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Abstract .

their important role in the construction of biosensors, bioelectronics and biofuel cells. Interfacial electric

The adsorption and bioactivity of proteins at interfaces have been widely studied due to

field is one of the important factors which could affect the adsorption and bioactivity of proteins at ma-
terials surfaces. It could dramatically change the adsorption density , molecular conformation and orien-
tation at material surfaces. In this paper,the influence of interfacial electric field on the adsorption ki-
netics and bioactivity of hemoglobin (Hb) on a three-dimensional (3D) macroporous gold electrode
surface has been studied using electrochemical methods and infrared spectroscopy. It was found that the
interfacial electric field created excess surface charge which would accelerate the adsorption rate of Hb
on the substrate by the enhanced electrostatic interactions between the electrode and protein patches.
However, higher interfacial electric field could damage the conformation of the adsorbed Hb molecules,
resulting in loss of the catalytic activity towards the reduction of hydrogen peroxide. Only at a surface
with zero charge,the conformation and bioactivity of the adsorbed Hb molecules can be well retained.
This work would provide fundamentals for the construction of biosensors, bioelectronics and biofuel

cells,and assist to understand the interfacial behavior of biomolecules on charged biological interfaces.
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1 Introduction
Protein molecules, with dual hydrophilic and hy-

drophobic properties, can easily adsorb onto materials

surfaces' "

via the weak supermolecular interactions.
Such interactions could cause conformation change
and even denaturation of the biomolecules in some ca-
ses!™) In certain practical biosystems, the adsorption
of proteins will disturb the physiological function of
human beings. For example, the adsorption of fibrino-
gen causes platelets to aggregate and coagulate on the

blood vessel , which induces myocardial infarction and

apoplexy. For avoiding proteins adsorption, Martins et
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al. synthesized a kind of polymers which effectively
reduced the fibrinogen adsorption and thus prevented
the adhesion of platelet, cell and even bacterium'®’.
Obviously, investigation of the adsorption behavior of
proteins at materials surfaces is one of important is-
sues determining their application in food industry,
biomaterials , biosensors and clinical medicine' ™"’ .
Various factors of radiation, interfacial electric
field,, magnetic field, ionic strength and solution pH
value affect the adsorption behavior of proteins at ma-
terials surfaces. They could dramatically change the

adsorption density ,molecular conformation and molec-
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ular orientation at the surfaces' """ Proteins are neu-
tral molecules at their isoelectric points,but the char-
ges around the molecules are usually not uniform, e.
g. , positive charges or negative charges could form
different domains around the biomolecules. Therefore ,
as soon as biomolecules in solution contacts with a
substrate , they can adsorb on the substrate surface via
the electrostatic interactions. This adsorption behavior
is obviously determined by the interfacial excess char-
ges. It has been reported that solution ionic strength or
solution pH could create excess interfacial charges,
which in turn affected the adsorption behavior of bio-
molecules'"*"".

In electrochemical systems, interfacial electric
field is an additional variable factor determining the
surface excess charges at a conductive electrode. Re-
cently ,we have studied adsorption behavior of hemo-
globin ( Hb) on a macroporous gold electrode at
open-circuit potential and found that the assembled
Hb molecules retained their secondary structure and
bioactivity ™. In this paper, the influence of interfa-
cial electric field on the adsorption and conformation
of proteins on a gold electrode surface was studied by
using Hb as probe. Electrochemical methods were
used to characterize the adsorption and bioactivity of
the adsorbed Hb. The conformation change of the ad-
sorbed Hb molecules was characterized by using infra-
red spectroscopy. The present work will shed light on
the understanding of the adsorption behavior of bio-
molecules on charged biological interfaces, and also
provide fundamentals for the fabrication of biosensors,

bioelectronics and biofuel cells.
2 Experimental

2.1 Instruments and Chemicals

Hemoglobin ( bovine blood) was purchased from
Tokyo Kasei Co. ,Ltd and used as received. Hydrogen
peroxide (H,0,) solutions were prepared using 0. 1
mol + L' phosphate buffer solution ( PBS,pH 7.0)
which was obtained from KH,PO, and Na,HPO,solu-
tions. All other chemicals were of analytical grade.

All the solutions were prepared by de-ionized water

( >18 MQ,Purelab Classic Co. ,USA).

