Journal of Electrochemistry

Volume 21 Issue 6 Special Issue of Electrochemistry of Carbon Nanomaterials (Editor: Professor CHEN Wei)

2015-12-23

Carbon Aerogel/Nickel Foam as Electrode for High-Performance Supercapacitor

Zhong WU

Xin-bo ZHANG State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;, xbzhang@ciac.ac.cn

Recommended Citation

Zhong WU, Xin-bo ZHANG. Carbon Aerogel/Nickel Foam as Electrode for High-Performance Supercapacitor[J]. *Journal of Electrochemistry*, 2015 , 21(6): 554-559. DOI: 10.13208/j.electrochem.150841 Available at: https://jelectrochem.xmu.edu.cn/journal/vol21/iss6/7

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

DOI: 10.13208/j.electrochem.150841 Cite this: J. Electrochem. 2015, 21(6): 554-559 Artical ID:1006-3471(2015)06-0554-06 Http://electrochem.xmu.edu.cn

碳凝胶/泡沫镍一体化电极用于 高性能的超级电容器

吴 中1,2. 张新波1*

(1. 中国科学院长春应用化学研究所, 稀土国家重点实验室, 吉林 长春 130022; 2. 中国科学院大学, 北京 100049)

摘要:以氧化石墨、间苯二酚、甲醛和泡沫镍为原料,经85℃水热碳化处理,在泡沫镍表面原位聚合形成了碳凝 胶/泡沫镍一体化电极,冷冻干燥处理后可得多孔碳凝胶/泡沫镍一体化电极.水系和有机系的超级电容器测试表 明,多孔碳凝胶/泡沫镍一体化电极具有较高的比容量和良好的循环稳定性,其独特的一体化电极组成和多孔结构 有利于电子和电解液离子的有效传输.

关键词:碳凝胶/泡沫镍一体化电极;超级电容器;水热法;多孔结构 中图分类号:0646

超级电容器具有功率密度高、循环稳定性好以 及充放电快速等特点,近年来引起了广泛关注[13]. 超级电容器根据储能机理分为双电层电容器和赝 电容器两大类^[4].双电层电容器是基于电极和电解 液界面的快速吸附或脱附过程储存电荷,通常使 用的电极材料是碳材料[5-7], 赝电容器的储能机理 是根据电极表面的快速氧化还原反应.目前,常用 的赝电容电极材料主要有金属氧化物、金属氢氧 化物和导电聚合物[8-10].相比而言,双电层电容器具 有功率密度高、循环稳定性好以及充放电快速的 特点,但能量密度有限,因而提高其能量密度是一 大挑战[11-12].

一方面,从电极材料的制备上,具有较高比表 面积和多孔结构的碳材料备受关注[13-14] 石墨烯具 有独特的二维结构和较高的比表面积,近年来在 能源领域受到了广泛关注[15-16]. 制备石墨烯有多种 途径,其中氧化还原法应用广泛[17-20].氧化还原法 是利用酸氧化和剥离石墨,再于加热或还原剂的 条件下还原得到石墨烯,该法易于制得较高产量 的石墨烯, 且制备过程对药品和仪器设备的要求 不高[21-22]. 然而石墨烯结构不稳定,极易团聚形成 多层石墨烯,与电解液接触的化学活性位点减少,

文献标识码:A

从而电化学性能受到影响[23]. 另一方面, 在电极的 制备上,传统方法是将活性材料、导电剂和粘接剂 混合在压倒集流体上形成电极. 制备过程复杂,且 导电剂和粘接剂的存在影响了导电材料的有效连 接通道和导电性,因而直接影响了电极材料的性 能[2426].因此,更多的电极制备方法被大量研究和 开发。

作者利用水热合成法得到具有多孔结构的碳凝 胶/泡沫镍一体化(Carbon Aerogel/Ni Foam, CANF) 电极,以石墨烯和酚醛树脂作为碳凝胶的前聚体, 加入酚醛树脂以减少石墨烯层的团聚从而获得了 更多的活性位点.在水热过程中加入泡沫镍,使碳 凝胶在泡沫镍的表面原位进行聚合,进而形成一 体化电极,有效地避免了复杂的电极制作过程以 及导电剂和粘接剂的反面效应,因此,所得的多孔 CANF 电极具有良好的电极容量和循环稳定性.

