Journal of Electrochemistry

Volume 14 | Issue 2

2008-05-28

Cyclic Voltammetry and in situ FTIR Studies of Cyanide Adsorption on Nanostructured Au Film Electrode in Alkaline Solutions

Chun-Hua ZHEN

Chun-Jie FAN

Shi-Gang SUN

Recommended Citation

Chun-Hua ZHEN, Chun-Jie FAN, Shi-Gang SUN. Cyclic Voltammetry and in situ FTIR Studies of Cyanide Adsorption on Nanostructured Au Film Electrode in Alkaline Solutions[J]. *Journal of Electrochemistry*, 2008 , 14(2): 218-222. DOI: 10.61558/2993-074X.1895 Available at: https://jelectrochem.xmu.edu.cn/journal/vol14/iss2/22

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号: 1006-3471(2008)02-0218-05

纳米金膜电极上 CN⁻⁻吸附的 电化学和原位红外反射光谱研究

甄春花,范纯洁,孙世刚*

(厦门大学 化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005)

摘要: 应用循环伏安 (CV)和原位红外反射光谱 (in situ FTIRS)研究碱性介质中氰 (CN⁻)在纳米金膜电极 (nm Au/GC)上的吸附行为.结果显示,当研究电极电位低于 0.0 V时, CN⁻可稳定吸附在 nm Au/GC电极表 面,高于 0.0 V,则发生氧化脱附.发现 nm Au/GC表面具有异常红外效应 (AIREs),即吸附态 CN⁻谱峰呈现出 与本体 Au电极不同的方向倒反、红外吸收增强 (39.2倍)以及半峰宽增加的异常光谱特征.本研究将纳米薄 膜材料的这一 AIREs从过渡金属拓展到币族金属,进一步证明 AIREs是迄今研究的金属及合金纳米材料的 普遍特性.

关键词: 纳米金膜电极; 氰吸附; 原位红外反射光谱; 异常红外效应

中图分类号: 0646

文献标识码: A

币族金属 (Au, Ag, Cu)通常不如铂族金属活 泼,但高度分散的金微粒却具有较好的催化性质和 表面增强共振以及良好的生物相容性和无毒副作 用,一直是生物化学、生物医学近几十年来研究和 应用的热点·类卤素离子如 CN⁻、SCN⁻、N₃⁻等可 在过渡金属电极表面发生很强的特性吸附,其中的 氰 (CN⁻)常被作为模型分子,用于研究金属与吸 附分子、共吸附分子之间的相互作用和界面的动态 过程,例如,以 CN⁻作为氨基酸分子在 Au, Pt等过 渡金属表面解离吸附的重要中间体,得到了广泛关 注.此外, CN⁻在药物化学(AuCN、Au(CN)₂⁻等) 和化学工业 (腐蚀、电镀、提金等)方面均具有广泛 应用. 原位 FTR光谱、表面增强拉曼散射光谱 (SERS)、二次谐波发生谱 (SFG)、原位 STM 和电 化学方法 (CV、微分电容等)的研究结果都表明, CN⁻与 Au电极存在很强的相互作用,可显著抑制 阴离子和表面氧物种的吸附,并且 CN⁻的氧化脱 附伴随 Au原子的溶解^[17]. CN⁻在金属表面的吸 附构型可能有 5种, 而其中以 C 端线型吸附为主

导^[1-5],这种吸附模式最为稳定.

此前,孙世刚研究组己系统、深入地通过运用 不同的探针分子(CO、CN⁻、SCN⁻、PoPD等),研究 了由电沉积法在玻碳(GC)基底制备的铂族金属 (Pt Pd, Rh, Ru)与合金(PtPd, PfRu, PfRh等)以及 铁系金属(Fe, Co, Ni)纳米薄膜电极的异常红外效 应(AfRES)^[8-10],得出一系列有意义的结果·本文 应用循环伏安(CV)和原位红外反射光谱(in situ FTfR)进一步研究碱性介质中CN⁻在纳米金膜电 极上的吸附行为及其 AfREs

