Journal of Electrochemistry

Volume 22 Issue 5 Special Issue on Energy Electrochemical Materials(Editor: Professor CHEN Jun)

2016-10-28

Advances and Prospects of Lithium-Sulfur Batteries

Shou-yi YUAN

Ying PANG

Li-na WANG

Yong-gang WANG

Yong-yao XIA

Recommended Citation

Shou-yi YUAN, Ying PANG, Li-na WANG, Yong-gang WANG, Yong-yao XIA. Advances and Prospects of Lithium-Sulfur Batteries[J]. *Journal of Electrochemistry*, 2016, 22(5): 453-463. DOI: 10.13208/j.electrochem.160545 Available at: https://jelectrochem.xmu.edu.cn/journal/vol22/iss5/3

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

DOI: 10.13208/j.electrochem.160545

Cite this: J. Electrochem. 2016, 22(5): 453-463

Artical ID:1006-3471(2016)05-0453-11 **Http**://electrochem.xmu.edu.cn

锂-硫电池研究现状及展望

袁守怡,庞 莹,王丽娜,王永刚*,夏永姚

(复旦大学化学系,上海分子催化和功能材料重点实验室,新能源研究院, 能源材料化学协同创新中心,上海 200438)

摘要: 锂-硫电池由于具有高比能量以及硫廉价易得等优势而受到人们的广泛关注. 但其实际应用仍面临着来自 于正极、电解液以及负极等方面的诸多挑战,具体包括硫正极的溶解、多硫化合物的"穿梭效应"及金属锂负极的 枝晶问题. 本文以课题组近期的研究结果为主线,综述了近两年来关于锂-硫电池的研究进展,重点探讨了碳硫复 合物正极、硫化锂正极、复合隔膜设计和电解液方面的研究进展,并总结了各方面存在的问题.

关键词:锂-硫电池;穿梭效应;硫正极;硫化锂正极;复合隔膜;电解液

中图分类号: O646

随着化石燃料的枯竭以及环境污染的不断加 剧、寻找清洁可再生的代替品来代替化石燃料成 为人们面临的挑战. 锂二次电池可以将储存在其 中的化学能高效、清洁地转化为电能而受到了人 们的广泛关注.其中,锂-硫电池由于具有高达 2600Wh·kg⁻¹的能量密度而成为人们研究的热点 之一.此外,硫在自然界中储量丰富,廉价易得等 优点使其成为最具应用前景的高能电池之一[3-6]. 但锂-硫电池实际运用受到来自硫正极、电解液、锂 负极等多方面因素的制约.其中,多硫化物的"穿 梭效应"是导致锂-硫电池循环寿命差,自放电严重 的主要原因[3-6].因此,近些年人们通过设计正极结 构将硫及其放电产物固定在正极区域、优化电解 液以减少硫以及多硫化物的溶解以及保护金属锂 负极等方法来减小多硫化物的溶解扩散造成的 "穿梭效应"问题,本文以课题组近期的研究工作 为主线,总结了近几年在锂-硫电池正极结构设计, 电池结构设计,电解液优化方面的重要研究进展.

1 锂-硫电池工作基本原理及主要问题 1.1 锂-硫电池工作基本原理

锂-硫电池是由单质硫作为正极,金属锂片作 为负极组成的电池.正负极之间通过浸有电解液 的隔膜隔开.其电池结构见图 1⁶⁰.锂-硫电池的正极 材料主要由单质硫和一些高导电性材料复合而

文献标识码:A

成,而负极材料采用金属锂片.可用于锂-硫电池的 电解质主要有锂盐溶质,例如六氟磷酸锂(LiPF₆)、 高氯酸锂(LiClO₄)、双三氟甲基磺酸亚酰胺锂 (LITFSI)、三氟甲磺酸锂(LICF₃SO₃)下文中以简 称指代.电解液溶剂主要是一些醚类溶剂,例如 1,3-二氧戊环(DOL)、乙二醇二甲醚(DME)、 CF₃CH₂OCH₂CF₃,下文中以简称指代^[46].传统的锂 离子电池所用的酯类溶剂电解液不能用于锂-硫电 池中.这主要是由于放电中产生的中间体会和酯 类溶剂,例如碳酸乙烯酯(EC)、碳酸二甲酯 (DMC)、碳酸二乙酯(DEC)(下文中以简称指代)发 生不可逆的化学反应,导致循环过程中活性物质 损失,进而导致电池不能循环^[3].

