Journal of Electrochemistry

Volume 21 Issue 3 *Special Issue of Chemical Power Source and Its Materials (II)*

2015-06-28

Electrochemical Mass Spectrometric Study of Lithium-Oxygen Batteries

Xin-xiu YAN

Li-po MA

Zhang-quan PENG State Key Laboratory of Electroanalytical Chemistry, Changchur

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China;, zqpeng@ciac.ac.cn

Recommended Citation

Xin-xiu YAN, Li-po MA, Zhang-quan PENG. Electrochemical Mass Spectrometric Study of Lithium-Oxygen Batteries[J]. *Journal of Electrochemistry*, 2015, 21(3): 279-293. DOI: 10.13208/j.electrochem.141205 Available at: https://jelectrochem.xmu.edu.cn/journal/vol21/iss3/9

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

DOI: 10.13208/j.electrochem.141205

Cite this: J. Electrochem. 2015, 21(3): 279-293

Artical ID:1006-3471(2015)03-0279-15

Http://electrochem.xmu.edu.cn

电化学质谱在锂-氧电池研究中的应用

闫新秀,马力坡,彭章泉*

(中国科学院长春应用化学研究所电分析化学国家重点实验室, 吉林长春 130022)

摘要:质谱技术与电化学方法相结合,能原位或在线检测电化学反应的中间产物和最终产物,利于深入研究电极 反应机理.本文结合作者应用电化学质谱研究锂-氧电池反应机理的科研背景,综述了目前该技术在研究锂-氧电 池体系中的电解液、电极材料和催化剂的进展情况,此外还介绍了电池体系中的不可逆副反应对电池充放电过程 的影响.

关键词:电化学质谱;锂-氧电池;定量分析

中图分类号: O646;TM911.41

质谱仪与电化学反应装置联用最早出现在上 世纪 70 年代, 1971 年, Bruckenstein 和 Gadde^[1]用 气相质谱检测到了电化学反应产生的挥发性物 质,率先建立了电化学质谱技术(Electrochemical Mass Spectrometry, EMS). 其实验装置采用膜进样 方式,用多孔 Teflon 膜将电解液与质谱的真空进 样系统分隔开、只允许挥发性气体产物进入质谱 电离室.其技术特点是当气体样品累积到一定的 量之后,一次性地将产生的气体导入质谱仪进行 定性和定量分析. 1984年, Wolter和 Heitbaum^[2]建 立微分电化学质谱 (Differential Electrochemical Mass Spectrometry, DEMS), 该技术延用多孔 Teflon 膜进样方式,与EMS 不同之处在于采用两 级真空泵分别对电离室、质量分析系统分级抽真 空,进样口处利用压差将电化学反应产生的气体 快速吸入质谱电离室,得到的质谱信号强度正比 于电化学反应的法拉第电流. DEMS 的技术特点 是实现了对挥发性产物的连续测量,总响应时间 小于 1 s. 1986 年, Hambitzer 和 Heitbaum^[3]将 N,N-二甲基苯胺电解氧化,并将电极表面的电解液连 续导入质谱热喷雾离子室的前置进样毛细管中,实 现了电化学质谱在线检测电极反应的非挥发性产 物.随着质谱技术的不断发展,电化学质谱联用技 术结合了更多的样品电离方式,用以分析不同形态 和性质的电极反应产物.这些电离方式包括电喷雾

文献标识码:A

电离¹⁴⁰、大气压化学电离¹⁷、大气压光致电离¹⁷、快 原子轰击电离¹⁸、电感耦合等离子体电离¹⁹等.

近年来,锂-氧(Li-O₂)电池因具有极高的理论 容量和能量密度,受到人们的广泛关注.其中非水 溶剂锂-氧电池的反应过程为:电池放电时,金属锂 失去电子,生成的Li+扩散到电解液中,同时O2在 正极得到电子被还原,与Li⁺形成不溶于有机电解 液的 Li₂O₂并沉积在电极表面. 电池充电时, 正极 上的 Li₂O₂ 氧化分解成 Li⁺ 和 O₂, 生成的 Li⁺ 在负 极被还原成金属锂.由于正极中的 O₂来自空气而 且不需要封装在电池内部,Li-O2电池的理论能量 密度高出传统锂离子电池体系1个数量级.目前, 已有许多仪器方法被用以研究 Li-O, 电池反应机 理、循环性能、倍率性能及过电势等关键问题,如红 外光谱^[10]、核磁共振^[11]、X-射线光电子能谱^[12]、X-射 线衍射[13]、拉曼光谱[14-15]、透射电子显微术[16]、扫描电 子显微术[17]、原子力显微术[18]以及电子顺磁共振[19] 篓.

本文主要综述电化学质谱技术在 Li-O₂ 电池 中的应用,通过原位监测电池工作时所涉及的各 种气体的量或浓度随时间的变化,结合施加在原 位电池上的伏安研究方法,进而得到质谱伏安图 (Mass Spectrometric Voltammograms,MSCV).电 化学质谱对理解 Li-O₂ 电池体系中电解液和电极 材料的稳定性、催化剂的功能,以及反应机理的确

收稿日期: 2014-12-05, 修订日期: 2015-03-10 * 通讯作者, Tel: (86-431)85252660, E-mail: zqpeng@ciac.ac.cn 国家"千人计划(青年)"和中科院先导项目(No. XDA09010401)资助

立起到了重要作用.

1 锂-氧电池电解液的研究

自 1996 年 Abraham 和 Jiang^[20]首次报道了有 机体系的 Li-O, 电池后, 非水溶液 Li-O, 体系受到 了学术界关注,而寻找一种稳定的有机电解液成 为Li-O,电池的研究重点和难点.目前为止,没有 一种电解液具有足够的稳定性,可以使 Li-O, 电池 达到理想状态下的循环性能,通常电解液分解会 伴随着气体产物的出现,同时金属-空气电池中 O? 又是主反应物.在这方面,质谱在线监控 O,的变化 量和电解液分解产生的气体种类和量、是有机电 解液体系稳定性研究中不可或缺的手段,电化学 质谱的突出优点在于可以准确定量电池反应过程 中消耗和生成的 O₂ 的量,通过结合电池反应时通 过的电量 O, 研究 Li-O, 电池的可逆主反应(Li₂O) 的可逆生成和氧化分解)和不可逆副反应(电极材 料和电解液的不可逆氧化). 定量分析的原理是通 过被分析物质由不同的进样方式进入质谱电离室 并离子化,按质荷比分离后,然后测量离子谱峰强 度(离子电流值),离子强度的大小正比于物质浓 度.虽然电化学质谱装置有不同类型,但其定量的 本质是不变的. 理想情况下, Li-O2 电池放电时正极 上发生氧还原反应(ORR),充电时发生氧析出反应 (OER),而且放电时消耗的 O₂的量和充电时放出 的 O₂的量应该完全相同. 如果电池中发生可逆反 应:2Li⁺+2e+O₂ → Li₂O₂,那么充放电 e/O₂的比 值应均为2,且没有其它气体产生,电池每次循环 对应的 OER/ORR 都必须等于 1.

