Journal of Electrochemistry

Volume 15 | Issue 1

2009-02-28

Electrocatalytic Reduction of Oxygen on Tungsten Carbide Electrode

Chun-an MA

Yun HUANG

Ying-hong ZHU

Zhao-yang CHEN

Recommended Citation

Chun-an MA, Yun HUANG, Ying-hong ZHU, Zhao-yang CHEN. Electrocatalytic Reduction of Oxygen on Tungsten Carbide Electrode[J]. *Journal of Electrochemistry*, 2009, 15(1): 62-66. DOI: 10.61558/2993-074X.1956 Available at: https://jelectrochem.xmu.edu.cn/journal/vol15/iss1/15

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

第 15卷 第 1期 2009年 2月

文章编号: 1006-3471(2009)01-0062-05

碳化钨电极上氧的电催化还原

马淳安*,黄 赟,朱英红,陈赵扬

(浙江工业大学化学工程与材料学院,绿色化学合成技术国家重点实验室培育基地,浙江杭州 310032)

摘要: 以喷雾干燥微球化处理的偏钨酸铵作为前驱体, CO /H₂ 为碳化还原气源,应用固定床气固反应法制 备碳化钨 (WC)粉体,再以聚四氟乙烯作粘结剂制成碳化钨电极.应用 XRD和 SEM 等表征、观察碳化钨样品, 循环伏安和线性扫描法研究硫酸电解液中 WC电极的氧还原电催化行为.检测表明,WC为球状颗粒;WC电 极对氧还原反应具有较好的电催化活性,硫酸溶液中溶解氧还原反应控制步骤为吸附态 (O²⁻)_{ads}的生成;增 加硫酸电解液浓度,开路电位正移,升高温度有利于反应进行.

关键词: 碳化钨;电极;电催化;氧还原 中图分类号: 0646

文献标识码: A

在酸、碱性电解液中,氧还原都较困难,可逆性小,过电位很大,因此,对于氧还原反应,研究稳定 高效的催化剂以提高液相传质速率,成为使用气体 扩散电极的关键^[1].

目前,燃料电池多采用 Pt/C或 Pt合金催化剂 作为氧还原催化剂^[24].由于铂的价格昂贵,资源匮 乏,电池成本很高,大大限制了其广泛应用.碳化钨 (WC)是一种非贵金属催化剂,有其独特的电催化 性能和抗 CO中毒能力^[5],自发现 WC在催化领域 具有类铂的催化性能^[67]以来,其制备和应用研究 已经引起了人们的广泛关注^[842].电化学领域中, 碳化钨电极在氢离子化和甲醇氧化等方面的电催 化性能已有不少文献报道^[1345].

碳化物电极的电催化活性取决于其制备方法 和活化处理条件^[16].本文以偏钨酸铵为钨源,氢 气和一氧化碳为还原性气体及碳源,应用喷雾干 燥微球化处理程序升温气固反应法制备了分散性 良好的碳化钨粉体,并以聚四氟乙烯为粘结剂制成 碳化钨电极,研究该电极对氧还原的电催化性能.

1 实 验

1.1 WC制备

称取一定量的偏钨酸铵 (AMT)配成 10%的水

溶液,室温下将该溶液导入喷雾干燥仪作喷雾干燥 微球化处理.溶液流速 7 mL•m in⁻¹,气体流速 550 L/m in 入口温度 200℃,出口温度 90~100℃.喷 雾干燥后的偏钨酸铵粉体即为前驱体.

称取一定量的偏钨酸铵前驱体,置于管式电阻 炉中石英舟内,通入 H₂和 CO混合气 (氢气为还原 性气体,一氧化碳为碳源),程序升温:将炉内温度 升高至 400℃ (升温时间 30 m in),保温 1~2 h 再 升温至 900℃ (升温时间 30 m in),保温 6~7 h 反 应终了时,关闭一氧化碳和氢气,通入 N₂,自然冷 却降温,即制得 WC

1.2 电极

1) WC气体扩散电极

催化层:催化剂 WC、活性炭、聚四氟乙烯 (60%)乳液按 10:1:3(质量比)比例混匀,加适量 的无水乙醇,超声分散 5 m in 于 80 ℃水浴中加热 搅拌直至混合物团聚;将凝聚物放在双辊碾机 (温 度为 40~50℃)上反复碾压成膜,膜厚约 0.2 mm.