收稿日期: 2015-05-23, 修订日期: 2015-08-19 * 通讯作者, Tel: (86-21)51630319, E-mail: ygwang@fudan.edu.cn 国家自然科学基金(No. 21373060 和 No. 21333002), 上海浦江计划(No. 13PJ1400800)资助

锂-硫电池的主要电极反应如下: 负极反应: $2Li - 2e = 2Li^+$ 正极反应: $S + 2e + 2Li^+ = Li_2S$ 总反应: $S + 2Li = Li_2S$

图 2 所示的是锂-硫电池的充放电曲线. 从图 2 中可以看出锂-硫电池的充放电过程中包含了多 个复杂的中间反应, 是一个多步骤进行的反应. 其 放电曲线包括两个放电平台: 位于 2.40 V 的放电 平台归属于环状的硫还原成长链的多硫化物, 而 2.10 V 的放电平台归属于长链的多硫化物还原成 Li₂S₂ 和 Li₂S. 锂-硫电池的充放电过程主要包括以 下步骤^[7]:

第一步:固态的硫单质被还原,并和锂离子结 合生成长链的 Li_2S_8 中间体. 对应于放电曲线的 2.4 V 的放电平台. 主要发生的反应为 $S_8 + 2e = S_8^{-2}$

第二步:随着放电的进行,放电平台逐渐降低,此时发生的反应为长链的 Li_2S_8 逐渐变短生成链长较短的 Li_2S_6 和 Li_2S_4 .主要发生的电化学反应为 $3S_8^{2^2} + 2e = 4S_6^{2^2}$ 和 $2S_6^{2^2} + 2e = 3S_4^{2^2}$.

第三步:液相的多硫化物逐步转变为固相的 Li₂S₂以及Li₂S,最终放电结束.

充电过程则发生相反的逆反应.

1.2 锂-硫电池存在的主要问题

锂-硫电池的实际运用存在诸多问题,这些问题来自于硫正极,电解液以及锂负极等方面,下面将分别进行阐述.

1.2.1 硫正极

锂-硫电池中,硫正极主要存在三个主要问题:

 放电中间产生的多硫化物中间体易溶于醚 类的电解液中,这部分溶解的多硫化物随着放电

图 2 锂-硫电池充放电曲线⁶

的进行会逐步扩散出正极区域,穿过隔膜到达负极区,在锂片表面生成不导电的短链的硫化物.在充电的时候,一部分硫化锂会迁移回正极区域,进 而被电化学氧化形成硫单质.这个过程叫做"穿梭效应".锂-硫电池中的"穿梭效应"会导致正极活性物质在循环过程中损失,最终导致电池容量较快的衰减.此外,"穿梭效应"的存在也导致了锂-硫电 池库伦效率低下.这也是一个严重制约着锂-硫电 池的应用的因素之一^四.

2) 硫以及其放电产物 Li₂S 或者 Li₂S₂ 是电子 绝缘体,这会降低反应动力学速率,最终导致锂-硫 电池的倍率性能较差^[7].

3) 由于硫的密度远大于放电产物 Li₂S 的密度,这导致了随着放电的进行,硫正极体积存在着 巨大的体积膨胀,从而破坏正极材料的结构^[7].

基于上述硫正极的问题,寻找具有高导电性, 对多硫化物有吸附作用同时可以容纳放电过程中 硫体积膨胀的材料是当前硫正极研究的关键.

1.2.2 电解液

锂-硫电池电解液主要是一些醚类物质.由于 醚类电解液易挥发且对多硫化物存在很强的溶解 性.因此,醚类物质作为电解液会导致电池容量衰 减很快.同时,醚类电解液易燃,这对锂-硫电池的 安全性造成很大问题^[3-7].因此,寻找挥发性小,阻 燃且不易溶解多硫化物的电解液也是目前锂-硫电 池一个重要研究方向.

1.2.3 锂负极

锂-硫电池的负极用的是金属锂负极.因此,随 着循环的进行金属锂负极会产生锂枝晶.锂枝晶会 刺破隔膜,造成电池短路,引起严重的安全隐患. 此外,从正极扩散出来的不导电的短链硫化物会 在金属锂负极沉积,导致电池容量衰减,电池的内 阻增大,极化增大.因此,锂负极方面需要考虑如 何保护金属锂负极或者替换金属锂负极^[3-7].