1.1 碳酸酯类电解液

在 Li-O₂ 研究的初期, 商用锂-离子电池中常 用的碳酸酯类电解液被广泛使用^[21-22,45], 但是到 2011年, 英国圣·安德鲁斯大学的 Bruce 课题组^[23] 证明了碳酸酯有机体系的不稳定性.实验以碳酸 丙烯酯(PC)作为电解液,对放电产物系统表征 后发现,正极极片表面生成多种副反应产物,如 C₃H₆(OCO₂Li)₂、Li₂CO₃、HCO₂Li和 CH₃CO₂Li,这些 副反应产物只有在较高的电压下发生氧化分解, 质谱检测其分解的气体有 H₂、CO₂和 H₂O.电池运 行中电解液分解反应占主要地位,且均为不可逆 反应,部分碳酸盐产物因不易分解,在正极表面不 断积累,极大地影响了电池库仑效率和可循环性.

2011年,Xu等^[24]利用气相色谱与质谱联用实 时监测了基于碳酸酯类电解液的 Li-O2 电池充电 过程.电池材料用扣式电池封装[25](图1),正极是 Li₂O₂/Fe₃O₄/Super P/PVDF,负极是金属锂,电解液 是溶解有锂盐的 PC/EC 碳酸酯类. 该扣式电池放 置在 226 cm³ 的密封 Teflon 容器中进行测试. 实验 结果表明,人工添加的Li₂O,电池第一次充电至 4.6 V,主要释放的气体为 O₂^[24](图 2),据 O₂定量分 析表明充电完成后 95.1%的 Li₂O₂ 被氧化. O₂ 氛围 下放电后再次充电主要产生气体为 CO₂, 没有 O₂ 析出,因此,作者认为放电时基本没有Li₂O2生成, 进一步证明碳酸酯类电池体系中电解液分解为主 要反应.同年,该课题组四用同样的方式向正极片 中加入Li₂CO₃、Li₂O和烷基碳酸锂等Li-O₂电池放 电副产物,结果表明,除Li₂CO₃、Li₂O外其它副产物 均在 4.6 V 以下分解,产生气体主要为 CO₂ 和 CO.

1.2 醚类电解液

和碳酸酯类电解液相比,醚类因具有较低的挥发性、与锂有很好的相容性、不易与其发生反应以及安全性高、价格低廉等因素逐渐受到人们的关注.2011年,McCloskey等^[27]利用 DEMS 技术同时结合氧同位素(¹⁸O₂)示踪技术,检测碳酸酯类(EC/DMC)、醚类(DME)以及两者混合(PC/DME)

图 1 A. 扣式 Li-O2 电池, 正极一侧有透气孔^[25]; B. GC/MS 装置图, 检测 Li-O2 充电过程气体组成^[24]

Fig. 1 A. Picture of a Li-O₂ cell[type 2325] with multiple air diffusion holes^[25]; B. Schematic setup for the *in situ* GC/MS measurement of gas compositions during Li-O₂ cell charging processes^[24]

图 2 充电曲线和气体组成(不包括氦气)[24]

A. 碳酸酯类电解液中Li₂O₂/Fe₃O₄/SP/PVDF 电极首次充电;B. 第1周放电后 Fe₃O₄-电极再次充电

Fig. 2 Variations of charge voltages and gas compositions (helium not included)^[24]

A. The first charging process for the $Li_2O_2/Fe_3O_4/SP/PVDF$ electrode in a carbonate electrolyte; B. The second charging process for Fe_3O_4 -based electrode after the first charging and discharging

电解液体系 Li-O₂ 电池运行中产生的气体,并结合 电量计算 e/O₂,对比分析了电解液的稳定性.实验 采用 Swagelok 密封电池(图 3A),O 型垫圈压紧正 负极集流体,正极上方内置不锈钢垫片,作用是产 生高度为 1 mm 的空间(约 125 μL),八通高压气 相色谱阀做为进样接口实现电池与质谱仪的连接. 电池在同位素标记的¹⁸O₂氛围下放电(图 3B,位置 2),通过压力传感器测量压力变化得到 O₂的消耗 量.电池放电完成后在 Ar 下充电(图 3B,位置 1), 每隔固定时间将电池中产生的气体由载气 Ar 带

- 图 3 A. DEMS 原位电池装置结构图; B. DEMS 原理和操作,阀门:a-进气阀,b-放气阀,c-漏阀,d-抽空阀(位置1:样品收集 位置;位置2:线路负载气体和放电位置)^[27]
- Fig. 3 A. Schematic representation of DEMS electrochemical cell; B. Schematics for principle and operation of DEMS. Valves: a-inlet valve, b-purge valve (normally closed), c-leak valve, d-pump-out valve. (Position 1: Sample integration position; Position 2: Transfer line load or discharge position)^[27]

图 4 Li-O₂ 电池在 DME(A)、体积比为 1:1 的 EC/DMC(B)和体积比为 1:2 的 PC/DME(C)三种电解液体系中充电时产生的 各种氧同位素标记 O₂、CO²⁷

Fig. 4 Evolutions of isotopically labeled O₂ and CO₂ gases during charging processes of DME-based (A), 1:1 (V:V) EC/DMC-based (B), and 1:2 (V:V) PC/DME based (C) cells^[27]

人质谱仪中进行定量分析,结果如图 4 所示.在 DME 中电池充电时 O₂占主导地位,首次放电产物 主要为 Li₂O₂,且均为 ¹⁸O 标记,证明其完全来自于 放电产物 Li₂¹⁸O₂ 的分解;当充电电压达到 4.5~4.6 V 时有少量 CO₂ 释放,且 CO₂中 ¹⁸O 同位素含量 高,原因是在较高充电电压下 Li₂¹⁸O₂与 DME 发生 反应,导致 DME 分解.而对于碳酸酯类及其混合 电解液体系 Li-O₂电池来说,充电过程都以 CO₂为 主,并存在 3 种同位素形式 C¹⁸O₂/C¹⁶O¹⁸O/C¹⁶O₂,说 明副反应可能历经多种途径发生,碳酸酯类更易 与 LiO₂/Li₂O₂发生反应,相比之下,醚类电解液副 反应较少,具有更高的稳定性.