1 实 验

1.1 纳米级厚度金膜电极制备

GC电极和本体 Au电极分别用聚四氟乙烯包 封,依次用 5、1、0.3和 0.05 μ_{m} AkO₃ 粉抛光表 面,超纯水超声清洗,然后在 0.5 mol·L⁻¹ H₂SO₄ 溶液中连续作循环伏安扫描以进一步清洁表面. 将上述 GC电极放在 0.5 mol·L⁻¹ H₂SO₄ + 2 mmol·L⁻¹ HAuCk溶液中,由循环伏安法于 - 0.2 ~0.5 V电位区间电沉积纳米金膜,电位扫描速率

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnk 收稿日期: 2007-12-09,修订日期: 2008-03-08 * 通讯作者, Tel (86-592) 2180181, E mail sgsun@ xmu edu cn 国家自然科学基金 (20673091, 20423002和 20433040)资助 0.05 V • s⁻¹,由此得到的电极标记为 nm -Au/GC. 从 SEM 照片即可看到 (图 1),该电极表面沉积的 Au呈岛状颗粒,分布较为均匀,平均尺度约为 250 nm. 按文献 [11],标定上述 nm -Au/GC电极的表 面粗糙度 R_r为 1 6.

图 1 nm "Au/GC电极的 SEM 形貌 Fig 1 SEM image of nm "Au/GC electrode

1.2 CN⁻在本体 Au和 nm -Au/GC电极 表面的不可逆吸附

将上述处理后的本体 Au或 nm Au/GC电极 浸入 $0.01 \text{ mol} \cdot \text{L}^{-1} \text{ KCN}(\text{pH} = 10.8)溶液 5 m in$ 以使氰离子饱和不可逆吸附在电极表面;用超纯水充分冲洗电极表面,由此得到的电极标记为 CN⁻ /bulk Au或 CN⁻ /nm Au/GC.在预极化 <math>- 0.8 VF将该电极转移至电解池,电解质为 $0.1 \text{ mol} \cdot \text{L}^{-1}$ NaOH溶液,继续极化 5 m in 再分别作循环伏安或 原位红外反射光谱测试.

1.3 仪器与方法

循环伏安扫描使用 PARC 263A-2型恒电位仪 (美国 Perkin Elner公司);红外反射光谱实验使用 Nexus 870傅立叶变换红外光谱仪(Nicolet),以差 减归一化界面 FTR光谱(SN FTR)和多步电位阶 跃 FTR光谱(MSFTR)两种方式采谱,其结果光 谱以电位差谱形式给出,即

$$\frac{\Delta_{\mathbf{R}}}{\mathbf{R}} = \frac{\mathbf{R}(\mathbf{E}_{s}) - \mathbf{R}(\mathbf{E}_{\mathbf{R}})}{\mathbf{R}(\mathbf{E}_{\mathbf{R}})} \tag{1}$$

式中 $R(E_R)$ 和 $R(E_s)$ 分别表示参考电位 E_R 和研究电位 E_s 下采集的单光束光谱,分辨率为 8 cm^{-1} .

(b)电极在 $0.1 \text{ mol} \cdot \text{L}^{-1}$ NaOH 溶液中的 CV 曲 线. 如曲线 b各在 0.28 V和 0.10 V处出现的正向 氧化峰和负向还原峰,分别对应于含氧物种在 nm – Au/GC电极表面的吸附 (AuO_{ad})和脱附^[12],显示 该纳米金膜电极也同样具有 Au电极特有的氧化 和还原特征.

- 图 2 GC(a)与 nm Au/GC(b)电极在 0.1 mol·L⁻¹ NaOH 中的 CV曲线
- Fig 2 Cyclic voltamm ogram s of GC (a) and nm ⁻Au/GC (b) electrodes in 0. 1 mol· L^{-1} NaOH scan rate: 0. 05 V· s⁻¹

图 3示出 CN^{-/nm-Au/GC 电极在 0.1 mol• L⁻¹ NaOH 溶液中的 CV 曲线.实线为电位连续扫 描前 4周的曲线,虚线为扫描稳定时的曲线 (第 10 周).由图可见,当扫描电位 E低于 0.0 V时, CN⁻ 可稳定吸附在电极表面^[6-7];大于 0.0 V时,则吸附}