Electrochemical experiments were carried out on
a CHI 650 electrochemical working station ( CH In-
strument, USA ) . Measurements were carried out in a
three-electrode system: a macroporous gold electrode
was used as the working electrode , a saturated calomel
electrode ( SCE) as the reference and a platinum
sheet as the counter electrode. All the potentials in
this paper refer to the SCE.

Infrared spectra averaged over 64 scans ( resolu-
tion of 4 em ") were recorded on a Tensor 27 Fourier
transfer infrared spectrometer ( Bruker, Germany) e-
quipped with a liquid nitrogen cooled mercury cadmi-

um telluride (MCT) detector.
2.2 Procedure

1) Preparation of Macroporous Au Electrode

The fabrication of 3D gold macroporous film e-
lectrodes was the same as that reported previously'?” .
In brief, monodispersed SiO, spheres (320 nm, syn-
thesized using the Stsber method'®'") were firstly as-
sembled on gold slide ,forming the highly ordered col-
loidal crystal template by the vertical deposition meth-
od' ). Before electrochemical deposition, the silica
colloidal crystal was sintered at 200 °C under nitrogen
atmosphere for 2 h. Then, the silica crystal template
was immersed into a 5.0 x 107> mol + L' HAuCI,
solution for 1 h prior to electrolyzing in order to allow
the solution to penetrate throughout the template. Gold
was then electrodeposited into the interspaces of the
silica crystal template at 0. 5 V. After chemical re-
moval of the silica template using aqueous HF
(5% ) ,a highly ordered macroporous Au film was ob-
tained. The electrodeposited Au film consisted of Au
nanoparticles with the average particle size of 4. 09
nm calculated from the X-ray diffraction results ac-
cording to reference 20. Such macroporous gold film
can provide good microenvironment for proteins.

2) Characterization of the Adsorbed Hemoglobin

Electrode potential induced adsorption of hemo-
globin on a gold electrode was carried out at differ-
ent potentials in a 50 mmol + L™' Hb solution ( pre-
pared with pH 7.2 PBS) under nitrogen atmos-
phere. The electrode potentials were in the range of

0.7 Vto —0.4 V with an interval of 0.1 V. Adsorp-
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tion isotherms at 0. 1 V were obtained by changing

adsorption time.
3 Results and Discussion

3.1 Influence of Electrode Potential on

the Adsorption Behavior of Hb

The Hb was assembled on the gold electrode
surface at different potentials from a PBS solution
containing 50 mmol - L™" Hb for 1 h. Then, the e-
lectrode was washed subsequently with PBS and wa-
ter. Electrochemical impedance spectra of the Hb as-
sembled marcroporous gold electrode were collected at
0.19 V in a solution containing 0. 1 mol - L™" KCI +
10 mmol - L™" Fe (CN),> + 10 mmol - L' Fe
(CN),* are shown in Fig. 1. The electrode modified
with Hb at 0. 0 V showed the lowest electrochemical
impedance. This impedance increased with the in-
crease of the absolute electrode potential for Hb ad-
sorption. Since the electrochemical impedance reflects
the electron transfer resistance of the electrochemical
probe ( ferricyanide/ferrocyanide couple ) , larger im-
pedance indicates more Hb molecules adsorbed on the
electrode surface. It is clear that the surface excess
charge increases with the absolute value of the elec-
trode potential deviated from 0.0 V which is roughly
close to the zero charge potential™'. More positive
potentials with respect to the zero charge potential will
result in more positive excess charges on the electrode
surface , while more negative potentials will result in
more negative excess charges at the electrode surface.
The increased surface excess charges will certainly in-
duce electrostatic interactions between the electrode
surface and the Hb molecules due to the existence of
positively and negatively charged amino residuals on

5] This result

the surface of the protein molecules'
demonstrated that the surface excess charge, which
can be modulated by the interfacial electric field,
plays a determining role in the protein adsorption ki-
netics.

In order to understand the influence of interfacial
electric field on the adsorption of Hb at gold elec-

trode, the adsorption isotherms of Hb on a macro-

porous gold electrode at 0.1 V from a PBS solution

Z /kQ

im’

im’

Z /kQ

7 /kQ

Fig. 1 Nyquist-diagrams of macroporous gold electrodes
modified with Hb layers from a solution of 0. 1
mol - L™"KCl + 10 mmol + L™" Fe(CN),” +
10 mmol + L™' Fe(CN),*
deposited at different potentials from a PBS solu-

The Hb layers were

tion containing 50 mmol « L~ Hb for 1 h, the
electrochemical impedance spectra were collected
at 0.19 V in the frequency range of 0.1 Hz to 1.0
x 10° Hz with an amplitude of +5 mV

containing 50 mmol - L™" Hb was followed by the-
( EIS)

measurements. Since the electrochemical impedance

electrochemical impedance spectroscopic

also reflects the surface coverage of Hb adsorbed on

! we can monitor the adsorp-

the electrode surface ™
tion isotherms of Hb on the gold electrode at this po-
tential. The surface coverage () was derived accord-
ing to the following equation'**?"".