Gewirth 等^[28]采用 DEMS 技术继续研究醚类 电解液 Li-O₂ 电池, DEMS 装置延用了 McCloskey 的设计,如图 5 所示. LiOTf/TEGDME Li-O₂ 电池 体系^[29]充电过程中只检测到 O₂产生,在未加入催 化剂的条件下,据 O₂生成量与消耗量比值得出首 次充电约有 56%的 Li₂O₂氧化分解,剩余 Li₂O₂沉 积在电极表面,使电池的循环性能降低.当加入 Au 催化剂后 O₂生成量提高,Li₂O₂的首次充电分解效 率达到 80%,但充电电压到达 4.6 V 后,伴随的副 反应产物 CO₂增多,电池循环性能仍没有得到改 善.与此同时,DEMS 检测发现 Pt 作为 Li-O₂电池 催化剂时,能吸附有机分子并催化 TEGDME 分解 产生大量 CO₂,而不是催化分解 Li₂O₂,Pd 和 Cu(I-I)催化效果与 Pt 相类似,此类催化剂的加入不利 于 Li-O₂电池的可逆运行.

2006年,Pastor等^[30]利用 DEMS 与薄层流动 电化学池联用,研究介孔 Pt 催化 CO 和甲醇的电 化学氧化,随后合成纳米 PtRu-MoO_x用 DEMS 对

图 5 A. 用于质谱研究的 Li-O2 电池结构示意图^[28]; B. DEMS 气路示意图^[28]

Fig. 5 A. Schematic illustration of the three-part Li-O₂ cell^[28]; B. Schematic representation of the gas lines used for DEMS^[28]

其作为燃料电池的催化剂进行了系列研究^[31].在此 背景下,Gasteiger等^[32]在2012年设计一种新型在 线质谱(On-Line Mass Spectrometer,OEMS)应用 于研究 Li-O₂电池电解液的稳定性,实验结果与 McCloskey^[27]对碳酸酯及醚类电解液的研究结论相 符合,但在电池结构设计以及电池和质谱的连接方 式上有所不同.设计的电池结构将阳极锂片放入集 流体凹槽内(图 6),覆盖两片隔膜浸润 40 µL 电解 液,依次放入阴极碳片与不锈钢网集流体,用弹簧压 紧正负极,并保证气密性.电池反应产生的气体由毛 细管漏阀直接导入电离室(约 10⁴ Pa)(图 7).毛细管 漏阀有很低的漏率(1.8×10⁶ Pa·mL·s⁻¹,24 ℃)和快速 的响应时间,相对比于单级减压进样和差分减压进 样,漏阀由于 Knudsen 扩散作用将样品气体以一定 的漏率从高压向低压输送,使电池产生的气体导入 质谱仪内进行检测^[3].样品进入电离室后,离子源发 射的电子与气态样品分子发生碰撞,使样品分子电 离,利用电磁学原理使离子按不同的质荷比分离, 只有符合一定条件的离子可通过四级杆到达法拉 第杯检测器.在定量前质谱需要用标准气体(分别 含有 0.2% O₂、CO₂、CO₂H₂的 Ar 混合气)校准.

然而,Bruce 等^[35]通过 XRD、FTIR、NMR 和 MS 发现 醚类电解液也会发生分解,直链醚类 TEGDME 分解产物有聚醚/醚、Li₂CO₃、HCO₂Li、 CH₃CO₂Li、CO₂和 H₂O,环状 1,3-二氧戊环(1,3dioxolane)分解产物有聚醚/醚、Li₂CO₃、HCO₂Li和

图 6 Li-O₂原位电池截面图(长度单位 mm) ①电池池体 316SS-Ti;②Kel-F 环;③PTFE-O 型密封环^[3]

Fig. 6 Cross-section of the Li-air cell designed for the tests with all dimensions given in units of mm ① cell body made of 316SS-Ti; ② Kel-F annulus; ③ virgin-PTFE O-ring seal^[34]

- 图 7 OEMS 与锂-氧电池系统:锂-氧电池(内部气体空间 9 mL)产生的气体通过毛细管式标准漏孔(≈ 1 μL·min⁻¹)到达电 离室(约 10⁴ Pa),电池中产生的所有气体连续进样^[32]
- Fig. 7 OEMS system with a Li-O₂ battery cell (internal gas head space of 9 mL) connected directly through a calibrated crimpedcapillary leak ($\approx 1 \ \mu L \cdot min^{-1}$) to a mass spectrometer with a closed ionization cage at a pressure of $\approx 10^{-4}$ Pa. All gas products evolved in the battery cell are continuously sampled^[32]

C₂H₄(OCO₂Li)₂,而造成电解液不稳定性的首要原因 是电池反应过程生成的中间体强亲核性的 O₂/LiO₂, 攻击非质子有机溶剂.针对此类问题的探究, Bryantsev 等^[36-37]用超氧化钾(KO₂)作为中间体来 源,采用 GC/MS 方法研究了不同溶剂在 KO,存在 条件下的稳定性. 配制 KO2 和溶剂的混合溶液后, 放置一周并用 GC/MS 进行快速筛选,结果如表1 所示.只有环丁砜(SLF)、乙二醇二甲醚(DME)、N-甲基-2-吡咯烷酮 (NMP) 溶剂色谱峰没有发生变 化. 为了探寻在 O2存在下更稳定的 Li-O2 电池电 解液,离子液体也受到关注.2013年,Mizuno 等^[38] 研究表明.N-甲基-N-丙基哌啶双三氟甲烷磺酰亚 胺(PP13TFSA)离子液体Li-O2电池充电电位在 3.3 V, 过电位与碳酸酯类电解液体系相比明显减 小. 放电过程 Li₂O₂ 为主要产物, GC-MS 没有检测 到 CO 或 CO₂ 的产生,¹³C NMR 证明电极上没有电 解液分解产物,PP13TFSA离子液体作为Li-O2电 池的电解液有较好的稳定性.

