文章编号:1006-3471(2007)01-0044-06

1-乙基-3-甲基咪唑三氟乙酸盐作为电化学双电层 电容器电解液的电化学性能

孙国华¹² 李开喜^{1*} 李 强¹² 范 慧¹ 谷建宇¹

(1. 中国科学院山西煤炭化学研究所 炭材料重点实验室,山西太原 030001;

2. 中国科学院研究生院,北京 100039)

摘要: 应用循环伏安法和直流恒流充放电研究了以离子液体 1-乙基-3-甲基咪唑三氟乙酸盐([EMIm]CF₃ COO)和高比表面活性炭电极构成的电化学双电层电容器的电化学性能. 实验表明 [EMIm]CF₃COO具有高 的比电容、良好的循环特性以及高的充放电效率. 在离子液体稳定的电化学窗口内,比电容随电化学窗口的增 加而增大. 能量密度随电流和电化学窗口的增加逐渐提高,功率密度随电流的增加而减小、随电化学窗口的增 加而增加,是一种优良的电化学双电层电解液.

关键词: 电化学双电层电容器;循环伏安;直流恒流充放电;离子液体;比电容 中图分类号: 0646 fTM 531 文献标识码: A

电化学双电层电容器(EDLC)以其比功率大 于蓄电池、比能量优于传统电容器以及循环寿命长 等优点越来越受到人们的重视 它的电极材料和电 解液经过发展也已出现了各类体系,其中,电解液 应用较多的是水系电解液和有机电解液 水系电解 液能提供很高的比电容 但能量密度低且易腐蚀设 备:有机电解液可提供较高的能量密度,但不稳定. 目前,一种新的物质—离子液体[1-3](又名室温熔 盐)因它具有较高的电导率、宽阔的电化学窗口以 及高的化学和物理稳定性等诸多优点而受到研究 者广泛关注 已经被应用到了 Li 离子电池^[4]、电化 学双电层电容器^[5]、太阳电池^[6]等电化学元件中. 离子液体电解液的研究主要集中在咪唑衍生物类 阳离子和含氟的有机阴离子,如1-丁基-3-甲基咪 唑四氟硼酸盐([BMIm]BF₄)⁷ 和 1-丁基-3-甲基 咪唑六氟磷酸盐([BMIm]PF。)^{8]}. 一般而言,离子 液体的粘度都较大 ,测试时需添加有机溶剂 ,而添 加有机溶剂又将导致电解液不稳定^[9].近年来研 究者合成出具有低粘度和高电导率的EMIF ·2.3

HF^[10]电解液,但其电化学窗口很低,仅2V左右, 提供的能量密度并不高.

本文应用高比表面积的活性炭作电极,以 [EMIm]CF₃COO离子液体(结构见图1)作电解 液组装双电层电容器并检验它在室温和不添加有 机溶剂情况下的电化学性能,为进一步实际应用提 供必要参考.

- 图 1 阳离子[EMIm]⁺ 和阴离子 CF₃COO⁻ 的结构示 意图
- Fig. 1 Schematic drawing of the cation [EMIm] $^+$ and anion CF $_3$ COO $^-$

收稿日期 2006-06-12,修订日期 2006-08-20 * 通讯作者, E-mail likx99@ yahoo. com 国家自然科学基金(50272070)资助

rab. 1 Thysical parameter for the various kinds of electrolyte				
	Molar mass	Viscosity at RT /mPa · s	Conductivity $/S \cdot m^{-1}$	Electrochemical window /V
[EMIm]CF ₃ COO	227	35.0	1.0	3.4 ^[a]
${\rm H_2SO_4}(\ 35\%\)$	98	2.5	84.8	1.2
0.1 mol/L(CF_3SO_2) ₂ NLi	286		0.4	5.2
in PC: DMF(1: $2 V/V$)				

表1不同系列电解液的物理参数

Tab. 1 Physical parameter for the various kinds of electrolyte

 $[a]测试电极为 Pt 参考电极为 I^-/I_3^-$

1 实 验

1.1 化学试剂

1-甲基咪唑(MICHAEL KORS), 溴乙烷 上海 化学制剂公司,分析纯),乙酸乙酯(天津天大化工 公司,分析纯),乙腈(天津天大化工公司,分析 纯),三氟乙酸氨(上海志新化工公司), (99.99%).以上试剂均经进一步提纯后使用.

