# Journal of Electrochemistry

Volume 16 | Issue 1

2010-02-28

## Electrochemical Behavior of Co-Ru Composite in Alkaline Solution

Su-mei YAO

Guo-chun LI

Xue-ping GAO

#### **Recommended Citation**

Su-mei YAO, Guo-chun LI, Xue-ping GAO. Electrochemical Behavior of Co-Ru Composite in Alkaline Solution[J]. *Journal of Electrochemistry*, 2010 , 16(1): 56-59. DOI: 10.61558/2993-074X.2038 Available at: https://jelectrochem.xmu.edu.cn/journal/vol16/iss1/12

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2010)01-0056-04

# 掺钌氢氧化钴复合材料在碱液中的电化学行为

#### 姚素梅,李国春,高学平\*

(南开大学新能源材料化学研究所,天津 300071)

摘要: 应用化学共沉淀法制备掺钌氢氧化钴复合材料,X射线衍射(XRD)、扫描电子显微镜(SEM)显示非晶态 RuO<sub>2</sub>颗粒分散在六方晶系 Co(OH)<sub>2</sub>薄片的表面.循环伏安、恒流充放电测试表明,Co/Ru = 8/1 的复合材料 在碱性电解液中具有优良的电容性能和较高的比容量.

关键词: 掺钌氢氧化钴复合材料;碱性溶液;电化学行为;电容性能

**中图分类号:** 0484

电化学电容器具有高功率和高能量密度 在 电子通讯、信息技术、航天技术、电动汽车等领域 得到了广泛应用[1]. 依据其储能机理,可分为双电 层电容器和法拉第电容器. 前者储能机理是基于 电极/电解液界面处电子和离子或偶极子定向排 列产生的双电层电容,电极材料大多是碳材料;后 者储能机理是基于电极表面及体相发生的氧化还 原反应而产生的化学吸附电容,主要以金属氧化 物和导电聚合物作为电极材料<sup>[27]</sup>. 金属氧化物用 于法拉第准电容器的典型代表是非晶态 RuO,<sup>[89]</sup>, 但由于资源有限、价格昂贵、限制了它的大规模应 用.因此人们积极寻找其它廉价金属氧化物来代 替 RuO, ,研究较多的有 NiO、CoO, 和 MnO, 等,以 及由 RuO,与其它金属氧化物构成的复合材料<sup>[9]</sup>. 本课题组此前采用球磨法制备 Co-BN、Co-Si<sub>3</sub>N<sub>4</sub> 复 合材料以及用化学共沉淀法合成 Co(OH),,以其 作为碱性二次电池的负极材料均具有良好的电化 学可逆性、高的放电容量和循环寿命<sup>[10-12]</sup>. 电化学 反应机理研究证明上述钴基化合物的电化学活性 均源自金属 Co 在碱液中的氧化与还原.因此,若 将 RuO, 与钴基化合物复合可望达到既减少 RuO, 用量又提高材料比容量的目的.本文采用化学共 沉淀法合成了掺钌氢氧化钴复合材料 ,测试该材 料用作碱性电化学电容器负极的电容行为. 实验 表明其电化学性能与 Co/Ru 投料比密切相关,其 中以 Co/Ru = 8/1 的为最佳配比.

文献标识码: A

1 实 验

#### 1.1 掺钌氢氧化钴复合材料制备与表征

取 10 mL 乙醇与 90 mL 蒸馏水配成醇水混合 溶液 按 Co/Ru = 12/1 8/1 和 4/1 (摩尔比)准确 称取 CoCl<sub>2</sub> • 6H<sub>2</sub>O(A. R)和 RuCl<sub>3</sub>(A. R)用量溶于 上述醇水混合溶液中,以六次甲基四胺为沉淀剂, 在恒温 90 ℃磁力搅拌下共沉淀1 h<sup>[13]</sup>.抽滤 经蒸 馏水和乙醇洗涤,常温下真空干燥,得到掺钌氢氧 化钴复合材料.