表 1 超氧自由基与不同溶剂发生亲核取代的理论计算 自由能全 ΔG_{at}(kJ·mol⁻¹)及 GC-MS 与 CV 结果^[36]

Tab. 1 Comparison of qualitative GC-MS and CV results on solvent stability with theoretical predictions based on computed free energy barriers (ΔG_{act} , kJ·mol⁻¹) for nucleophilic substitution by superoxide^[36]

Solvent	GC-MS ^a	CV^{b}	ΔG^{c}_{act}
EC	Fail	Fail	59.52
DMMP	Fail	Fail	60.15
PC	Fail	Fail	64.76
GVL	Fail	Fail	76.43
SLF	Pass	Fail	84.51
MeCN	Not available	Pass	104.31
BN	Fail	Pass	105.94
DME	Pass	Pass	132.11
NMP	Pass	Pass	168.19

a. A pass indicates that the signal from the reaction mixture has roughly the same integration as the blank for that solvent, while a fail indicates a significant loss of signal; b. A pass indicates that the ratio of anodic to cathodic peak currents is close to unity, while a fail indicates a significant deviation from unity; c. Computed free energy barriers

在上述 Li-O2 电池电解液稳定性研究中使用

了不同类型的电化学质谱装置,检测气体产物时 均有较高的准确性.不同装置的区别在于:图1所 示的 GC-MS 装置,进样时受色谱柱所限,不能真 正地做到实时分析,响应时间长,若电池在充放电 过程中产生更多的气体,该方法难以分析;图3所 示的 DEMS 装置,采用八通高压色谱阀作为进气 路的核心部件,气路控制和操作性能较好,但是只 能对电池运行时产生的气体进行分析,对电池内 原有气体的消耗很难检测.而对于 Li-O, 电池放电 过程,O2的消耗量是非常重要的参数,所以作者通 过测量电池内部压力的变化来解决这一问题.另 外,该方法只能由载气带动气体产物脉冲进样,分 析过程也不是实时进行的;图7所示的OEMS装 置,采用毛细管漏阀进样,实现了实时分析,但是 毛细管漏阀带来了另一个问题,由于不同的气体 粘度不同,通过毛细管漏阀时会引起气体分馏,导 致所得信号与实际值产生偏差,所以作者采用标 准气体校准质谱仪来解决:图8所示的作者实验 室搭建的 DEMS 质谱装置,采用载气吹扫方式,在 电池运行时,载气(以实验需要为准选择不同配比 混合气或纯气) 以一定流速连续吹过电池内部空 间,被测气体进入高真空质谱电离室电离,实时监 控产生或消耗的气体含量以及气体种类.

2 锂-氧电池中的催化剂和电极材料 的研究

诸多研究组希望在 Li-O2 电池中加入催化剂 降低电池反应过电位,特别是充电反应过电位并 促进 Li₂O₂ 氧化分解,从而改善电池的循环性能. McCloskey 等^[39]利用 DEMS 技术研究了催化剂的 作用,发现在碳酸酯类电解液中充电过电位较大, 从大量生成的 CO2 来看,Li2O2 不是主要的放电产 物,大部分情况下催化剂的作用是促进电解液分 解. 在 DME 电解液中, 充电时主要产物是 O₂, 虽然 负载 Pt、Au、α-MnO₂纳米颗粒的电池充电平台比 XC72碳低,但急剧增加的 CO2表明充电过程发生 了副反应,且充电时 O2 释放的起始电压相同,所以 作者认为三种催化剂均未表现出催化 Li₂O₂ 分解 的作用(图 9). 上述结论并不能否定传统电催化剂 在Li-O,电池中的作用,正确理解催化的功能和催 化剂的选择问题首先应确定电池产生过电势的原 因,过电势产生的机理探究将对催化剂研究的突

图 8 DEMS 装置图 Fig. 8 Schematic setup of DEMS

破起到关键性作用.理想情况下,催化剂使空气电 极在有机电解液中具有很强的催化 ORR 和 OER 的能力,特别是在电池充电时 O₂可以在较低的过 电位下释放.Chen 等^[40]向电解液中加入了非传统 的可溶性氧化还原媒介体四硫富瓦烯(TTF)作催 化剂,TTF 在电极表面氧化后生成 TTF⁺,作为一种 分子级电子-空穴传输体催化 Li₂O₂ 分解,而自身又 被还原回 TTF.从 DEMS 结果可知,第 100 次循环 仍能达到放电 e/O₂ 等于 2.07,充电 e/O₂ 等于 2.14, 电池主反应可逆性增强,充电过电位低.

理想的正极材料应具有良好的孔道结构,保 证 O₂ 和 Li⁺ 的传输,为不溶性的放电产物提供足 够的存储空间,且在 O₂/LiO₂存在下不发生分解. 在正极反应中碳材料既可以作为电子传导体,本身 也具有一定催化活性,很多情况下作为催化剂的载 体应用在 Li-O2 电池正极材料中. 电池工作时碳材 料分解产生的 CO2 也可以用质谱检测, Bruce 等[41] 研究了碳材料在二甲基亚砜(DMSO)、TEGDME 中 的稳定性,为了区分碳材料自身分解和电解液分 解产生的 CO₂,采用同位素标记 ¹³C 作为正极,并 将其表面处理后得到亲水/疏水性表面结构.实验 中将正极片在不同充放电比容量下取出,转移至 带有进气口和出气口的反应玻璃瓶中,在磁子搅拌 下依次加入 0.3 mL H₃PO₄ 和 0.3 mL Fenton 试剂, 两种处理方式分别得到 Li₂CO₃ 分解产生的 CO₂, 和 羧酸锂产生的 CO₂(表示为 OrgCO₂),载气 Ar 将瓶 中产生气体导入质谱分析仪(图 10).结果显示,碳

材料在 3.5 V 以上发生分解产生 ¹³CO₂, 亲水性碳 因缺陷位点多而更不稳定,推断表面活性位点促 进电解液的分解. 通过 DEMS 观察到来自碳材料 分解产生的¹³CO₂和电解液分解产生的¹²CO₂、 Org12CO2. McCloskey 等[42]不仅用同位素标记 13C 正 极材料,且在¹⁸O₂下恒流充放电(图 11),电解液为 LiTFSI/DME. 充电电压在 3~4 V 时, 在放出的 CO2 中只有 ¹²CO2, 没有 ¹³CO2, 4~4.5 V 时两者同 时出现.根据图 11C 中 CO2 的 5 种同位素分布图, 作者认为,在C与Li₂O,界面、Li₂O,与电解液界面 都会形成碳酸盐(Li₂CO₃或LiRCO₃),这些副产物 在不同充电状态下发生部分分解.从该文中不同 实验研究中发现,同位素标记法发挥了重要作用, 被标记元素参与电池内发生的复杂反应,产生含 有标记元素的气体产物,质谱能对其与未标记元 素进行区分,有助于对反应机理的推测.其实,早 期的质谱就是从同位素的分析作为起点,集中研 究天然同位素的发现和丰度测定,所以质谱能够 分析同位素并确定其含量,对Li-O2电池中研究气 体产物的来源是非常有价值的.但是因为含有标 记元素的化合物或单质价格昂贵,所以根据实验 需要来选择使用.