9=1-R, ™" /R," (1)
where R """ denotes the charge transfer resistance
of the electrochemical probe at the macroporous gold
film electrode and R,"™ the resistance of the electro-
chemical probe at the electrode covered by Hb incu-
bating for different time. 6 is the surface coverage of

Hb on the macroporous gold electrode.
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Electrochemical impedance spectra of the macro-
porous gold electrode adsorbed with Hb for different
adsorption time from a solution of 0. 1 mol - L™" KCl
containing 10 mmol + L™" Fe (CN),* + 10 mmol -
L™ Fe (CN)," were collected under potentiostatic
control at 0.19 V in the frequency range of 0.1 Hz to
1.0 x 10° Hz. As shown in Fig. 2a, the electrochemi-
cal impedance for the electron transfer of ferricya-
nide/ferrocyanide couple at the gold electrode in-
creased with the deposition time, indicating that the
Hb adsorption was a slow process. Based on the equa-
tion (1) ,the coverage of Hb for different adsorption
time was estimated and the results are plotted in Fig.
2b. It showed that the surface coverage of Hb on the
macroporous gold electrode firstly increased exponen-
tially with adsorption time. Then, it leveled off after 90
min, indicating that a saturation layer of Hb was
formed. By comparison with the results for Hb ad-

1'**? it can be conclu-

sorbed at open circuit potentia
ded that the Hb adsorption amount increased dramat-
ically when an interfacial electric field was applied.
The impedance of the modified electrode with satura-
tion adsorption of Hb at open circuit potential and at
external potential of 0.1 V were 32950) and 5865(),
corresponding to a adsorption coverage of 87.4% and
93. 1% ,respectively. In addition, when the interfacial
electric field of 0.1 V was applied, the time for reac-
hing saturation adsorption was 90 min, which was only
the half of the saturation adsorption time at open cir-
cuit potential. The results clearly showed that the sur-
face electric field accelerated the adsorption rate and
adsorption amount of Hb on the gold electrode via the
electrostatic interactions between the surface excess
charges and the protein.
3.2 IR Characterization of the Secondary
Structure of the Absorbed Hb

The secondary structure change of the Hb ad-
sorbed on gold electrode at different potentials was
characterized by the infrared spectroscopy (IR). Hb
was deposited on macroporous gold electrodes at dif-
ferent potentials from a PBS solution containing 50

mmol + L™" Hb for 1 h. As shown in Fig. 3, when

the Hb was deposited in the potential region between
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Fig. 2 Nyquist-diagrams of a macroporous gold electrode
modified with Hb layers from a solution of 0. 1 mol
-L7" KCl + 10 mmol - L' Fe(CN),”™ + 10
mmol + L™" Fe(CN),* (a) and plots of the sur-
face coverage of Hb as a function of deposition time

(b) based on Figure 2a

-0.3 Vand 0.5 V,the amide I and amide II bands
located at 1658 ¢m ™' and 1578 cm ™', respectively.
The amide I band is attributed to the C—O stretching
vibration of peptide linkages in the backbone of pro-
tein. The amide II band results from a combination of
N—H bending and C—N stretching'”’'. Appearance
of these two bands demonstrated that the secondary
structure of Hb deposited at 0. 1 V was retained. The
band intensity indicates the coverage of the secondary
structure retaining Hb molecules. When the Hb ad-
sorbed on the macroporous gold electrode at 0. 0 V
and 0.1 V, the intensities for the amide I and amide
II bands had the highest values. When the deposition
potential for Hb increased from 0.1 V to 0.7 V, the
band intensities decreased rapidly,e. g. ,at a deposi-
tion potential of 0.7 V ,these two bands almost disap-
peared. In addition, when the deposition potential
went to the negative potentials with respect to 0.0 V,

similar results as in the positive potential region were
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obtained. These results demonstrated that the Hb cov-
erage with native secondary structure decreased with
the increase of deposition potential. However, the re-
sult in Fig. 1 showed that the amount of Hb on the
macroporous gold electrode increased with the in-
crease of the absolute external potential deviated from
0.0 V. Therefore,, we can conclude that although the
interfacial electric field could enhance the adsorption
amount of Hb on the macroporous gold electrode, the

most of the deposited Hb secondary structure were

damaged.
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Fig. 3 ATR-FTIR spectra of Hb adsorbed on a macro-

porous gold film electrode at different potential in
a PBS solution containing 50 mmol + L. ™" Hb for 1
h