针对以上问题,近期的研究工作主要集中于 合成新的碳硫复合物正极,优化电解液,开发新的 复合隔膜以及设计基于硫化锂正极的锂离子硫电 池.作者将结合本课题组研究成果分别就这几方 面近年的研究进展进行介绍.

2 碳/硫复合物正极材料研究进展

2.1 纯碳/硫复合物研究进展

由于多孔碳具有很高的导电性,且碳层之间 的多孔结构可以吸附溶解在电解液中的多硫化物 中间体.因此,多孔碳是常用的锂-硫电池硫正极的 载体.2009年 Nazar 教授^[8]首次提出了运用聚乙二 醇(PEG)修饰的有序介孔碳 CMK-3 作为硫载体并 通过熔融法在 155 ℃下将硫灌入 CMK-3 的孔道 中(图 3).由于多孔碳的孔道存在毛细作用,可以 像海绵一样地吸附溶解在电解液中的多硫化物中 间体.因此,该碳/硫复合物正极材料首次实现了较 为稳定的循环性能.此后,更多研究集中于多孔碳 碳/硫复合物^[9-16]. Nazar 教授^[9]再次报道了运用有序 介孔碳颗粒作为硫载体,然后通过熔融法将硫灌 入到有序介孔碳的孔道中.该报道将锂-硫电池的 循环寿命提高到了 100 周,而碳/硫复合物中的硫 含量提高到了 70% (by mass).

此外,研究人员研究了孔径大小对锂-硫电池 循环性能的影响. Gao 等凹将多孔碳的孔道直径缩 小到 0.7 nm, 并用熔融法将硫灌入微孔中制备得 到微孔碳/硫复合物.该微孔碳硫复合物电极取得 了超过 500 周的循环寿命. 但该微孔碳硫复合物 只存在一个放电平台,且这个平台比一般锂-硫电 池的平台要低.对此,Guo 等[18]对该放电机理做了 进一步研究,他们通过量子力学理论计算,计算了 S₇-S₈分子的大小尺寸.计算结果表明只有小分子 的 S₂ 能进入到小于 0.5 nm 的孔道中.因此,在进 行充放电嵌锂的过程中只存在固相的 Li₂S₂和 Li₂S 产物、从而有效避免了放电中间高度可溶的多硫 化物生成.此外,该电池放电只有一个放电平台也 进一步证明了在放电过程中没有多硫化物中间体 生成,而只存在固态的Li₂S和Li₂S2生成.因此,该 电池取得了超过 200 周的循环寿命和高达 5C 的 倍率性能,由于微孔碳硫复合物在充放电过程中

图 3 CMK-3/ 硫复合物电极材料示意图(a)及 CMK-3/S-PEG(黑色的点)和 CMK-3/S(红色的点)复合材料在 室温,电流密度为 168mA g⁻¹时的循环性能对比(b)^[7]

Fig.3 Scheme of CMK-3/S composite cathode (a) and cycling stability comparison of CMK-3/S-PEG (upper points, in black) versus CMK-3/S (lower points, in red) at 168mA g⁻¹ at room temperature(b)^[7] 不存在可溶性的多硫化物中间体,所以在微孔 碳/硫化合物可以运用一般锂离子电池常用的 EC/ DMC 电解液.

此后,Huang 等^[19]对微孔碳/硫复合物充放电 机理做了进一步研究.他们通过量子力学理论计 算了 DMC 和 EC 溶剂分子的大小.计算发现这类 酯类溶剂分子都大于 0.5 nm,因此,酯类溶剂分子 不能进入到微孔碳的孔道中和硫接触,从而有效 避免了溶剂分子副反应的发生.这解释了为什么 微孔碳硫复合物可以在普通的酯类电解液中循环. 但是,由于硫不能与电解液接触会导致电池的极 化增大.因此,运用微孔碳作为硫的载体时,其放 电平台在 1.9 V 左右.这比一般锂-硫电池的放电 平台要低,这将会降低锂-硫电池的能量密度.同 时,微孔碳用于锂-硫电池存在一个巨大的问题:因 为微孔碳孔的体积十分有限,能容纳硫的含量十 分有限.因此,微孔碳中的硫含量一般很难高于 50%.这进一步限制了锂-硫电池的能量密度.