1 实 验

1.1 试剂与仪器

石墨粉(325 目, Alfa Aesar, 99.8%), 高锰酸钾 (KMnO₄, Aladdin), 硫酸(H₂SO₄, ≥98%, 北京化工 厂),磷酸(H₃PO₄,≥85%,北京化工厂),过氧化氢 (H₂O₂, 30%, Aladdin), 盐酸(HC1, 36%~38%, 北京

收稿日期: 2015-08-17,修订日期: 2015-10-09 *通讯作者, Tel: (86-431)85262235, E-mail: xbzhang@ciac.ac.cn 中国科学院"百人计划"和基金委优秀青年基金(No. 21422108)资助

化工厂),泡沫镍(厚 2 mm,面密度 420 g·m²,长 沙力元材料有限公司),间苯二酚(C₆H₆O₂,30%, Aladdin),甲醛(CH₂O,30%,Aladdin),碳酸钠 (Na₂CO₃,30%,Aladdin),氢氧化钾(KOH,Aladdin), 四乙胺四氟硼酸(TEABF₄,Alfa Aesar),乙腈(AN, Aladdin),所有试剂均为分析纯,且未经进一步纯 化处理.

材料形貌表征使用扫描电镜(FE-SEM,HI-TACHI,S-4800)、透射电镜(FEI Tacnai G2,操作电 压为 200 kV).采用 Biologic VMP3 电化学工作站 测试循环伏安、恒电流充放电和电极交流阻抗,频 率为 10⁵~10⁻² Hz.

1.2 多孔碳凝胶/泡沫镍一体化电极的制备

1)合成氧化石墨烯

据文献^四报道的氧化还原方法制备氧化石墨 烯.首先,在冰浴环境下,将3g石墨粉加入到360 mL H₂SO₄和40 mL H₃PO₄的混合酸中,搅拌混匀 后,缓慢加入18gKMnO₄至混合均匀.然后转入 50℃水浴中反应24h,使石墨粉完全被氧化.停止 反应后,放置冷却至室温,加入冰水并保持在98℃ 使氧化石墨热解,而后加入约3mL的H₂O₂(30%) 至棕色转变为黄色,最后通过酸洗、水洗、离心得 到氧化石墨.将所得氧化石墨与二次水混合经过 超声处理得到氧化石墨烯的水分散溶液,密度约 为10 mg·mL⁻¹.

2)制备多孔碳凝胶/泡沫镍一体化电极

将 120 mg C₆H₆O₂ 溶解于 3 mL 氧化石墨烯的 分散液中,加入 300 μL CH₂O 和 3 mg Na₂CO₃,溶 解搅拌均匀.将其置于 45 mL 聚四氟乙烯(Teflon) 衬里的不锈钢高压反应釜中,并放入泡沫镍,85 ℃ 保温 48 h.反应完成后将其自然冷却至室温,用乙 醇和水洗净.冷冻干燥 12 h 后,在 N₂ 气氛下于 80 0 ℃ 煅烧 1 h 即得 CANF 电极^[27].泡沫镍在放入之 前用二次水和无水乙醇清洗干净,泡沫镍和制备的一体化电极均为直径 12 cm 的圆片,所得的电极活性物质质量平均为 0.6 mg.

3) 电池测试组装

三电极体系以 CANF 电极为工作电极, 铂电极为对电极,HgO/Hg(1 mol·L⁻¹ KOH)为参比电极, 6 mol·L⁻¹ KOH 为电解液.在氩气气氛手套箱中 (氧压 < 0.001‰)组装电池,依次将 CANF 电极、隔膜(PP 膜)、多孔 CANF 电极组装电池,滴入 1 mol·L⁻¹ TEABF₄AN 有机电解液,并装入充满干燥纯氩气带有外接引线的电池壳中,用于电极性能测试.