防水层:将乙炔黑、无水硫酸钠(造孔剂)和聚 四氟乙烯(60%)按1:1:1(质量比)比例混匀,依 照上述催化层制备步骤,碾压成膜.膜厚约0.2 mm.

⁽C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnk 收稿日期: 2008-08-19,修订日期: 2008-09-17 * 通讯作者, Tel (86-571)88320830, Email science@ zjut edu cn 浙江省国际合作重大科技专项 (2008C14040)资助

将防水透气层、集流体、催化层依次叠合,在油 压机 ¹⁰ MPa下压制成电极.

2) WC电极

将催化层和石墨纸叠合,10 MPa压力下冷压 成型,然后将石墨纸的另一侧用绝缘胶封闭,制成 电极.

1.3 材料表征和电化学测试

样品的相结构分析使用 X射线衍射分析仪 (XRD)(Thermo ARL SC NTAG X'TRA, Cu Kα靶, 管流 40 mA, 管压 45 kV, 步长 0.04°, 扫描速率 2.4°/m in 范围 15°~90°), 形貌分析使用 SEM (Hitachi S-4700 II).

应用 CH I⁶⁶⁰B型电化学工作站(上海辰华), 测试循环伏安曲线和慢扫描极化曲线·三电极体 系:工作电极为制备的 WC电极或 WC气体扩散电 极,饱和甘汞电极(SCE)为参比电极,Pt电极为对 电极.电解液为 0.5 mob L⁻¹硫酸溶液.

AutoLab PG STAT 30型电化学工作站 (带 FRA 模块)测试电化学阻抗谱 (EIS),电位幅值 5 mV, 测试 频 率 10 kH z ~ 0. 01 H z 氧气流速 100 mL•m in⁻¹,工作电极为气体扩散电极,有效面积 0.3 m².

2 结果与讨论

2.1 WC的 XRD分析

图 1为 WC粉末样品 XRD图谱.可以看出:在 20为 31.62°、35.78°和 48.41°处各出现一个强衍 射峰,分别对应 WC的(001)、(100)和(101)3个 晶面;另外,在 64.05°、65.92°、73.25°、75.45°和 76.98°处,也分别显示较弱的衍射峰,依次对应于 WC晶面(110)、(002)、(111)、(200)和(102).以 上衍射峰与 25-1047标准数据基本一致,说明样品 物相组成以 WC相为主·

图 1 样品的 XRD图谱

Fig 1 XRD pattern of the sample

2.2 WC形貌

WC样品的扫描电子显微镜(SEM)如图 2所示,如图,样品呈球状(a),大小不一,似蜂窝,且部分已经破碎,又从放大的单个球状颗粒(b)看,球体是由各种块状或柱状颗粒组成,并且颗粒间有较大空隙,

2.3 WC电极电催化还原作用

图 3 为 WC电极在氮气饱和或氧气饱和的 0.5 mob L⁻¹ H₂ SO₄ 溶液中的循环伏安曲线.由图可 见,在 N₂饱和的溶液中,WC电极的伏安曲线并未 出现氧化还原峰,仅显示双电层充电的背景电流, 并在 ${}^{-0.47}$ V左右开始析氢.而 O₂饱和的溶液 中,WC电极于 ${}^{-0.18}$ V左右呈现一明显的还原 峰,峰电流 8.18 mA.这表明电极上发生了氧的还 原反应.

WC电极在不同扫速下电催化氧还原的循环 伏安曲线如图 4所示.可以看出,扫描速率增加,还

图 2^(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnk 图 2^{(W}C样品全貌(a)、単球成大(b)的 SEM照片 Fig ² SEM in ages of sample W C a overall morphology, b single ball-shape morphology

- 图 3 WC 电极在 0.5 mol·L⁻¹ H₂SO₄ 溶液中的循环 伏安曲线
- Fig. 3 Cyclic voltammograms of the WC electrode in $0.\; 5 \; \mathrm{mol} \cdot L^{-1} \; \mathrm{H_2SO_4}$
 - a. saturated with $\rm N_2$, b. saturated with $\rm O_2$, scan rate: 50 mV $\cdot\,\rm s^{-1}$

原峰电流增大,峰电位负移,这说明氧还原反应是 一个不可逆过程.在扫速 10~50 mV•s⁻¹范围内峰 电流与扫描速率成线性关系 (图 5),直线方程为

 $i_{\rm bc} = 2.259 + 154.257 \upsilon$ R=0.999 (1)

据上可知,溶解氧在 WC电极上的还原过程受 吸附控制,而且,其速控步骤是吸附态 (O²⁻)_{ads}的 生成.