在此基础上,研究人员将研究方向更集中于 开发介孔微孔多级孔碳.这可以结合两种孔道的 优点,在保证较高硫含量的同时,限制多硫化物的 扩散.在提高电极中硫担载量的同时,周围的微孔 可以减小硫的溶解.例如 Huang 等^[20]在有序介孔碳 CMK-3 表面包覆了一层微孔碳层,这样介孔碳可 以提高硫的担载量以及增加硫与电解液的接触, 而微孔碳层则可以物理阻碍多硫化物的扩散.该 材料在提高硫含量时依旧表现出了很好的电化学 性能.

总之,纯碳材料具有较高的电子导电性.将其 与硫用熔融法复合后,硫进入到了介孔或者微孔 碳的孔道中,由于介孔微孔碳存在毛细作用,因此 可以将多硫化物通过物理吸附固定在多孔碳的孔 道中.微孔碳虽然能够使锂-硫电池的反应成为固 相反应从而完全消除多硫化物"穿梭效应",但是 由于孔的体积有限,所以难以提高电极中的硫含 量,从而限制了锂-硫电池的能量密度.结合微孔介 孔碳虽然能从一定程度上提高锂-硫电池的循环寿 命,但由于物理吸附作用非常弱,长期来看,多硫 化物依然会扩散处正极区域.因此,纯碳材料在锂-硫电池中很难达到高比能量密度和长的循环寿命. 于是,近期人们把研究焦点集中于在碳材料上进 行化学改性,通过化学吸附将多硫化物结合在碳 材料表面.

2.2 化学改性碳/硫复合物

基于上述纯碳/硫复合物正极材料存在的问题,研究人员通过化学改性手段对纯碳载体进行 化学改性以增强碳载体对多硫化物的化学吸附作 用.常见的化学改性方法主要有导电聚合物修饰 ^[21-24]、掺杂^[25-30]和含氧官能团表面修饰^[30-34].

2.2.1 聚合物修饰化学改性

由于导电聚合物制备方法简便,且不需要经 过高温碳化过程,很容易和硫在低温下复合,结合 成聚合物硫化合物.且聚合物和硫之间存在化学 成键作用也可以从一定程度上把硫固定在聚合物 表面从而提高锂-硫电池的循环性能.此外,聚合物 具有机械柔韧性和自修复性.因此,能够容纳硫在 放电过程中的体积膨胀作用.而近期发现的导电 聚合物具有很高的导电性,可以提高硫的利用率. 因此,导电聚合物是理想的硫正极载体.常见的可 以用于锂-硫电池的聚合物主要包括聚苯胺、聚噻 吩、聚吡咯.

Wang 等^[21]运用聚丙烯腈和硫在高温 300 ℃下 碳化,得到了含有碳硫键的碳硫复合物.该化合物 中硫不是以环状形式存在, 而是以碳硫键的形式 存在.因此,使用该碳硫复合物不存在多硫化物的 "穿梭效应",取得了优异的循环寿命.近期一种交 联聚苯胺硫复合物^[22]被用于了锂-硫电池,并取得 了良好的循环寿命.该聚苯胺碳/硫的复合物是通 过先将聚苯胺和硫混合后在280 ℃碳化,在此过 程中聚苯胺会和硫发生反应,形成碳硫键从而将 硫固定在聚苯胺表面. 而苯胺硫化物也具有相当 不错的循环寿命.该化合物是将苯胺和硫一起在 250~600 ℃之间加热. 经过加热后硫进入到苯胺 的分子骨架中从而被固定住.该化合物展现出了 很好的循环寿命.此外,Cui等[23]对比了聚苯胺,聚 吡咯和聚噻吩这三种导电聚合物包覆硫的电化学 性能.他们的研究发现在锂-硫电池中的导电聚合 物性能聚噻吩最好,其次是聚吡咯,最后是聚苯胺.

一般而言,只要是链状且含有丰富的官能团 的聚合物都可以和硫发生相互化学作用,从而束 缚住硫及其放电产物.同时,聚合物的机械柔韧性 可以容纳硫在放电过程中巨大的体积膨胀.因此, 导电聚合物是一种优异的硫正极载体.