3.3 Influence of Deposition Potential on
the Catalytic Activity of Hb

Under normal physiological conditions, hemoglo-
bin can catalyze the electrochemical reduction of
H,O0,. The electrocatalytic activity of Hb adsorbed at
different potentials towards the electrochemical reduc-
tion of hydrogen peroxide was characterized. Fig. 4
shows the cyclic voltammograms ( CV) of the macro-
porous gold electrode adsorbed with Hb in a PBS so-
lution containing 10 mmol + L™" H,0,. It is clear
that the dotted lines in CV curves of the Hb modified
macroporous gold electrode showed the characteristics
for the direct electron transfer of deposited Hb on
gold electrode when the Hb molecules were deposited
at 0. 0 V. The oxidation and reduction peaks of Hb
appeared at 0.27 V and 0. 09 V, respectively, which
suggested that the adsorbed Hb molecules had good

electrochemical activity, e. g. , the electrochemically

active center of adsorbed Hb can exchange electron
with the gold electrode. However, as the adsorption
potential increased ,the current peak for the direct e-
lectron transfer of Hb decreased significantly. This
change demonstrated that the electrochemical activity
of the adsorbed Hb would be gradually lost as the ad-
sorption potential increased. This result reminded us
to study the biocatalytic activity of the Hb on the elec-
trode under potential control. In this case,we used hy-
drogen peroxide as a probe to study the influence of
interfacial electric field on the biocatalytic activity of
the adsorbed Hb. As shown by the solid curves in
Fig. 4 ,the influence of the interfacial electric field on
the biocatalytic activity of the adsorbed Hb was simi-
lar to the electrochemical activity. Higher interfacial
electric field considerably decreased the bioactivity of
Hb towards the reduction of hydrogen peroxide. When
the Hb adsorbed at 0.0 V,a larger catalytic reduction
current was observed upon addition of H,0,, indica-

ting that the Hb immobilized at 0.0 V showed good

Current/ pA

1 I 1 L
-0.2 0.0 02 0.4 0.6
Potential/V (vs. SCE)

1 I 1 L 1

Fig.4 Cyclic voltammograms ( CVs) of Hb adsorbed on a
macroporous gold electrode in pH 7.0 PBS contai-
ning 10 mmol - L™ H, 0, ,the CVs for the Hb de-
posited gold electrode in the base electrolyte of
PBS were also displayed as dotted curves ( scan

rate :0.01 V/s)



514

EARELAE S 0] AL 7 25 L v A b F R BB R A 35 T ) 2 £ 29 -

biocatalytic activity. When the adsorption potential
was increased 0.5 V,an electrochemical catalytic re-
duction current for hydrogen peroxide could still be
seen,but the current was much smaller than that for
0.0 V. If the adsorption was increased to 0.7 V, no
biocatalytic activity of the Hb on gold electrode was
observed. These results are in good agreement with the
IR results in Fig. 3.

These results let us know that although strong in-
terfacial electric field enhances the adsorption amount
and adsorption rate of Hb on the macroporous elec-
trode as indicated by the impedance measurements, it
will change the conformation of Hb molecules on the
electrode surface, resulting in loss of electrochemical
activity and biocatalytic activity of the immobilized

protein molecules.

4 Conclusion

In summary,we emphasized on the importance of
surface excess charges in determining the adsorption
of proteins on a gold electrode surface. Although high
electric field accelerated the Hb adsorption, the sec-
ondary structure and bioactivity of the adsorbed Hb
could not be retained due to the strong electrostatic
interactions. Since biological interfaces are usually
charged ,the present work will shed light on the un-
derstanding of the adsorption behavior of biomolecules
on charged biological interfaces, and also provides
fundamentals for the fabrication of biosensors, bio-

electronics and biofuel cells.
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