2.4 WC气体扩散电极电催化氧还原的交流阻抗

图 6给出为 WC气体扩散电极在不同电位下

- 图 5 图 4 电催化氧还原反应峰电流随扫描速率变 化关系
- Fig. 5 Plot of the reductive peak current (i_{pc}) against scan rates (v) according to Fig. 4

- 图 4 饱和氧溶液(0.5 mol·L⁻¹ H₂SO₄)中 WC 电极 于不同扫描速率下的 CV 曲线
- Fig. 4 Cyclic voltammograms of WC electrode at different scan rates in 0.5 mol·L⁻¹ H₂SO₄ solution saturated with O₂ scan rates/mV·s⁻¹(a~b); 10,30,40,50

电催化氧还原的阻抗复数平面图·图中,高频部分 与实轴约成 45°的直线,低频部分为一个压扁的半 圆弧·溶液电阻约为 0.65 Ω , -0.2 V时,氧还原反 应电阻约小于 8 Ω .

2.5 电解质浓度的影响

图 7示出,在不同硫酸浓度电解液中,WC气 体扩散电极电催化氧还原慢扫描 ($0.5 \text{ mV} \cdot \text{s}^{-1}$) 极化曲线.分别取电位 0.1 V和 0.0 V处电流密度 J.和 J. 作差值计算,结果如表 1所列.

图 6 WC 气体扩散电极在不同电位下电催化氧还 原交流阻抗图谱

(C)1994-2021 China Academic Journal Electronic Publish SCE Holes CPI high 95 reserved. V)http://www.cnk

• 64 •

表 1 极化曲线中 0.1 V处电流密度 J 和 0.0 V处电流密度 J 差值计算结果

Tab 1 The calculated results of J_2 $-J_1$ from different polarisation curves

$C(H_2 SO_4) / mol L^{-1}$	$J_1 / A \bullet cm^{-2}$	\mathbf{J}_2 /A• \mathbf{cm}^{-2}	\mathbf{J}_2 - \mathbf{J}_1 /A• \mathbf{cm}^{-2}
0. 5	0. 0175	0. 0572	0. 0397
1	0. 0300	0. 1042	0. 0742
2	0. 0473	0. 1364	0. 0891

不同硫酸浓度电解液中 WC 气体扩散电极电催 图 7 化氧还原慢扫描 (0.5 mV·s⁻¹)极化曲线

Polarisation curves of WC gas diffusion electrode Fig. 7 measured in different concentration of H2SO4 solution during oxygen blowing $(a. 0.5 \text{ mol} \cdot L^{-1}, b.1 \text{ mol} \cdot L^{-1}, c.2 \text{ mol} \cdot L^{-1})$

从图 7看出, 硫酸浓度增加, 起始还原电位正 移,与 $0.5 \text{ mol} \text{ L}^{-1}$ 硫酸溶液相比, $2 \text{ mol} \text{ L}^{-1}$ 溶液 中氧还原起始电位正移了约 0.09 V.同时,随着浓 度增加,极化曲线斜率增大,同一电位下氧还原电 流密度增加.

2.6 温度的影响

图 8示出温度对 WC气体扩散电极氧还原性 能的影响,同一电位下,电流密度随着温度升高而 增大,说明升高温度,电极极化减小,有利于电化学 反应的进行.

3 结 论

1)以喷雾干燥处理的偏钨酸铵为前驱体, CO / H2为碳化还原气氛,由固定床气固反应法制备的 碳化钨为球状颗粒粉体.

2)饱和氧硫酸电解液中,WC电极上氧还原过 程受吸附控制,反应速率的控制步骤是吸附态

不同温度下 WC 气体扩散电极电催化氧还原慢 图 8 扫描(0.5 mV·s⁻¹)极化曲线

Polarisation curves of WC gas diffusion electrode Fig. 8 measured in different temperatures with oxygen blowing (a. 30 ℃, b. 40 ℃, c. 50 ℃, d. 60 ℃)

同一电位下还原电流密度增加.

4)升高温度有利于 WC气体扩散电极氧还原 反应的进行.