2.2.2 掺杂化学改性

在碳的骨架中掺入杂原子可以增强碳的极 性,从而增强碳层对多硫化物的化学吸附作用.常

见的掺杂手段是在碳的骨架中掺入氮元素。从而 增强碳层对多硫化物的化学吸附作用. Zhang 等^[25] 合成了一种氮掺杂的石墨烯并将其与硫复合作为 锂-硫电池正极材料.该材料显示出了 2000 周的优 异循环寿命.这是迄今为止锂-硫电池中最长的循 环寿命.他们通过理论计算证明由于氮原子的电 负性大于碳原子,所以氮原子在碳的骨架中带有 负电荷.带负电荷的氮原子有利于结合多硫化锂 中的 Li⁺, 从而有效的把多硫化物化学吸附于正极 区域.但该报道中采用的电解液中加入了多硫化 物和硝酸锂,该优异的循环性能很大程度上是取 决于对电解液的优化而非氮掺杂石墨烯对多硫化 物的吸附.此外,Wang 等^[26]合成了氮掺杂的碳球也 取得了稳定的循环寿命,他们的硫电极上硫的担 载量高达 5 mg·cm⁻². 该种碳球中含有丰富的孔道 结构,可以物理吸附多硫化物.该种碳球富含杂原 子,这些杂原子可以通过化学吸附增强对多硫化 物的吸附.同时,由于该种材料具有较高的振实密 度.因此,硫正极上可以具有很高的担载量.他们 结果表明该种碳材料在电极上单位面积担载量为 5 mg·cm⁻²时,依旧表现出超过 200 周的循环寿命. 这对锂-硫电池的实际运用起到了很大作用.

基于此,本课题组四考虑如果将一个电负性比 碳大的氮原子和一个电负性比碳小的硼原子同时 掺入碳层中,那么该氮硼共掺杂的碳层可以同时 吸附多硫化物阴离子以及锂正离子.这样的氮硼 共掺杂的碳层就显示出对多硫化锂更强的吸附作 用.特别地,如果电负性更强的氮原子和电负性更 弱的硼原子相邻形成 N=B/N-B 结构,那么氮硼 之间的极化将会增大,那么其对多硫化锂的化学 吸附作用会更强. 而通过分别掺杂氮原子和硼原 子合成 N=B/N-B 的结构是非常困难的.因为在 碳层中杂原子的含量是非常低的.因此,作者合成 的方法也与别人不同. 该氮硼共掺杂的碳层是在 石墨烯表面碳化离子液体 1-乙基-3-甲基咪唑四氟 硼酸盐([Emim]BF₄)合成得到的.该石墨烯支撑的 氮硼共掺杂在没有进行电解液优化的情况下显示 出了超过1500周优异的循环性能(图4).此外,作 者进一步通过量子力学理论计算证明了该氮硼共 掺杂的碳层对多硫化物以及硫化锂具有比纯碳和 氮掺杂更强的吸附作用[27].

2.2.3 含氧官能团表面修饰改性

含氧官能团可以和硫形成氧硫或者碳硫化学

- 图 4 石墨烯支撑的氮硼共掺杂碳层/硫复合物及其电化学 性能.(a)石墨烯支撑氮硼共掺杂碳层对多硫化物的 吸附示意图;(b)石墨烯支撑氮硼共掺杂碳层对多硫 化物吸附的视觉分辨;(c)石墨烯支撑氮硼共掺杂碳 层对多硫化物吸附的理论计算验证;(d)石墨烯支撑 氮硼共掺杂碳层/硫在 2 C 下的循环性能
- Fig.4 Graphene supported Nitrogen and Boron rich carbon layer (G-NBCL) and its electrochemical performance.
 (a) The diagram of the chemisorption of G-NBCL for lithium polysulfide; (b) Visual discrimination of the chemisorption of G-NBCL for lithium polysulfide;
 (c) Theoretical calculation of G-NBCL for lithium polysulfide; (d) Cycling performance of G-NBCL/S composites at the rate of 2 C

键从而把硫固定在碳表面从而提高循环寿命.氧 化石墨烯是一种典型的富含氧官能团碳材料,可 以和硫形成碳硫和氧硫键进而把硫固定在氧化石 墨烯表面.同时,氧化石墨烯具有独特的二维结构, 因此,在锂-硫电池中得到了广泛的应用.Cui 等^[30] 人通过在硫表面包覆一层聚合物后再包覆氧化石 墨烯来限制多硫化物的扩散取得了较好的循环性 能. 他们在氧化石墨烯表面修饰了碳黑来提高氧 化石墨烯的导电性.与此同时,他们在氧化石墨烯 中加入了具有机械柔韧性的聚乙二醇(PEG)聚合 物来缓冲硫放电过程中的体积膨胀,因此,该聚合 物和碳黑修饰的氧化石墨烯包覆硫后表现出了超 过 140 周的循环寿命. Zhang 等^[31]对氧化石墨烯固 定硫的机理进行了进一步探索. 通过 X 射线吸收 光谱以及量子力学理论计算证明了氧化石墨烯碳/ 硫复合物中碳硫键的存在.此外,Nazar等的研究^[2] 进一步说明了具有氧化性的硫载体,例如二氧化 锰(MnO₂)或氧化石墨烯(GO),可以将放电中间体