1.2 [EMIm]CF₃COO制备

35 mL 的 1-甲基咪唑与 90 mL 的溴乙烷混合 于 250 mL 圆底烧瓶,在干燥的氮气氛下回流 8 h, 得油状液体. 过夜冷却,得到白色固体,再溶于 50 mL 热乙腈,在干氮气氛下过滤. 于滤液加 100 mL 乙酸乙酯,冷却到 – 15 ℃,过滤得沉淀,在 50 mL 乙腈中重结晶、过滤,真空干燥 36 h 得[EMIm]Br 69.3 g(产率 57.6%).将 13.7 g NH₄CF₃COO 加 入到 200 mL 含 20.0 g[EMIm]Br 的乙腈溶液中, 搅拌 2 d,过滤除去白色的 NH₄Br 旋转蒸发除去乙 腈,所得[EMIm]CF₃COO 在 60 ℃下真空干燥 8 h, 产量 20.5 g(产率 87.5%).

1.3 高比表面活性炭的制备及其性能测试

将石油焦生焦原料粉碎,筛分,取一定粒度范 围的炭粉,与一定量的氢氧化钾以质量比1:6均 匀混和后在800℃高温下恒温活化60~120 min. 活化后的活性炭用水反复洗涤至 pH 值接近7,干 燥.使用 sorptomatic1990 物理吸附仪(意大利)测 定活性炭的 BET 比表面积和孔结构.

1.4 电极制备及电容器的组装

以自制的活性炭为原料并加入适量的天然石 墨用以改善电极的导电性能.用聚偏氟乙烯 (PVDF)作粘结剂,将活性炭(85%,by mass,下 同)、粘接剂(10%)、石墨(5%)搅拌均匀,放在圆 形泡沫镍上压制成直径 10 mm、厚度约为 0.2 ~ 0.4 mm 似硬币的圆柱体. 以聚乙烯膜作隔膜 将两 个圆片状电极紧紧挤压在一起构成硬币型双电层 电容器.

1.5 双电层电容器性能测试

使用 Arbin BT-4 + 型电池测试仪(美国)以直 流恒流充放电法于 25 ℃下作双电层电容器性能测 试 ,充放电电压范围设定在 0 ~ 2.0 V ,电流 1 mA. 单电极比电容(*C*)由 *C* = 2*It* / \triangle *Vm* 算得 ,式中 *I* 为 放电电流 \sharp 为放电时间 ; \triangle *V* 为放电过程的电压变 化 *m* 为活性炭单电极质量.

2 结果与讨论

2.1 [EMIm]CF₃COO的物理特性

离子液体的粘度(μ)和电导率(σ)是影响 EDLC 的两个重要因素.其中,粘度随温度的变化 通常服从 Arrhenius 公式 $\mu = A \cdot e^{Ea/RT}$, A 为常数, E_a 为活化能.室温下[EMIm]CF₃COO 的粘度约为 35 mPa · s,较水系电解液如 35% H₂SO₄的粘度大 了很多(见表1).影响电导率的因素很多,包括密 度(ρ)、粘度(μ)、摩尔质量(M)和离子半径(r).电 导率 σ 随粘度、摩尔质量、离子半径的增大而减 小.从表1可见[EMIm]CF₃COO 的电导率和电化 学窗口介于水系电解液和有机电解液之间,分别为 0.96 S·m⁻¹和 3.4 V.