参考文献 (References):

- [1] Zha Q X. Introduction to electrode kinetics [M]. Beijing Science Press 2002. 137-271.
- [2] Huang Y J Huang O D, Huang H L et al Research state of the electrocatalysts for oxygen electrode in fuel cells [J]. Chinese Battery Industry 2007, 12(6); 57-60.
- [3] Kim Minsuk, Park Jin Nam, Kim Hyuk, et al. The preparation of Pt/C catalysts using various carbon materials for the cathode of PEMFC [J]. Journal of Power Sources 2006, 163, 93-97.
- [4] Lee Sung Jai Pyun Su II Effect of annealing temperature on mixed proton transport and charge transfer-con-

(O²⁻)_{ad}的生成. (C)11994-2021 China Academic Journal Electronic Publishing Ysen reduction in gast diffusion electrode [J]. 3)增加硫酸电解液浓度,气体扩散电极慢扫 Electrochin ica Acta 2007, 52. 6525-6533 描极化曲线斜率增大,氧还原反应起始电位正移,

[5] Jeon Min Ku Daimon Hideo Lee Ki Rak et al CO tolerant Pt/WC methanol electro-oxidation catalyst[J]. Electrochem istry Communications 2007, 9: 2692-2695.

- [6] Levy R B. Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis [J]. Science 1973, 181, 547-549.
- [7] Zhong H X, Zhang H M, Liang Y M, et al A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells [J]. Power Sources 2007, 164: 572-577.
- [8] MaCA. Zhang W.M. LiGH. et al Preparation of hollow global tungsten carbide(WC) catalysts with meso-porosity and its characterization [J]. Acta Chim Sinica 2005, 63(12): 1151-1154.
- [9] Zhang Y F, Lin W, Wang W F, et al A first principle study on thephase stability and chemical bonding of the ³d transition metal carbides [J]. Acta Chimica Sinica 2004, 62(11): 1041-1048.
- [10] MaCA, Tang JY, LiGH, et al Preparation and electro-property of tungsten carbide/carbon nanotube composite [J]. Acta Chimica Sinica 2006, 64(20): 2123-2126.

- [11] Kirakosyan Kh G, Manukyan Kh V, Kharatyan S L et al Materials chemistry and physics [J]. Materials Chemistry and Physics 2008, 110: 454-456.
- [12] Nie M, Shen P K, W u M, et al A study of oxygen reduction on in proved PtWC/C electrocatalysts [J]. Power Sources 2006, 162, 173-176.
- [13] Ham Dong Jin Kin Young Kwon Han Seung Hyun et al Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance [J]. Catalysis Today 2008, 132: 117-122.
- [14] Ganesan Raman Ham Dong Jin Lee Jae Sung Platinized mesoporous tungsten carbide for electrochemical methanol oxidation [J]. Electrochemistry Communications 2007, 9, 2576-2579.
- [15] Zhang S S Zhu H, Yu H M, et al The oxidation resistance of tungsten carbide as catalyst support for proton exchang membrane fuel cells [J]. Chinese Journal of Catalysis 2007, 28(2): 109-111.
- [16] Zhong H X, Zhang H M, Zhang J L et al The nonplatinum electrocatalysts for low-temperature fuel cell [J]. Chemistry, 2006, 69.

E lectrocatalytic Reduction of Oxygen on Tungsten Carbide E lectrode

MA Chun an^{*}, HUANG Yun, ZHU Ying hong CHEN Zhao yang

(Zhejiang University of Technology School of Materials Science and Engineering Breeding Base of State Key Laboratory of Green Chemistry-Synthesis Technology Hangzhou 310032, China)

Abstract Tungsten carbide (WC) catalysts were prepared by gas-solid reaction using ammonium metatungstate as precursors which were pretreated with spray drying sphere miniaturation carbon monoxide as carrier gas and hydrogen as deoxidizing gas TheWC electrode was fabricated using WC catalyst powders and PTFE as binding agent and characterized by XRD and SEM. Electrocatalyst behavior of WC for oxygen reduction reaction in the sulphuric acid solution was studied by steady-state voltammetry and cyclic voltammetry. The results show that the WC powders obtained were in spheric particles and the prepared WC electrode had a good electrocatalyst activity to the oxygen reduction reaction. The electrode reaction was controlled by adsorption. The origination potential of oxygen reduction reaction being more positive larger electrolyte concentration and higher temperature could promote the reaction.

Keywords, tungsten carbide electrode electrocatalyst oxygen reduction