2 结果与讨论

2.1 碳凝胶/泡沫镍一体化电极形貌和结构

图 1A 示出沉积碳凝胶前后泡沫镍的外观变 化. 由图可见,沉积碳凝胶前后泡沫镍的表面发生 了明显的变化. 在沉积碳凝胶后,泡沫镍表面由金 属镍的颜色变成碳的颜色,碳凝胶均匀地覆盖在 泡沫镍表面. 由图 1B 中 CANF 电极的 SEM 形貌 照片可见,泡沫镍的表面覆盖了一层凝胶状的物 质,碳凝胶均匀地覆盖在泡沫镍表面. 图 1C、1D 表 示氧化石墨烯和泡沫镍表面的碳凝胶的 SEM 形 貌照片. 从图 1C 可见氧化石墨烯呈现片状结构和 皱褶表面,从图 1D 则可以看出均匀覆盖在泡沫镍 表面的碳凝胶呈片状,碳凝胶之间互相连接形成 了大孔结构和有效的电子传输通道.

2.2 碳凝胶/泡沫镍一体化电极的电化学性 质

图 2 是 CANF 电极在碱性电解液 KOH 中的 电化学性能表征,测试电压为 0~0.8 V.图 2A 为 CNAF 电极在不同扫速下的循环伏安(CV)曲线. 当扫速从 2 mV·s⁻¹ 增至 200 mV·s⁻¹,CV 曲线的形 状变化不大,均为较为规则的矩形,说明了电容行

图 1 A. 沉积碳凝胶前后泡沫镍的照片; B. 碳凝胶/泡沫镍一体化电极的扫描电镜(SEM)照片; C. 氧化石墨烯的 SEM 照片; D. 泡沫镍表面的碳凝胶的 SEM 照片

Fig. 1 A. Photo image of Ni foam before and after the deposition of carbon aerogel; B. SEM image of carbon aerogel/Ni foam;C. SEM image of graphite oxide; D. SEM image of the as-prepared carbon aerogel on Ni foam

为比较理想, 扫速增至 500 mV·s¹ 时, CV 曲线出 现较为严重的偏移,这是由于在高扫速下界面没 有呈现及时吸脱附过程出现的极化状态所致.图 2B 是 CNAF 电极电极的比电容与其扫速之间的 函数图,由图中曲线可发现,CANF电极可以得到 最高达 204 F·g⁻¹ 的比电容. 不仅如此,随着扫速的 不断增大,比电容的减小缓慢.在扫速高达200 mV·s¹时,仍可得到127F·g¹的比电容,即使在 500 mV·s⁻¹时仍可得到 93 F·g⁻¹的比电容. 这些测 试结果说明,CANF电极具有优异的倍率性能.需 要注意的是,实验所得碳材料中含有少量的来自 氧化石墨烯中的含氧基团,这些少量的含氧基团 引入了部分的赝电容贡献.因此,图2中的充放电 图出现些微的平台以及 CV 图的变形与含氧基团 引入的赝电容贡献有关. 图 2C 是 CNAF 电极在不 同电流密度下的恒电流充放电曲线. 当扫速从1 A·g¹ 增至10 A·g¹, 恒电流充放电曲线呈现近似对 称的倒三角形,显示其电容行为良好.根据倒三角 形图形可以看到充电时间与放电时间一致,说明 其库仑效率高.从 CNAF 电极在测试体系中的交 流阻抗谱(图 2D)可以看出,溶液电阻为 0.11 Ω,传 质阻抗通过等效电路拟合计算为 0.27 Ω.因此体 系的电阻很小,这一结果与图 2C 结果一致.