图 3 CN^{-/}nm⁻Au/GC电极在 0.1 mol·L⁻¹ NaOH中的 CV曲线

2 结果与订论 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cr

图 2示出经预处理后的 GC(a)和 nm Au/GC

氰 (CN_{ad})开始氧化,并在 0. 15 V附近出现微弱的 氧化电流峰, 0. 42 V附近出现较大的氧化电流峰. 扫描前 2周, 0. 42 V处的氧化电流峰下降最为明 显. 扫描至第 3周开始, 0. 28 V处开始出现氧化电 流峰. 随着扫描周数继续增加, 位于 0. 28 V处的 氧化峰逐渐增大 (↑)而位于 0. 42 V的氧化峰则 逐渐减小 (↓). 这表明, CN⁻在 Au电极表面的吸 附, 于低电位下抑制 OH⁻和 H₂O的吸附; 而在高电 位下则抑制含氧物种的吸附. 随着扫描的进行, CN_{ad}逐渐氧化脱附,释放出 Au表面位, Au的氧化 峰又逐渐恢复至未吸附 CN⁻时的状态.

图 4示出相同实验条件下 CN^{-/bulk-Au</sub>和 CN^{-/mm-Au/GC电极的 SN IFTIR 光谱.参考电位 E_R为 -0.8 V,此即该电极移入电解池时的预极 化电位 (见 1 2节),研究电位 E_s为 -0.6 V. 如 图, CN⁻在这两个电位下均能稳定地吸附在电极表 面. 位于 2110 m⁻¹附近的双极峰可指认为 Au表 面以 C 端线型吸附的氰物种^[1-7].由于 Stark效应, CN_{at}在 -0.6 V处的红外吸收相对于参考电位 (-0.8 V)的红外吸收发生蓝移,根据式(1)定义 的结果光谱, CN⁻在本体 Au电极表面吸附的红外 谱峰应出现左(高波数)低右(低波数)高的特征. 然而,即如图中 CN^{-/mm-Au/GC}谱线所示,吸附在 mm-Au/GC电极上 CN⁻的红外谱峰却表现出方向 相反、吸收增强且半峰宽增加的异常光谱特征,这 是该纳米金膜电极独特的异常红外效应.这里}}

按文献 [13]方法计算 CN_{ad}^{-} 红外谱峰的增强因子 $(\Delta_{\mathbb{R}})$:

$$\Delta_{\mathbf{R}} = \frac{1}{\mathbf{R}_{\mathbf{r}}} \frac{A_{\mathrm{CN}^{-}}^{\mathrm{mn}}}{A_{\mathrm{CN}^{-}}^{\mathrm{bulk}}} \tag{2}$$

式中 A_{CN}^{bulk} 和 A_{CN}^{mn} -分别为本体 Au和 nm Au/ GC电极上不可逆吸附 CN⁻的红外谱峰的积分面 积.双极谱峰面积求算如下:分别对正向峰和负向 峰谱线围成的部分积分,取其绝对值之和即为该双 极谱峰的积分面积^[13].由此算得上述谱峰增强因 子 Δ_{IR} 为 39.2即吸附了 CN⁻的 nm Au/GC电极, 其红外吸收强度是本体 Au电极的 39.2倍.此外 还可看到谱峰显著增宽.

图 5为 0.1 mol·L⁻¹ NaOH 溶液中 CN^{-/mm-Au/GC}电极的原位 MSFTR光谱,采谱方式为研究 电位 E_s从 - 0. 05 V开始逐步负向阶跃到 - 0. 8 V(线段 A);之后再从 - 0. 8 V逐步正向阶跃至 0.4 V(线段 B.C).参考电位 E_R为 0.5 V.若选择 更高的 E_R (如 0.6 V),则在红外窗片与电极的薄 层之间会发生析氧反应,导致红外谱峰背景扭曲. 图中位于 2110 cm⁻¹附近的正向谱峰即为线型吸 附态 CN⁻的 C=N伸缩振动的红外吸收.在上述 E_s变化过程 (ABC)中,其谱峰位置相应发生先 红移再蓝移;而其谱峰强度则呈现先增加、后减小、 再基本消失的变化趋势.