基于碳材料的稳定性问题,Peng 等^[43]将纳米 多孔金替代碳材料,采用基于 DMSO 的电解液构 筑了 Li-O₂ 电池.电池保持循环 100 周,原位 DEMS 未检测到 CO₂,证明基本没有碳酸盐等副产 物生成.TiC 亦被电化学质谱证明是一种具有良好

图 9 XC72 导电碳黑中混入不同催化剂作为锂-氧电池正极材料,DME(A)和 1PC:1DME(B)分别作为溶剂时对应的:a. 电池充放电曲线;b-c. O₂和 CO₂在电池充电时的产生情况^[9]

Fig. 9 Gas evolution from cells employing DME (A) and 1PC:1DME (B)

a. The discharge-charge curves; b-c. The corresponding evolutions of O_2 and CO_2 gases during charging processes of cells using cathode catalysts^[39]

性能的非碳正极材料,即使充放电100周后仍无 CO₂释放,副反应较少(图 12)^[44].

3 锂-氧电池氧气电极反应机理的研究

2006 年 Bruce 等^[45]将 Li₂O₂ 添加到 Li-O₂ 电池 正极中,制备了处于放电状态下的 Li-O₂ 电池正 极,并用 DEMS 首次证明了 Li-O₂ 电池充电过程中 Li₂O₂ 能被氧化成 O₂,此后氧气电极反应过程被更 多学者关注.

2013 年 Gasteiger 等^[46]通过热重质谱联用 (TGA-MS)和 DEMS 监测 Li_2O_2 的热分解和电化学 分解. 两种分解反应都会产生"活性氧",体现在 Li- O_2 电池充电过程中, Li_2O_2 电化学分解过程伴随着 活性氧与电解液、碳材料、粘结剂(PEO)反应,造成 充电时 O₂ 释放量减少."活性氧"也被认为是 Li-O₂ 电池放电中间产物 O²或 LiO₂,具有强亲核力.利用 这一点,Peng 等^[47]将 PC 用作活性氧的化学探针, 通过 DEMS 检测充电时 Li₂O₂ 氧化过程是否产生 CO₂ 来探测 Li₂O₂ 氧化过程是否存在超氧化物,从 而判断 Li₂O₂ 的氧化机理.结果发现,当以恒电流 方式对电池充电时,即 Li₂O₂ 被氧化,唯一释放的 气体是 O₂(图 13),并没有 CO₂,证明了 Li₂O₂ 氧化 过程中没有超氧化物,如果有则会与电池体系的 PC 发生反应生成 CO₂,同时证明了 Li₂O₂ 在充电时 发生一步两电子氧化(Li₂O₂ → O₂+2e+2Li⁺).

其次,电化学质谱也被用于研究充电时副反应物的分解过程. Gasteiger 等^[48]将副反应产物

А

С

*10⁻⁶

V vs. Li/Li⁺

4.5 4.0

3.5

3.0

2.5 2.0

3.0

2.4

1.8

1.2

CO

 \mathbf{co}

Org

²CO₂

CO

3

2

Org ¹²CO₂

图 10 A-B. DMSO 与 TEGDME 的 ¹³C 充放电曲线, 电流密度 70 mA·g_{caton}; C-D. ¹²CO₂、¹³CO₂ 来自酸处理 Li₂¹²CO₃ 和 Li2¹³CO³分解产生,Org¹²CO2来自Fenton试剂处理羧酸锂分解产生[41]

Fig. 10 A-B. Discharge-charge curves on the first cycle for DMSO and tetraglyme-based electrolytes, respectively, at a carbon cathode; rate: 70 mA $\cdot g_{cathon}^{-1}$; C-D. Moles of CO₂ evolved from the carbon cathodes, treated with an acid to decompose Li212CO3 and Li213CO3 and Fenton's reagent to decompose the lithium carboxylates[41]

Li₂CO₃、LiOH、Li₂O添加到阴极中,模拟真实电池 正极的放电状态.当电池充电副产物发生分解时, 用 DEMS 检测氧正极产生的气体.结果表明(图 14),Li₂CO₃在无催化剂作用下分解电压迅速达到 4.8 V,发生反应 2Li₂CO₃ → 4Li⁺ + 2CO₂ + O₂ + 4e, DEMS 只检测到 CO2 而没有 O2. 作者推断消失氧 的原因:一是分解过程产生活性氧与碳材料发生 反应: 二是高电压下电解液分解产生自由基产物 与氧分子发生反应. LiOH 分解(2LiOH \rightarrow 2Li⁺ + O₂ + 2H⁺ + 4e)、Pt 催化作用下 Li₂O 分解 (2Li₂O → 4Li⁺ + O₂ + 4e)均没有检测到 O₂,也同样归结为以 上两个原因,所以3种氧化分解过程均不可逆且 与电解液、碳材料反应.

Li-O2电池易受 CO2和 H2O影响而产生副反 应,如 CO_2 与 Li_2O_2 反应产生 Li_2CO_3 堵塞电极孔 道、H₂O与Li片反应产生H₂,所以该体系目前仍 需在干燥纯氧下运行.但Li-O2电池的最终目标是 能在空气中达到稳定循环,对此也有课题组用质 谱研究 CO, 和 H,O 存在下对电池性能的影响. McCloskey 等^[49]在 O₂ 氛围中加入同位素标记的 C¹⁸O₂,促使电池发生副反应,利用 DEMS 跟踪充电 时产生的气体组成.实验设计了3种电解池证明 CO2与Li2O2的反应机理,得出纯¹⁶O2下放电后暴 露在 C¹⁸O₂ 环境中, 消耗 8.1 µmol CO₂ 与生成 3.7 µmol O₂ 比例符合 Li₂¹⁶O₂ + C¹⁸O₂ → Li₂C^{16/18}O₃ + 1/2¹⁶O₂. Li₂CO₃ 沉积量增加导致充电过电位过大, 并通过分析得到 CO₂ 的量(C¹⁶O₂、C^{16/18}O₂、C¹⁸O₂), 推断 Li₂CO₃ 分解机理,同时提出提高电池的循环 性能应避免 Li-O2 电池中有害气体 CO2. 2014 年, Gasteiger 等^[50]向电池中通入不同比例的水蒸气,结 果证明,一定量的H₂O降低初始过电位(图 15A), 促进 Li₂O₂ 的分解,发生反应:H₂O \rightarrow H⁺ + OH⁻, $Li_2O_2 + 2H^+ \rightarrow H_2O_2 + 2Li^+$. 这种情况与加入催化剂 LiI 类似,电池充电时初始电位降低(图 15B),并达 到 2e/O₂,充电完成后 92%的 O₂ 释放,因此作者认 为适量的 H₂O 对 Li-O₂ 电池是有益的.