图 3 给出了 CANF 电极在有机电解液 1 mol·L⁻¹ TEABF₄/AN 中的电化学性能表征结果,测试电压 范围为 0~2.0 V. 图 3A、3B 是 CANF 电极在不同 扫速下的 CV 曲线. 当扫速从 100 mV·s⁻¹ 增至 1 V·s⁻¹时,CV 曲线显示为较规则的矩形,说明电极 在有机电解液中的电容行为比较理想. 在扫速高 达 500 mV·s⁻¹时,计算得到的比电容为 107 F·g⁻¹. 继续增大扫速,循环伏安曲线仍呈现对称的矩形 形状,这一现象甚而可以扩展至 5 V·s⁻¹ 扫速下的 电容行为. 这一优异的倍率性能在有机体系中是 难以得到的,由于有机体系离子半径较大且传导

图 2 CANF 电极在三电极体系中的测试结果(电解液为 6 mol·L⁻¹ KOH,测试的电压范围为 -0.8~0 V) A. 不同扫速下的循环伏安曲线(扫速:2 mV·s⁻¹~500 mV·s⁻¹);B. 不同扫速下的比容量曲线;C. 不同电流密度下的恒 电流充放电曲线(扫速:1 A·g⁻¹~10 A·g⁻¹);D. 交流阻抗谱

Fig. 2 The electrochemical characterization results of carbon aerogel/Ni foam electrodes in 6 mol·L⁻¹ KOH between -0.8 to 0 V A. Cyclic voltammetric curves at various scan rates from 2 mV·s⁻¹ to 500 mV·s⁻¹; B. Variation of specific capacitance with scan rate; C. Charging and discharging curves at different current densities from 1 A·g⁻¹ to 10 A·g⁻¹; D. Nyquist plots

图 3 CANF 电极在两电极体系中的测试结果(电解液为1 mol·L⁻¹ TEABF₄/AN,测试电压范围:0~2.0 V) A. 不同扫速下的 CV 曲线 (扫速:100 mV·s⁻¹~1 V·s⁻¹);B. 不同扫速下的 CV 曲线 (扫速:100 mV·s⁻¹~5 V·s⁻¹);C. CANF 电极在扫速为 500 mV·s⁻¹ 时的循环稳定性;D. CANF 电极在循环过程中第 1 周、1000 周和 2000 周的 CV 曲 线对比

Fig. 3 The electrochemical characterization results of carbon aerogel/Ni foam electrodes in 1 mol·L⁻¹ TEABF₄/AN between 0 to 2.0 V

A. Cyclic voltammograms curves of carbon aerogel/Ni foam at various scan rates from 100 mV $\vee s^{-1}$ to 1 $\vee s^{-1}$; B. Cyclic voltammograms curves at various scan rates from 100 mV $\cdot s^{-1}$ to 5 $\vee s^{-1}$; C. Cycling stability at 500 mV $\cdot s^{-1}$; D. The 1st, 1000th, 2000th cyclic voltammograms curves

慢,通常表现为较低的比电容以及较差的倍率性能.CANF电极在有机电解液中的良好的比电容和 优异的倍率性能得益于其独特的一体化电极组成 和结构.碳凝胶之间的相互连接一方面形成了有 效的电子通道,另一方面,其连接之间的大孔结构 更有利于电解液离子的快速传输形成有效的离子 通道.一体化电极的设计不仅避免了导电剂和粘 接剂的使用,泡沫镍基体具有良好的导电性也为 优异的电化学性能提供了有利的条件.CANF电极 在扫速为500 mV·s⁻¹时的循环稳定性如图 3C 所 示.经过2000 周的循环比容量下降缓慢,但在 2000 周仍具有94.5%的保持率,说明循环稳定性 良好.图 3D 对比了 CANF 电极在循环过程中第 1 周、1000 周和 2000 周的 CV 曲线,CV 曲线的形状 和面积均变化不大,进一步验证了电极出色的循 环稳定性.

3 结 论

通过水热和冷冻干燥处理合成了多孔碳凝胶/ 泡沫镍一体化电极.碳凝胶之间的相互连接一方 面形成了有效的电子通道,另一方面其连接之间 的大孔结构更有利于电解液离子的快速传输形成 有效的离子通道.一体化电极的设计不仅避免了 导电剂和粘接剂的使用,泡沫镍基体具有良好的 导电性亦为优异的电化学性能提供了有利的条件. 该材料在水系和有机系的超级电容器性能测试中 表现出较高的比容量,优异的倍率性能和良好的 循环稳定性.

- Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
- [2] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41(2): 797-828.
- [3] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38 (9): 2520-2531.
- [4] Kim J Y, Kim K H, Yoon S B, et al. *In situ* chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications [J]. Nanoscale, 2013, 5(15): 6804-6811.
- [5] Shearer C J, Cherevan A, Eder D. Application and future challenges of functional nanocarbon hybrids[J]. Advanced Materials, 2014, 26(15): 2295-2318.
- [6] Nishihara H, Kyotani T. Templated nanocarbons for energy storage advanced materials[J]. Advanced Materials, 2012, 24(33): 4473-4498.
- [7] Yu G H, Xie X, Pan L J, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy, 2013, 2(2): 213-234.
- [8] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J]. Energy Environment Science, 2014, 7(5): 1597-1614.
- [9] Wu Z, Huang X L, Wang Z L, et al. Electrostatic induced stretch growth of homogeneous beta-Ni(OH)₂ on graphene with enhanced high-rate cycling for supercapacitors [J]. Scientific Reports, 2014, 4: No. 3669.
- [10] Huang Y(黄芸), Wu Z(吴中), Zhang X B(张新波). Template-free synthesis of porous NiO hierarchical structure for high performance supercapacitor[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 146-151.
- [11] Naoi K, Naoi W, Aoyagi S, et al. New generation "nanohybrid supercapacitor" [J]. Accounts of Chemical Research, 46(5): 1075-1083.
- [12] Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(40): 9994-10024.
- [13] Chen P, Yang J J, Li S S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013 (2): 249-256.
- [14] Zhang L, Shi G Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high

rate capability[J]. The Journal of Physical Chemistry C, 2011, 115(34): 17206-17212.

- [15] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphenebased materials for energy storage applications[J]. Small, 2014, 10(17): 3480-3498.
- [16] Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS NANO, 2013, 7(5): 4042-4049.
- [17] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology, 2008, 3(9): 563-568.
- [18] Fang Y, Luo B, Jia Y Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials, 2012, 24(47): 6348-6355.
- [19] Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS NANO, 2008, 2(3): 463-470.
- [20] Lee J S, Kim S I, Yoon J C, et al. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J]. ACS NANO, 2013, 7(7): 6047-6055.
- [21] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS NANO, 2010, 4(8): 4806-4814.
- [22] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
- [23] Xu Y X, Lin Z Y, Huang X Q, et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Advanced Materials, 2013, 25(40): 5779-5784.
- [24] Chen J, Sheng K X, Luo P H, et al. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors[J]. Advanced Materials, 2012, 24(33): 4569-4573.
- [25] Cao X H, Shi Y M, Shi W H, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.
- [26] Yuan C Z, Yang L, Hou L R, et al. Growth of ultrathin mesoporous Co₃O₄ nanosheet arrays on Ni foam for high-performance electrochemical capacitors[J]. Energy & Environmental Science, 2012, 5(7): 7883-7887.
- [27] Wang Z L, Xu D, Xu J J, et al., Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O₂ batteries
 [J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.

Carbon Aerogel/Nickel Foam Electrode for High-Performance Supercapacitor

WU Zhong^{1,2}, ZHANG Xin-bo^{1*}

(1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Herein, a facile synthesis has been explored to prepare carbon aerogel/Ni foam. Graphene oxide, resorcinol and formaldehyde serve as precursors and polymerize *in-situ* on the Ni foam after hydrothermal synthesis at 85 °C. After lyophilization treatment, the carbon aerogel/Ni foam with porous structure can be obtained. Electrochemical investigations reveal that the carbon aerogel/Ni foam exhibits superior performances in both aqueous and organic electrolytes involving high specific capacitance and long-term cycling stability. The excellent properties can be ascribed to the unique formation and porous structure, which allows more effective transportations of electron and electrolyte ion.

Key words: carbon aerogel/nickel foam electrode; supercapacitor; hydrothermal synthesis; porous structure