LN $i_{1/3}$ Co_{1/3}Mn_{1/3}O₂ batteries showed excellent electrochemical properties in the LiPF₆ / EC +DMC +DEC electrolyte. Reversible discharge capacities of 167, 163, 163, 157, 147mAh/g at 0. 5C, 1C, 1. 5C, 2C, 3C rate between 2. 7 ~ 4. 35 V, with stable cycling performances have been obtained. Comparatively, the specific capacity of 160 mAh/g at 0. 5C was obtained in LBOB / EC +DEC +DEC electrolyte, which was just a little lower than that in the other electrolyte. However, the high rate capability of the materials in LBOB / EC +DEC +DEC was not as good as that in LiPF₆ / EC +DMC +DEC, which needs to be improved in further studies.

Key words: Li-ion battery, Cathode materials, $LNi_{1/3}Co_{1/3}Mn_{1/3}O_2$, Electrolyte