X 射线衍射仪(XRD,X-ray Diffraction,日本理 学 D/max-2500)作物相分析和结构测定.扫描电镜 (SEM,日立 S-3500N)分析样品表面形貌.

1.2 电极制备与电化学性能测试

将活性炭、导电剂及粘结剂以 87: 10: 3 的质 量比混合,加入乙醇搅拌均匀后涂在 1.0 cm × 1.0 cm 的泡沫镍极板上.室温下真空干燥,然后在泡沫 镍两侧各压上 1 片面积为 2.0 cm × 2.0 cm 的泡沫 镍,在 30 MPa 的压力下加压成型,直接作为辅助 电极.将 50 mg 掺钌氢氧化钴复合材料与 150 mg 的 255 羰基镍粉在玛瑙研钵中混合均匀,然后在 30 MPa 压力下冷压成直径为 1 cm 的圆片.用 2.0 cm × 2.0 cm 的泡沫镍包住圆片,再于 30 MPa 压力 下冷压成型,制成测试用电极.

恒流充放电测试采用三电极体系,以活性炭为 辅助电极,Hg/HgO 为参比电极,电解液为6 mol・

收稿日期:2009-10-27,修订日期:2009-12-01 \* 通讯作者:TEL: (86-22)23500876 E-mail:xpgao@nankai.edu.cn 国家 973 计划项目(2009CB220100)资助

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

• 57 •

 $L^{-1}$  KOH 溶液. 实验之前,工作电极先在电解液中 浸泡 0.5 h,以使电极充分浸润,然后室温下以 400 mA/g 的电流密度进行恒流充放电测试. 工作电 位:  $-0.6 \sim -0.95$  V (vs. Hg/HgO),以复合物作 为活性物质. 实验仪器为 Land-BTI10 蓝电电池测 试系统(与计算机联机使用).

循环伏安测试电极制备:在掺钌氢氧化钴复 合材料中加入适量的粘结剂,混合均匀后涂在1.0 cm×1.0 cm 的泡沫镍极板上.室温下真空干燥,泡 沫镍两侧压上2.0 cm×2.0 cm 的泡沫镍,30 MPa 的压力下加压成型.使用 Zahner IM6ex 电化学工 作站,工作电位-0.6~-0.95 V (vs. Hg/HgO), 其他实验条件同上,扫描速率为1 mV/s.

## 2 结果与讨论



- 图 1 不同 Co/Ru 配比的掺钌氢氧化钴复合材料的 XRD 图谱
- Fig. 1 XRD patterns of Ru doped cobalt hydroxides with different Co/Ru molar ratios

图 1 为不同 Co/Ru 配比的掺钌氢氧化钴复合 材料的 XRD 图谱. 可以看出,对应于 Co/Ru = 4/1 的谱线在  $2\theta$  为 19°处显示一个宽化的馒头峰,随 着 Co/Ru 比值的增大,表征  $\beta$ -Co(OH)<sub>2</sub> 的衍射峰 ( $2\theta = 19^{\circ}$  38° 51°) 变得强而尖锐,表明该复合材 料乃由非晶态的 RuO<sub>2</sub><sup>[1445]</sup>和六方晶系的  $\beta$ -Co (OH)<sub>2</sub> 组成.

图 2 示出不同 Co/Ru 配比的掺钌氢氧化钴复 合材料的 SEM 照片. 由图可见合成的  $\beta$ -Co(OH)<sub>2</sub> 为六方形薄片<sup>[12]</sup>,而且非晶态 RuO<sub>2</sub> 颗粒负载在 Co(OH)<sub>2</sub> 薄片的表面 随着 Ru 含量的增加复合材 料表面富集了更多的 RuO<sub>2</sub> 颗粒,并使 Co(OH)<sub>2</sub> 变为不规则的碎片,这与 XRD 测试出现 Co/Ru = 4/1 样品宽化的衍射峰相符合.