的多硫化物氧化成为硫代硫酸根或者硫酸根.而 这些硫代硫酸根和硫酸根可以作为一种高效的中 间体限制住多硫化物的扩散.因此,具有氧化性的 物质用作锂-硫电池电极中可以取得较好的循环寿 命.但是,氧化石墨烯存在一个非常严重的缺陷: 其电子导电性非常差,近乎绝缘体.而该缺陷也是 由表面丰富的含氧官能团引起的.虽然通过化学 还原或者高温煅烧可以将氧化石墨烯还原为高导 电性的石墨烯但那些可以固定硫的含氧官能团也 因此而被移除了,需要寻找一种即具有高导电性 的又具有丰富含氧官能团的氧化石墨烯.基于此, 研究人员把碳纳米管和氧化石墨烯混合[33-34]试图 在提高材料的导电性同时又保持氧化石墨烯表面 丰富的含氧官能团.但是简单的混合碳纳米管和 氧化石墨烯会导致他们的接触位点非常有限,这 使得碳纳米管和氧化石墨烯混合物的导电性提高 是非常有限的.

基于以上分析,作者课题组设计了一种高导 电性的树叶状氧化石墨烯[35].这种氧化石墨烯中每 一片石墨烯片层上都原生着一根碳纳米管中脉, 如图 5 所示. 由于该碳纳米管中脉和氧化石墨烯 接触紧密,所以很大程度的提高了材料的导电性. 该树叶状氧化石墨烯/硫复合物即具备氧化石墨烯 丰富的含氧官能团又具备碳纳米管高的导电性. 将该高导电性通过化学液相法与纳米级别的硫复 合后形成树叶状氧化石墨烯/硫复合物正极材料. 由于硫能更加均匀的分散在树叶状氧化石墨烯的 骨架中并且是纳米级别的硫,所以具有较高利用 率. 该树叶状氧化石墨烯/硫复合物显示出了优异 的循环性能以及倍率性能.即使增加碳硫复合物 中硫的含量以及电极上硫的担载量,该树叶状氧 化石墨烯/硫复合物依旧表现出优异的循环性能和 倍率性能.

此外,作者对树叶状氧化石墨烯碳/硫进行了 自放电测试.测试的结果表明树叶状氧化石墨烯 可以很大程度的减小锂-硫电池的自放电,但自放 电仍然存在.因此,要进一步减小锂-硫电池自放电 要从电池结构以及电解液和金属锂负极保护方面 做进一步研究.

3 锂-硫电池电解液优化研究进展

由于传统的锂离子电池所用的酯类电解液运 用于在锂-硫电池中会和多硫化物中间体发生不可 逆的化学反应.因此,锂-硫电池不能在传统的酯类

Fig. 5 a. TEM image of leaf-like GO; b. Cycling performance of leaf-like GO/S at 1 $C^{[35]}$

电解液中进行循环.因此,目前常用作锂-硫电池电 解液溶剂是醚类溶剂.其中最常用的溶剂是 DOL/ DME(1:1).此外,研究表明,电解液中锂盐种类对 锂-硫电池性能影响不大^[30].在锂-硫电池中,最常用 的电解质盐是 LiTFSI,而其他的锂盐如 LiClO₄、 LiPF₆等也可以用于锂-硫电池的电解液中.

锂-硫电池最常用的电解液是 1 mol·L⁻¹ LiTFSI DOL/DME(1:1)溶液. 但由于醚类电解液易于挥发 且对硫和多硫化物溶解度很大,所以单纯的 1 mol·L⁻¹ LiTFSI DOL/DME(1:1)电解液会造成锂-硫 电池的库伦效率差,自放电等缺陷. 硝酸锂常被用 作锂-硫电池电解液添加剂以提高电池的库伦效 率. 其主要原理是在金属锂表面形成一层 SEI 钝化 膜,从而防止硫化锂在金属锂表面形成一层 SEI 钝化 膜,从而防止硫化锂在金属锂表面沉积^[37]. 此外,Hu 等也提出了一种"Solvent in Salt"的概念^[38],通过提 高电解液中盐的浓度来提高锂-硫电池的库伦效 率. 其结果表明当电解液中盐的浓度达到 7 mol·L⁻¹ 的时候,该电池的库伦效率达到 100%.