图 4 CN⁻/bulk-Au与 CN⁻/nm -Au/GC电极的原位 SN FF-TIR光谱 004 2021 Ching Academia Journal Elec

图 5 CN⁻吸附在 nm -Au /GC电极上的原位 M SFT IR 光谱

TR光谱994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cn Fig 4 In situ SNIFTR spectra of CN⁻/bulk-Au and CN⁻/ in 0.1 mol·L⁻¹ NaOH 图 6是依据图 5描绘的 CN_{ad}^{-1} 吸收峰位随 E_s 阶 跃的变化.如图,不论是 E_s 负向 (A)或正向 (B)变 化,其红外峰位均与电位呈线性关系,而负向和正 向的 Stack系数分别为 26.1和 26.2 cm⁻¹ • V⁻¹. 但当 E_s 越过 0.0 V时 (C),则其吸收峰位的变化 偏离了上述线性关系.这是由于表面吸附态的 CN⁻开始被氧化,生成的 OCN⁻从表面脱附、同时 Au表面也因发生氧化生成 AuCN 和 Au (CN)²⁻ [^{67]}所致.

图 6 CN峰位随 E_s的变化

Fig ~6 ~ Potential dependence of CN_{ad}^{-} frequency with E_{S}

图 7给出 CN_{ad} -的红外吸收谱峰强度 L_{N} -随 E_{s} 的变化. 在 E_{s} 从 -0.05 V 负移至 -0.8 V (A)时, L_{N} -随 E_{s} 降低而逐渐增加; 而当 E_{s} 再从 -0.8 V 正移至 0.0 V (B)时, 谱峰强度又开始降低, 而且 A、B两线段几乎重合, 说明其谱峰强度发 生了相反的变化, 由此可解释 A、B过程是可逆的, 亦即在 $-0.8 \sim 0.0$ V 电位区间内 CN_{ad} 未发生氧 化脱附.

图 7中出现谱峰强度随电位升高反而下降的 这一现象,主要原因当归之于 CN⁻两种线型吸附 模式之间的相互转换. CN⁻在 Au电极表面的吸附 通常以具有更高稳定性的 C端线型吸附方式为 主,但在较低电位下,仍存在 N端线型吸附模 式^[5].即当电位负于零电荷电位(-0.6 V)时,部 分 CN⁻以 N端吸附,而在较正电位下,则转变为 C⁻以 N端吸附,而在较正电位下,则转变为 C⁻端线型吸附.由于 N端吸附时的 C⁻ N伸缩振 动的红外吸收系强度 I_n (AuNC⁻)约为 C端吸附 时 I_{R} (AuCN⁻)的 4.6倍^[5] (即 I_{R} (AuCN⁻)仅为 I_{R} (AuNC⁻)的 21.7%),因此谱峰强度随电位升高反而下降;但在图 6中,相关的 Stark系数并未在 -0.6 V附近相应出现突变点,说明 CN⁻的 N端吸附与 C端吸附的 Stark系数比较接近.其次,在碱性介质中,H₂O分子和 OH⁻阴离子等含氧物种 在整个电位区间内均存在于电极表面^[9].而共吸附的含氧物种由于具有不同振动吸收强度,从而可能影响 CN⁻的吸附取向.总之,低电位区间 CN⁻的谱峰强度随电位正移而下降的原因并非由于 CN⁻的氧化脱附,而是来源于部分 CN⁻在 Au电极表面上吸附模式的转变以及共吸附物种的影响,是 -- 个取向变化的可逆的表面转化过程.

图 7 CN⁻谱峰强度随 E_s的变化

3 结 论

1) nm -Au /GC电极具有异常红外效应,即吸附态 CN⁻出现与本体 Au电极不同的谱峰方向倒反、 红外吸收增强 (39.2倍)以及半峰宽增加的异常光 谱特征.

3)由于吸附在 nm -Au/GC表面的 CN⁻具有谱

峰增强效应,因此极大地提高了检测表面吸附物种 (如氨基酸反应中间体等)的灵敏度和可靠性.

本文将纳米薄膜材料的异常红外效应从过渡 金属拓展到币族金属.进一步说明异常红外效应是 金属纳米薄膜电极的普遍特性.