图 3 为不同 Co/Ru 配比的复合材料在 6 mol·  $L^{-1}$ KOH溶液中的循环伏安曲线. 如图 ,当Co/Ru = 4/1 时,伏安曲线表现出良好的电容特征,一对宽 广而平坦的峰出现在 -0.9 V 左右. 随着 Co/Ru 比值的增大,在-0.75 V 附近出现明显的氧化 峰,并以 Co/Ru = 12/1 的峰电流最大,这与金属 Co 在碱液中的电化学反应电位相一致,说明该材 料电化学容量主要来自 Co 的氧化. Co 元素在碱 液中不仅可以被氧化为 Co(II), 而 Co(II)也可以 被还原为 Co,其氧化峰电位处在 - 0.74 V (vs. Hg/HgO) 左右,而还原峰电位在 - 0.98 V(vs. Hg/HgO)附近<sup>[10-11]</sup>.由于实验的电势扫描区间为 -0.6~-0.95 V 因此图中曲线不出现明显对应 的还原峰. RuO, 用作碱性电容器负极材料充电过 程中可被还原成较低价态的 Ru, O, 或金属 Ru, 而 在放电过程中又可被氧化为 RuO,<sup>[16]</sup>. 由此可以 证明该复合材料的电化学活性由 Co 和 Ru 的氧 化还原反应共同控制 电极有较好的电容特性和 较高的电容值.



- 图 2 不同 Co/Ru 配比的掺钌氢氧化钴复合材料的 SEM 照片
- Fig. 2 SEM images of Ru doped cobalt hydroxides with different Co/Ru molar ratios Co/Ru = 12: 1(a) ,Co/Ru = 8: 1(b) ,Co/Ru = 4: 1(c)

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne





Fig. 3 Cyclic voltammograms of the Co-Ru electrode in 6 mol·L<sup>-1</sup> KOH solution (scan rate of 1 mV/s)

图 4 为不同 Co/Ru 配比的掺钌氢氧化钴电极 的恒流充放电曲线. 实验时先以 400 mA/g 电流充 电至 -0.95 V, 然后以同样电流放电至 -0.6 V. 可以看出 ,Co/Ru = 4/1 的电极电位随时间呈近似 线性变化,而其充放电曲线又呈对称分布,进一步 证明该比例的复合材料具有良好的电容特性和可 逆性. 随着材料的 Ru 含量减少,电极充放电平台 逐渐明显,该平台与在碱液中Co和Co(OH),之 间的氧化还原反应电位相符合. 据  $C = It / \triangle Vm$  , C为电容器的平均放电比电容(F/g) / 为放电电流 (A) *t* 为放电时间(s) ,*m* 为电极活性物质质量 (g),  $\triangle V$  为放电电位区间(V). 算得以上各电极的 比容量分别为770(Co/Ru=4/1),2317(Co/Ru= 8/1)和 3026 (Co/Ru = 12/1) F/g. 可见随着复合 材料中 Co/Ru 值的增加,其比容量也同时逐渐增 加 亦即金属 Co 的氧化还原逐渐占主要地位. 综 合考虑,当以Co/Ru = 8/1的样品(b)电容性能最 优 这个结果同循环伏安测试的结果是一致的.

3 结 论

应用化学共沉淀法合成的掺钌氢氧化钴复合材 料 以其作为电容器负极实验表明组成为 Co/Ru = 8/1 的样品在碱性溶液中表现出良好的电容特征和 高容量值 其单电极放电比容量达到 2317 F/g.