2.2 [EMIm]CF₃COO 的电化学性能

图 2 是 EDLC 的直流恒流充放电曲线. 为了确 保电化学性能的稳定,电化学窗口范围设定在 0 ~ 2. 0V. 图中,线性的 $V \sim t$ 关系显示以[EMIm] CF₃COO作 EDLC 电解液的典型电容特性,其充放 电效率由 $\Delta t_d / \Delta t_e \times 100\%$ 估算(Δt_d 和 Δt_e 分别为 放电和充电时间)达到 95.8%,可见 EDLC 具有良 好的充放电可逆性. 实验同时表明,放电瞬间会出 现一突然的电压降 $\triangle V$ (见图 2 插图 \int^{11} , $\triangle V$ 通 常是内阻的表现, 内阻包括两部分:一部分是电解 液自身的内阻;另一部分是电解液和电极界面处产 生的内阻,由于 $\triangle V$ 很小, 对应的内阻也很小.

图 2 由离子液体和活性炭电极组成的 EDLC 于室 温下的直流恒流(1 mA/cm²)充放电曲线

Fig. 2 Charging-discharging characteristic of the EDLC composed with activated carbon and [EMIm]CF₃COO under constant current density(1 mA) at room temp

不同扫描速率下的循环伏安曲线如图 3a 所 示,在1 mV/s 时可观察到一个规则的矩形,表明具 有典型的电容特性.在-1.0~1.0 V 的电化学窗 口内无明显氧化还原峰,电流响应值几乎为恒定, 阴极过程和阳极过程基本对称,表明该电极以恒定 速率进行充放电,电极和电解液之间的电荷交换以 恒定的速率进行,而且活性炭电极和[EMIm]CF₃ COO 电解液在该电化学窗口范围内具有良好的稳

定性,从*I*~V曲线的两端可以看出,当扫描方向发 生改变时,有快速的电流响应,电流几乎在瞬间反 向 表明该电解液的内阻较小. 扫速为 5 mV/s 时, 矩形的 I~V曲线出现轻微的扭曲,而在 10 mV/s 时矩形被严重的扭曲 这是由于在高的扫描速率下 产生了较大的平衡串联电阻. Xu Bin 等也报道了 类似的结果^[12]. 图 3b 示出[EMIm]CF₃COO 在不 同电化学窗口内的 CV 曲线,如图,各电化学窗口 范围内的曲线都具有规则的形状,当电化学窗口为 3 V 时,存在一个较大的氧化峰,因此 EDLC 实际 可应用的电化学窗口当低于3V 这是因为理论上 的电化学窗口是在玻璃碳电极或 Pt 电极上测得 的 而实际使用的活性炭电极表面存在大量的含氧 官能团以及其它的活性官能团 这些官能团在充放 电的过程中发生氧化还原反应 导致在高的电化学 窗口下 CV 曲线变形^[13].

Makoto Ue^[14]等利用直流恒流充放电方法测 定 EMIF · 2.3HF 的电化学性能,发现离子液体的 比电容极其依赖于它的电化学窗口.[EMIm]CF₃ COO 的电化学窗口宽(3.4V),在1.0~2.0V 电压 范围内,其 EDLC 的充放电时间逐渐随外加电压的 增加而增加(图4),并且呈规则的 $V \sim t$ 变化,表明 该电极和电解液在高电化学窗口下的电化学性能 稳定.单电极比电容可从公式 $C = 2It/ \triangle Vm$ 算得, 实验表明,上述 EDLC 比电容随电压的变化基本呈 线性增加关系 2.0 V 时比电容为 208 F/g. 这是由 于随着电压的增加,电解液离子在较强的电场力下 更易进入结构比较复杂的活性炭孔内形成双电层, 同时双电层电量的增加幅度大于电压的增加幅度, 故而比电容也随之增加.另一方面,电解液/电极界 面处的内阻随着电压的升高而增加,实验表明,当

图 3 由离子液体和活性炭电极组成的 EDLC 在不同的扫描速率(a)和不同的电化学窗口内(b)的循环伏 安曲线

Fig. 3 Cyclic voltammetry of the EDLC composed with activated carbon and [EMIm]CF₃COO for different scan rate(a) and different electrochemical window(b)(room temperature)

电压从 1.0 V 到 2.0 V,对应的内阻分别为 84.5 Ω 和 143.9 Ω ,后者几乎增加了近一倍,这显然与 EDLC 放电的瞬间,其活性炭孔内的离子释放速率 比电压的变化速率慢有关.