2013 年, McCloskey 等^[51]研究了限制 Li-O2 电 池循环性能的原因,不仅对 O2定量,而且通过碘滴

- 图 11 A.¹³C 电极恒流充放电电压-容量曲线,电流为 200 μA;B. 在充电过程 A 中 O₂、¹³CO₂ 和 ¹²CO₂ + ¹³CO₂ 生成速率 (m');C.¹³C 电极在 ¹⁸O₂ 下、电流为 200 μA、放电 1 mAh 后,充电过程中同位素标记的 CO₂ 生成速率随电压变化曲 线(在 Ar 下从平衡电位 2.85 V 开始,扫描速率 0.5 mV·s⁻¹,实线对应电流随电压变化曲线)^[42]
- Fig. 11 A. Potential (U) versus discharge capacity (Q) for Li-O₂ galvanostatic discharge and charge at 200 μA on a ¹³C cathode;
 B. Quantitative evolution rates (m') for O₂, ¹³CO₂ and ¹²CO₂ + ¹³CO₂ during the charge in (A) as measured by quantitative DEMS; C. m' of various CO₂ isotopes as a function of charging potential U following a 1 mAh discharge at 200 μA with 1.2 bar of ¹⁸O₂ and a ¹³C cathode. The potential U was scanned up from the equilibrium potential U₀ = 2.85 V at a rate of 0.5 mV · s⁻¹ under an Ar head space. The black solid line is the current^[42].

- 图 12 原位质谱技术监测以 TiC 为空气电极、0.5 mol·L⁻¹ LiClO₄-DMSO 为电解液的锂-氧电池充放电过程中气体变化 线性扫描的扫速为 0.05 mV·s⁻¹,放电过程中载气为 Ar:O₂(5:95,V/V,左图),充电过程中载气为纯 Ar(右图)^[4]
- Fig. 12 In-situ DEMS at a TiC cathode during discharge (left) and charge (right) processes in 0.5 mol·L⁻¹ LiClO₄-DMSO. Linear potential scan of 0.05 mV·s⁻¹ was used. Discharge was carried out in an Ar:O₂ (5:95, V/V) gas mixture (left) and charge was carried out in a pure Ar atmosphere (right)^[44]

定法确定反应过程中Li₂O₂生成和氧化量,从而得 到O₂与Li₂O₂之间的转换效率.实际放电过程中 生成Li₂O₂比O₂的消耗量少,并认为是由于电解 液与Li₂O₂反应造成的.在其研究中,DEMS 被用 来研究确定充放电过程中的库仑效率(e/O_{2ds}、 e/O_{2dg})和电化学可逆性(OER/ORR),并指出目前 常见的电解液都不是完全可逆的(表 2)^[52].作者认 为,单纯以电池循环中的过电位和容量衰减来评

- 图 13 DEMS 研究 Li₂O₂ 的氧化: 跟踪 O₂ (*m/z* = 32)和 CO₂(*m/z* = 44)的信号随 Li₂O₂氧化电流的变化(插 图中显示了 O₂质谱信号和电流的线性关系)^[47]
- Fig. 13 Differential electrochemical mass spectrometric curves Li_2O_2 oxidation, signal for m/z = 32 (O₂) and m/z = 44 (CO₂) in response to step wise increase in oxidation current (Inset: m/z = 32 signal as a function of oxidation current showing proportional relationship)^[47]

价电池可逆性是片面的,将库仑计算和化学定量 结合才能真正的判断反应的可逆性,并提出副反 应发生的两个原因:一是Li₂O₂和电解液之间化学 反应;二是充电过程中由于Li₂O₂的存在,电解液在 低于其分解电位发生氧化反应[53].

4 总结与展望

电化学质谱技术在研究 Li-O2 电池的电解液 和电极材料、催化剂性能,以及正确认识不可逆副 反应中发挥了重要作用.质谱快速、微量、精确的 定性定量分析结合同位素标记或电量计算等方 法.可以真实地反应 Li-O2 电池在不同状态下发生 的各种变化.随着燃料电池、锂离子电池、锂硫电 池等多种电化学能量存储与转换器件的迅速发 展,在线电化学质谱检测储能器件在生产、存放和 工作时产生或消耗的气体,监控储能器件的安全 性和可逆性,展现其广泛的应用前景,目前,仅有 少数实验室搭建了电化学质谱装置,难以满足储 能材料的大规模研究和应用的需要,发展商品化 的电化学质谱仪势在必行.但实验室和企业对电 化学质谱的需求是不同的.对实验室研究来说,重 点在于储能器件反应机理的研究,工作集中于不 同类型电池的电极材料、电解液等一系列性能研 究,因此需要电化学质谱能具备多种用途,这对载 气的种类选择,气路布局与控制,气路零件选用都 有较高的要求.而电化学质谱推广到电池生产企 业,对仪器的要求体现为对大批产品的检验以及 高效、准确的检测性能.因此,随着研究的深入会

图 14 添加 Li₂CO₃(A)、LiOH(B)、Li₂O(C)的无催化剂正极片在 0.2 mol·L⁻¹ LiTFSI/diglyme 电解液中的充电曲线(a)和 CO₂和 O₂的产生速率(b)^[48]

Fig. 14 Galvanostatic charge curves (a) of the non-catalyzed Li₂CO₃ (A), LiOH (B) and Li₂O (C) pre-filled electrodes using 0.2 mol·L⁻¹ LiTFSI in diglyme, and gas evolution rates for CO₂ and O₂(b)^[48]

- 图 15 A. 电解液为 0.5 mol·L⁻¹ LiTFSI/diglyme 时,在不同浓度的 H₂O 中,Li₂O₂/VC 极片的充电曲线;B. 电解液为 0.5 mol·L⁻¹ LiTFSI + 50 mmol·L⁻¹ LiI /diglyme 时,Li₂O₂/VC 极片的充电曲线(a)及气体产物 CO₂ 和 O₂ 产生速率(b)^[50]
- Fig. 15 A. The charge profiles of pre-filled Li₂O₂/VC electrodes using a 2-compartment cell with 0.5 mol·L⁻¹ LiTFSI in diglyme (standard electrolyte solution) with different H₂O concentrations.; B. The galvanostatic charge curves of pre-filled Li₂O₂/VC electrodes (a) and current normalized gas evolution rates for CO₂ and O₂ using 0.5 mol·L⁻¹ LiTFSI + 50 mmol·L⁻¹ LiI (redox mediator) in diglyme in a 2-compartment cell (b)^[50]