参考文献 (References):

- Huerta F. Mele C. Bozzini B. et al Voltammetric and in situ FTIRS study on CN⁻ and Au(CN)_x⁻ complexes at the polycrystalline gold surface in citrate medium
 J. J Electroanal Chem. 2004, 569: 53-60.
- [2] Shue C H, Yau S L. Itaya K. In situ scanning tunneling microscopy of Au(111) in acidic and alkaline potassium cyanide [J]. J Phys Chem B, 2004, 108, 17433-17440.
- [3] Bozzini B. Mele C. Romanello V. Time-dependent in situ SERS study of CN⁻ adsorbed on gold [J]. J Electoanal Chem, 2006, 592; 25-30.
- [4] Gao P. Weaver M J. Vibrational coupling effects for cyanide and aromatic adsorbates at gold electrodes, a comparative study using surface Raman and infrared spectroscopies [J]. J Phys Chem, 1989, 93, 6205-6211.
- [5] Tadjeddine M, Flament J.P. Analysis of a nonlinear optical response of CN⁻ ions adsorbed on metal electrode, tentative interpretation by means of ab initio molecular calculations [J]. Chem Phys 1999, 240, 39-50.
- [6] Zhen C H, Sun S G, Fan C J et al In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au (111) electrode in alkaline solutions [J]. Electrochem Acta 2004, 49(8): 1249-1255.
- [7] Zhen C H (甄春花), Fan C J (范纯洁), Gu Y J (谷

艳娟), et al Adsorption and oxidation of glycine on Au film electrodes in alkaline solutions [J]. Acta Phys-Chem Sin 2003, 19 (1): 60-64.

- [8] Chen Q S Sun S G. Yan JW, et al Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties [J]. Langmuir 2006, 22(25), 10575-10583.
- [9] Sun S G. Abnormal infrared effects of nanometer-scale thin film material of platinum group metals and alloys at electrode-electrolyte interfaces[M] //Catalysis and electrocatalysis at nanoparticle surfaces New York; Marcel Dekker Ino 2003. 785-826.
- [10] Sun S G, Zou Z Y, In situ microscope FTIR reflection spectroscopy and its applications in electrochemical adsorption and electrocatalysis on nanostructured surfaces [M] // In situ spectroscopic studies of adsorption at the electrode and electrocatalysis Amsterdam; Elsevier 2007. 139-178.
- [11] Watanabe M, Uchida H, Miura M, et al Electrochemical quartz crystal microbalance study of copper ad-atoms on highly ordered Au(111) electrodes in sulfuric acid [J]. J Electroanal Chem, 1995, 384: 191-195.
- [12] Strbac S Adzic R R. The influence of OH⁻ chem isorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions [J]. J Electroanal Chem, 1996, 403, 169-181.
- [13] Bjerke A E. Griffiths P R. Surface-enhanced infrared absorption spectroscopy of printrothiophenol on vapordeposited platinum films [J]. Appl Spectroso 2002, 56 (10): 1275-1280.

Cyclic Voltammetry and in situ FTIR Studies of Cyanide Adsorption on Nanostructured Au Film Electrode in Alkaline Solutions

ZHEN Chun Hua FAN Chun Jie SUN Shi Gang

(Department of chem istry College of Chem istry and Chem ical Engineering State Key Laboratory of Physical Chem istry of Solid Surfaces Xiamen University Xiamen ³⁶¹⁰⁰⁵, Fujian China)

A bstract: The adsorption of cyanide (CN^{-}) on electrodes of nanometer scale thin film of gold supported on glassy carbon $(nm^{-}Au^{-}GC)$ in alkaline solutions were investigated using cyclic voltammetry and in situ FTIR spectroscopy It has revealed that the electrodeposited nanostructured Au thin film exhibited AIREs (abnormal infrared effects) for CN^{-} adsorption which manifested ³ nonlinear IR spectral features inversion of the direction of CN^{-} band enhancement of IR absorption of adsorbed CN^{-} species (about ^{39, 2} folds) and increase in the FWHMP (full worth at high fragmentic) Jor CN^{+} Flagmencic Publishing House. All rights reserved. http://www.cnk K ey words, cyanide adsorption; nanostructured Au thin film; in situ FTIR; AIREs