Fig. 4 Charge/discharge curves of Co-Ru electrode in 6 mol • L<sup>-1</sup> KOH solution at 400 mA/g with different Co/Ru molar ratios

#### 参考文献(References):

- Ahn H J Seong T Y. Effect of Pt nanostructures on the [1] electrochemical properties of Co<sub>3</sub>O<sub>4</sub> electrodes for microelectrochemical capacitors [J]. J Alloys Compd ,2009 , 478:L8-L11.
- [2] Ahn H J Sohn J I ,Kim Y S ,et al. Electrochemical capacitors fabricated with carbon nanotubes grown with the pores of anodized aluminum oxide templates [J]. Electrochem Commun 2006 8:513-516.
- [3] Kötz R Carlen M. Principles and applications of electrochemical capacitors [J]. Electrochim Acta ,2000 ,45: 2483-2498.
- [4] Frackowiak E ,Béguin F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon, 2001 39:937-950.
- [5] Kim II H Kim J H Kim K B. Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application [J ]. Electrochem Solid-State Lett 2005 &: A369-A372.
- [6] Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage [J]. J Electrochem Soc ,1991 ,138:1539-1548.
- [7] Simon P Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Mater 2008 7:845-854.
- [8] Kurzweil P. Precious metal oxides for electrochemical energy converters: Pseudocapacitance and pH dependence of redox processes [J]. J Power Sources 2009 ,190:189-200.
- [9] Pico F Ibañez J Centeno T A et al. RuO<sub>2</sub> xH<sub>2</sub>O/NiO composites as electrodes for electrochemical capacitors

effect of the RuO<sub>2</sub> content and the thermal treatment on the specific capacitance [J]. Electrochim Acta ,2006, 51:4693-4700.

· 59 ·

- [10] Lu Z W , Yao S M , Li G R , et al. Microstructure and electrochemcial properties of the Co-BN composites [J]. Electrochim Acta 2008 53:2369-2375.
- [11] Yao S M Xi K Li G R et al. Preparation and electrochemical properties of Co-Si<sub>3</sub>N<sub>4</sub> nanaocomposites [J]. J Power Sources 2008 ,184:657-662.
- [12] Gao X P , Yao S M , Yan T Y , et al. Alkaline rechargeable Ni/Co batteries: Cobalt hydroxides as negative electrode materials [J]. Energy Environ Sci ,2009 ,2: 502-505.
- [13] Liu Z P ,Ma R Z ,Osada M ,et al. Selective and controlled synthesis of  $\alpha$ -and  $\beta$ -coalt hydroxides in highly developed hexagonal platelets [J]. J Am Chem Soc, 2005 ,127:13869-13874.
- [14] Lin Y H Zhao N N Nie W et al. Synthesis of ruthenium dioxide nanoparticles by a two-phase route and their electrochemical properties [J]. J Phys Chem C, 2008 ,112:16219-16224.
- [15] Hu C C , Wang C C. Improving the utilization of ruthenium oxide within thick carbon-ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors [J]. Electrochem Commun, 2002, 4: 554-559.
- [16] Su Yuefeng(苏岳峰), Wu Feng(吴峰), Yang Zhaohui(杨朝晖) et al. The application of carbon ruthenium composite in alkaline electrochemical capacitors [J]. Rare Metal Materials and Engineering (稀有金属 材料与工程) 2005 34(11):1734-1737.

## Electrochemical Behavior of Co-Ru Composite in Alkaline Solution

YAO Su-mei, LI Guo-chun, GAO Xue-ping

(Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China)

Abstract: The electrochemical properties of Ru doped cobalt hydroxides synthesized via homogeneous chemical co-precipitation were investigated in 6 mol  $\cdot$  L<sup>-1</sup> KOH solution by galvanostatic charge-discharge process and cyclic voltammetry (CV). It is demonstrated that Ru doped cobalt hydroxides exhibited good capacitive characteristic and high specific capacitance. The sample with a Co/Ru molar ratio of 8/1 shows the optimized electrochemical performance including capacitive property and discharge capacity. The microstructure and morphology of the obtained Ru doped hydroxides were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The amorphous structure of ruthenium dioxide nanoparticles and single-crystal structure of Co(OH), platelets were confirmed. Based on a structure analysis and electrochemical measurement the reversible faradic reaction within electroactive materials is dominant for the capacitive characteristic and high capacity.

Key words: Co-Ru composite; alkaline solution; electrochemical behavior; capacitive property © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.commonword.com/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academic/academ http://www.cnki.ne