Cathode	Solvent	Li ⁺ salt	OER/ORR	$(e/O_2)_{dis}$	$(e/O_2)_{chg}$	CO ₂ /ORR	H ₂ /ORR
XC72	DME	TFSI	0.78	2.01	2.59	0.07	0.03
		Trif	0.74	2.00	2.71	0.05	0.08
		ClO_4	0.77	2.00	2.59	0.05	0.08
		BF_4	0.78	2.06	2.65	0.04	0.08
		BOB	0.36	2.33	6.41	1.26	0.01
P50	MPP-TFSI	TFSI	0.33	2.30	7.04	0.01	0.28
P50	DMSO	TFSI	0.51	2.05	4.05	0.03	0.02
XC72	1NM3	TFSI	0.48	2.14	4.44	0.11	0.04
XC72	NMP	TFSI	0.58	1.96	3.35	0.03	0.02
XC72	THF	TFSI	0.72	2.01	2.80	0.03	0.09
XC72	DME	TFSI	0.78	2.01	2.59	0.06	0.01
P50	CH ₃ CN	BF_4	0.88	2.05	2.33	0.04	0.01
XC72	TGE	BF_4	0.75	2.04	2.71	0.03	0.08

表 2 不同盐和溶剂的组合的 DEMS 结果^[2]

|--|

出现具有多通道、多用途的商品化电化学质谱仪.

参考文献(References):

- Bruckenstein S, Gadde R R. Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products[J]. Journal of the American Chemical Society, 1971, 93(3): 793-794.
- [2] Wolter O, Heitbaum J. Differential electrochemical massspectroscopy (DEMS)-A new method for the study of electrode processes [J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(1): 2-6.
- [3] Hambitzer G, Heitbaum J. Electrochemical thermospray mass spectrometry[J]. Analytical Chemistry, 1986, 58(6): 1067-1070.
- [4] Deng H, Van Berkel G J. Electrochemical polymerization of aniline investigated using on-line electrochemistry/electrospray mass spectrometry[J]. Analytical Chemistry, 1999, 71(19): 4284-4293.
- [5] Arakawa R, Abura T, Fukuo T, et al. Analysis of electrolysis reactions of metal complexes using on-line electrospray ionization mass spectrometry with a compact electrolytic flow-through cell[J]. Bulletin of the Chemical Society of Japan, 1999, 72(7): 1519-1523.
- [6] Johnson K A, Shira B A, Anderson J L, et al. Chemical and on-line electrochemical reduction of metalloproteins with high-resolution electrospray ionization mass spectrometry detection[J]. Analytical Chemistry, 2001, 73(4): 803-808.
- [7] Kertesz V, Van Berkel G J. Surface-assisted reduction of aniline oligomers, N-phenyl-1,4-phenylenediimine and thionin in atmospheric pressure chemical ionization and atmospheric pressure photoionization[J]. Journal of the American Society for Mass Spectrometry, 2002, 13 (2): 109-117.
- [8] Barber M, Bordoli R S, Elliott G J, et al. Fast atom bombardment mass spectrometry[J]. Analytical Chemistry, 1982, 54(4): 645A-657A.
- [9] Pretty J R, Evans E H, Blubaugh E A, et al. Minimisation of sample matrix effects and signal enhancement for trace analytes using anodic stripping voltammetry with detection by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1990, 5 (6): 437-443.
- [10] Mozhzhukhina N , Méndez De Leo L P , Calvo E J. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery[J]. The Journal

of Physical Chemistry C, 2013, 117(36): 18375-18380.

- [11] Leskes M, Moore A J, Goward G R, et al. Monitoring the electrochemical processes in the lithium-air battery by solid state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26929-26939.
- [12] Younesi R, Hahlin M, Treskow M, et al. Ether based electrolyte, LiB(CN)₄ salt and binder degradation in the Li-O₂ battery studied by hard X-ray photoelectron spectroscopy (HAXPES) [J]. The Journal of Physical Chemistry C, 2012, 116 (35): 18597-18604.
- [13] Ryan K R, Trahey L, Okasinski J S, et al. *In situ* synchrotron X-ray diffraction studies of lithium oxygen batteries [J]. Journal of Materials Chemistry A, 2013, 1(23): 6915-6919.
- [14] Frith J T, Russell A E, Garcia-Araez N, et al. An *in-situ* Raman study of the oxygen reduction reaction in ionic liquids[J]. Electrochemistry Communications, 2014, 46: 33-35.
- [15] Zhai D, Wang H, Lau K C, et al. Raman evidence for late stage disproportionation in a Li-O₂ battery[J]. The Journal of Physical Chemistry Letters, 2014, 5 (15): 2705-2710.
- [16] Zhong L, Mitchell R R, Liu Y, et al. *In situ* transmission electron microscopy observations of electrochemical oxidation of Li₂O₂[J]. Nano Letters, 2013, 13 (5): 2209-2214.
- [17] Zheng H, Xiao D, Li X, et al. New insight in understanding oxygen reduction and evolution in solid-state lithiumoxygen batteries using an *in situ* environmental scanning electron microscope[J]. Nano Letters, 2014, 14 (8): 4245-4249.
- [18] Wen R, Hong M, Byon H R. In situ AFM imaging of Li-O₂ electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte [J]. Journal of the American Chemical Society, 2013, 135(29): 10870-10876.
- [19] Lu J, Jung H J, Lau K C, et al. Magnetism in lithiumoxygen discharge product[J]. ChemSusChem, 2013, 6(7): 1196-1202.
- [20] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. Journal of The Electrochemical Society, 1996, 143(1): 1-5.
- [21] Read J. Characterization of the lithium/oxygen organic electrolyte battery [J]. Journal of The Electrochemical Society, 2002, 149(9): A1190-A1195.
- [22] Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery[J]. Journal of The Electrochemical Society, 2003, 150(10): A1351-A1356.
- [23] Freunberger S A, Chen Y H, Peng Z Q, et al. Reactions in