Fig. 4 Charging-discharging characteristics of the EDLC in different electrochemical windows

图 5 在不同的电流(a)和电压(b)下能量密度与功率 密度的变化关系

Fig. 5 Relation ship between energy density and power density under different charging-discharging curren(a) or voltage(b)

- 图 6 30% H₂ SO₄(○), [EMIm]CF₃ COO(●)和 [EMIm]SCN(▲)EDLC 电解液的循环寿命变 化比较
- Fig. 6 Cycle life of the 30% H₂SO₄(\circ), [EMIm]CF₃ COO(\bullet) and [EMIm]SCN(\blacktriangle)electrolytes in EDLC

EDLC 是一个能量储存装置 其能量密度(E) 和功率密度(P)可分别由公式E = [I(t)]V(t)dt和 P(t)=I(t)V(t)求出,本文利用 ragone 曲线^[15-17] 分析 $E \sim P$ 的变化关系. 对上述 EDLC ,即如图 5a 所示 其小电流充放电时的功率密度很小但能量密 度很大. 与 1mA 充放电对应的 E 和 P 分别为0.75 Wh/kg、18.25 W/kg. 随着充放电电流的增大 功率 密度快速增加而能量密度减小. 这是由于大电流充 放电时 电解液的离子在很短的时间内难以进入到 活性炭孔底,只能在孔端口部位形成双电层,导致 功率减小,可见电容器能量的增加是以牺牲功率为 代价的. 能量密度与功率密度随电压增加的变化如 图 5b 所示,两者之间几乎成直线关系,1.0 V 时 E 和 P 分别为 1.59 Wh/kg、13.18 W/kg 2.0 V 下, 各为 12.12 Wh/kg、44.00 W/kg,分别增加了约7.6 倍和 3.3 倍 E 的增加幅度大于 P.

图 6 比较了分别以离子液体[EMIm]CF₃ COO、[EMIm]SCN 和 30% H₂SO₄水溶液作 EDLC 电解液的循环寿命变化. 如图可见,随着循环次数 的增加,以30% H₂SO₄作 EDLC 电解液的其比电容 下降值($\triangle C$)最少,而以[EMIm]SCN 作电解液的 $\triangle C$ 下降最快. 这与 30% H₂SO₄水溶液在室温下较 稳定 粘度小,其离子的直径小易于进出活性炭孔 洞有关;而对[EMIm]SCN 则因其离子直径较大并 且阴离子存在两个双键不稳定,在不断的充放电过 程中可能产生少量的分解. 但[EMIm]CF₃COO 的 表现就有所不同 经过1000次循环后,其比电容仅

3 结 论

离子液体[EMIm]CF₃COO具有良好的电容特 性(室温下,其最大比电容为208 F/g)、高的充放 电效率、较小的内阻和较长的循环寿命,适合作为 EDLC 的电解液.同时[EMIm]CF₃COO能提供较高 的电压,在需要高电压电容器的电化学元件中可以 减少电容器的串联个数,从而减轻元件本身的重量 以及减小因电容器串联所引起的较大内阻,展现了 离子液体在超级电容器上的良好应用前景.

参考文献(References):

- [1] Douglas R MacFarlane , Jake Golding , Stewart Forsyth , et al. Low viscosity ionic liquid based on organic salts of the dicyanamide anion [J]. Chem Commun , 2001 : 1430-1431.
- [2] Akihiro Noda ,Kikuko Hayamizu ,Masayoshi Watanabe. Pulsed-gradient spin-echo¹H and ¹⁹F NMR ionic diffusion coefficient , viscosity , and ionic conductivity of nonchloroaluminate room-temperature ionic liquids[J]. J Phys Chem B , 2001 , 105 :4603-4610.
- [3] Akihiro Noda, Md Abu Bin Hasan Susan, Kenji Kudo, et al. BrØnsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes[J]. J Phys Chem B, 2003, 107:4024-4033.
- [4] Takashi Kuboki, Tetsuo Okuyama, Takahisa Ohsaki, et al. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte[J]. Journal of Power Sources, 2005, 146:766-769.
- [5] Takaya Sato ,Gen Masuda ,Kentaro Takagi. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications[J]. Electrochimica Acta , 2004 ,49:3603-3611.
- [6] Wataru Kubo, Takayuki Kitamura, Kenji Hanabusa, et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator J]. Chem Commun, 2002, 374-375.

- [7] Tetsuo Nishida , Yasutaka Tashiro , Masashi Yamamoto. Physical and electrochemical properties of 1-alkyl-3methylimidazolium tetrafluoroborate for electrolyte[J]. Journal of Fluorine Chemistry , 2003 , 120 :135-141.
- [8] Hongtao Liu, Ping He, Zhiying Li, et al. A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte
 [J]. Electrochimica Acta, 2006, 51:1925-1931.
- [9] Zhou Peng-wei(周鹏伟), Li Bao-hua(李宝华), Kang Fei-yu(康飞宇). Study on the organic electrolyte used in the supercapacitor[J]. Battery Bimonthly, 2005, 35(2):97-99.
- [10] Rika Hagiwara, Takayuki Hirashige, Tetsuya Tsuda, et al. Acidic 1-ethyl-3-methylimidazolium fluoride : a new room temperature ionic liquid[J]. Journal of Fluorine Chemistry, 1999, 99 :1-3.
- [11] Antonio B Fuertes , Fernando Pico , Jose M Rojo. Influence of pore structure on electric double-layer capacitance of templated mesoporous carbons[J]. Journal of Power Sources , 2004 , 133 : 329-336.
- [12] Xu Bin , Wu Feng , Chen Renjie , et al. Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors[J]. Journal of Power Sources , 2006 , 158 :773-778.
- [13] Lewandowski A , Swiderska A. Electrochemical capacitors with polymer electrolytes based on ionic liquid J]. Solid State Ionics , 2003 , 161 :243-249.
- [14] Makoto Ue, Masaynki ,Takeda, Akiko Toriumi, et al. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors[J]. Journal of the Electrochemical Society, 2003, 150 (4): A499-A502.
- [15] Thomas Christen, Martin W Carlen. Theory of ragone plots[J]. Journal of Power Sources, 2000, 91:210-216.
- [16] Thomas Christen, Christian Ohler. Optimizing energy storage devices using Ragone plots[J]. Journal of Power Sources, 2002, 110:107-116.
- [17] Ragone D V. Review of battery systems for electrically powered vehicles[C]. In : Proceedings of the Mid-year Meeting of the Society of Automotive Engineers, Detroit : MI, 20-24 May, 1968.

Electrochemical Performance of 1-ethyl-3-methylimidazolium Trifluoroacetic to the Electrolyte of Electrochemical Double Layer Capacitor

SUN Guo-hua^{1,2}, LI Kai-xi^{1,*}, LI Qiang^{1,2}, FAN Hui¹, GU Jian-yu¹

(1. Key Laboratory for Carbon Materials, Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China,

2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China)

Abstract The electrochemical performance of an Electrochemical Double Layer Capacitor consisted of higher specific surface area activated carbon and ionic liquid [EMIm] CF_3 COO was investigated by constant current charge/discharge and cyclic voltammegrams (CV) methods. The results indicated that the [EMIm] CF_3 COO had High specific capacitance , excellent cyclic characteristics and high charge/discharge efficiency. Specific capacitance of the EDLC increased with electrochemical window increase at the range of steady electrochemical window. Energy density increased with current and voltage increase , power density deduced with current increase but increased with electrochemical window increase. These conclusions revealed that the [EMIm] CF_3 COO was very suitable for the electrolyte of EDLC.

Key words : electrochemical double layer capacitor ; cyclic voltammegrams ; constant current cycling ; ionic liquid ; specific capacitance