- [24] Xu W, Viswanathana V V, Deyu Wang, et al. Investigation on the charging process of Li₂O₂-based air electrodes in Li-O₂ batteries with organic carbonate electrolytes [J]. Journal of Power Sources, 2011, 196(8): 3894-3899.
- [25] Xiao J, Wang D H, Wu Xu, et al. Optimization of air electrode for Li/air batteries[J]. Journal of The Electrochemical Society, 2010, 157(4): A487-A492.
- [26] Xu W, Kang Xu, Viswanathana V V, et al. Reaction mechanisms for the limited reversibility of Li-O₂ chemistry in organic carbonate electrolytes[J]. Journal of Power Sources, 2011, 196(22): 9631-9639.
- [27] McCloskey B D, Bethune D S, Shelby R M, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. The Journal of Physical Chemistry Letters, 2011, 2(10): 1161-1166.
- [28] Barile C J, Gewirth A A. Investigating the Li-O₂ battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. Journal of The Electrochemical Society, 2013, 160(4): A549-A552.
- [29] Jung H, Hassoun J, Park J, et al. An improved high-performance lithium-air battery[J]. Nature Chemistry, 2012, 4: 579-585.
- [30] Planes G A, Gonzalo García, Pastor E. High performance mesoporous Pt electrode for methanol electrooxidation. A DEMS study[J]. Electrochemistry Communications, 2007, 9(4): 839-844.
- [31] Martínez-Huerta M V, Rodrí guez J L, Tsiouvaras N, et al. Novel synthesis method of CO-tolerant PtRu-MoO_x nanoparticles: Structural characteristics and performance for methanol electrooxidation[J]. Chemistry of Materials, 2008, 20(13): 4249-4259.
- [32] Tsiouvaras N, Meini S, Buchberger I, et al. A novel online mass spectrometer design for the study of multiple charging cycles of a Li-O₂ battery[J]. Journal of The Electrochemical Society, 2013, 160(3): A471-A477.
- [33] Bach H T, Meyer B A, Tuggle D G. Role of molecular diffusion in the theory of gas flow through crimped-capillary leaks[J]. Journal of Vacuum Science & Technology A, 2003, 21(3): 806.
- [34] Meini S, Piana M, Tsiouvaras N, et al. The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O₂ batteries[J]. Electrochemical and Solid-State Letters, 2012, 15(4): A45-A48.
- [35] Freunberger S A, Chen Y H, Drewett N E, et al. The lithium-oxygen battery with ether-based electrolytes [J].

Angewandte Chemie International edition, 2011, 50(37): 8609-8613.

- [36] Bryantsev V S, Giordani V, Walker W, et al. Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O₂[•])[J]. Journal of Physical Chemistry A, 2011, 115(44): 12399-12409.
- [37] Bryantsev V S, Uddin J, Giordani V, et al. The identification of stable solvents for nonaqueous recharge able Li-air batteries[J]. Journal of The Electrochemical Society, 2013, 160(1): A160-A171.
- [38] Mizuno F, Takechi K, Higashi S, et al. Cathode reaction mechanism of non-aqueous Li-O₂ batteries with highly oxygen radical stable electrolyte solvent[J]. Journal of Power Sources, 2013, 228: 47-56.
- [39] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O₂ batteries
 [J]. Journal of the American Chemical Society, 2011, 133 (45): 18038-18041.
- [40] Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O₂ battery using a redox mediator[J]. Nature Chemistry, 2013, 5: 489-494.
- [41] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. The carbon electrode in nonaqueous Li-O₂ cells [J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.
- [42] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O₂ batteries[J]. Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.
- [43] Peng Z Q, Freunberger S A, Chen Y H, et al. A reversible and higher-rate Li-O₂ battery[J]. Science, 2012, 337: 563-566.
- [44] Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. A stable cathode for the aprotic Li-O₂ battery [J]. Nature Materials, 2013, 12: 1050-1056.
- [45] Ogasawara T, Aurélie Débart, Holzapfel M, et al. Rechargeable Li₂O₂ electrode for lithium batteries[J]. Journal of the American Chemical Society, 2006, 128(4): 1390-1393.
- [46] Beyer H, Meini S, Tsiouvaras N, et al. Thermal and electrochemical decomposition of lithium peroxide in noncatalyzed carbon cathodes for Li-air batteries[J]. Physical Chemistry Chemical Physics, 2013, 15: 11025-11037.
- [47] Peng Z Q, Freunberger S A, Hardwick L J, et al. Oxygen reactions in a non-aqueous Li⁺ electrolyte [J]. Angewandte Chemie International edition, 2011, 50(28):6351-6355.
- [48] Meini S, Tsiouvaras N, Schwenke K U, et al. Rechargeability

of Li-air cathodes pre-filled with dis charge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11478-11493.

- [49] Gowda S R, Brunet A, Wallraff G M,et al. Implications of CO₂ contamination in rechargeable nonaqueous Li-O₂ batteries[J]. Journal of Physical Chemistry Letters, 2013, 4(2): 276-279.
- [50] Meini S, Solchenbach S, Piana M, et al. The role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li₂O₂ in Li-O₂ batteries[J]. Journal of The Electrochemical Society, 2014, 161 (9): A1306-A1314.
- [51] McCloskey B D, Valery A, Luntz A C, et al. Combining accurate O₂ and Li₂O₂ assays to separate discharge and charge stability limitations in nonaqueous Li-O₂ batteries
 [J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2989-2993.
- [52] McCloskey B D, Bethune D S, Shelby R M, et al. Limitations in rechargeability of Li-O₂ batteries and possible origins[J]. Journal of Physical Chemistry Letters, 2012, 3 (20): 3043-3047.
- [53] Imanishi N, Luntz A C, Bruce P. The lithiun air battery: Fundamentals[M]. New York: Springer, 2014: 59-60.

Electrochemical Mass Spectrometric Study of Lithium-Oxygen Batteries

YAN Xin-xiu, MA Li-po, PENG Zhang-quan*

(State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China)

Abstract: Mass Spectrometry, coupled with electrochemistry, is a powerful research tool to study mechanisms for a broad range of electrode reactions by identifying and quantifying reaction products and intermediates. In this review, we summarize the recent advances in the Li-O_2 battery researches offered by electrochemical mass spectrometry based on our group investigations. These include the research progresses in electrolytes, cathode materials (electrocatalysts), and parasitic reactions, i.e., the key issues associ ated with Li-O_2 research. In addition, we also discuss the effects of irreversible side reactions involved in battery systems on charge and discharge processes.

Key words: electrochemical mass spectrometry; lithium-oxygen batteries; quantitative analysis