此后,Cui 等^[39]对添加剂做了进一步研究,他 们结果表明在电解液中即加入了 LiNO₃ 添加剂又 加入了 Li₂S₈ 添加剂.他们的结果显示 LiNO₃ 添加 剂和 Li₂S₈ 添加剂可以发挥协同作用从而抑制锂枝 晶的产生.因此,采用既含有硝酸锂又含有多硫化 合物的电解液具有很好的库伦效率和循环性能. 此外,Wang 等^[40]运用了一种含氟的醚类电解液溶 剂来替换对多硫化物溶解较多的 DOL/DME 电解 质溶剂.由于含氟的醚具有较大的粘度且可以在 金属锂负极表面形成保护膜,因此,含氟的醚可以 很大程度的减小自放电.

基于此,作者课题组^[41]在普通锂-硫电池的 DOL/DME 电解液中加入了一种粘度比较高的离 子液体 N-甲基,丙基哌啶双三氟甲磺酰亚胺盐 (PP13TFSI),该种离子液体和电解液中的硝酸锂发 生协同作用,可以缓解多硫化合物在电解液中的 溶解从而达到减小电池的自放电作用 (图 6). 作者 以最一般的碳硫复合物电极测试了不同电解液的 自放电行为,结果显示1mol·L¹LiTFSI DOL/DME (1:1) 电解液在静置 24 h 后自放电了 30%. 而提高 盐的浓度到 3 mol·L⁻¹ 的时候静置 24 h 后仍然产 生了 33%的自放电行为. 该结果表明提高溶液中 盐的浓度不能够减小自放电.接着,作者在电解液 中加入了离子液体 N-甲基, 丙基哌啶双三氟甲磺 酰亚胺盐(PP13TFSI),在静置 24 h 后作者发现该 仍然存在 22%的自放电. 然后作者采用含有 0.2 mol·L⁻¹LiNO₃DOL/DME 的电解液,发现在静置 24h后,其自放电只有4%.最终,作者用了含有1 mol·L⁻¹ PP13TFSI 和 0.2 mol·L⁻¹ LiNO₃ 的 DOL/ DME(1:1)电解液进行了自放电测试. 作者发现该 种电解液在静置 24 h 后自放电被彻底的消除了. 作者对该电解液进行了更长时间的自放电测试, 在静置一周后,作者发现运用该电解液的锂-硫电 池其自放电只有 4.7%. 这表明硝酸锂和离子液体 PP13TFSI可以发挥协同作用,有效抑制锂-硫电池 的自放电. 经研究发现 PP13TFSI 可以减小多硫化 物在溶液中的溶解度和流动性.同时,通过对金属 锂表面进行的 SEM 研究表明 PP13TFSI 是一种可 以潜在抑制锂枝晶生长的电解液.但由于离子液 体 PP13TFSI 具有粘度大,这会降低锂离子在电解 液中的扩散能力.因此,和 DOL/DME 溶剂相比, 该种电解液会降低电池的倍率性能.

除此之外,锂-硫电池所用的醚类电解液易挥 发且极易燃烧爆炸也给锂-硫电池实际运用造成了 很大安全隐患.针对这个问题,Wang等^[42]开发出了 一种阻燃的电解液.这种电解液是在普通的锂离 子电解液中加入了一种三(2,2,2-二氟乙基)亚磷酸 酯(TTFP)阻燃剂.由于该种阻燃剂具有较高的锂 离子传到系数.因此,该电池显示出了优异的倍率 性能.但该报道中优异的倍率性能和循环性能很 大程度上也取决于其独特的含有碳硫键的正极材 料.

经过以上研究作者发现通过优化锂-硫电池电 解液可以有效减小多硫化物的溶解扩散引起的 "穿梭效应",并且可以很大程度的减小锂-硫电池 的自放电现象.但是优化电解液只能减小锂-硫电 池的自放电而不能完全消除.因此,为了彻底消除 锂-硫电池自放电还需要对电池结构进行进一步设

- 图 6 多硫化物在乙醚溶液(a)以及 PP13TFSI 溶液(b)中 的扩散示意图^[46]
- Fig. 6 Schematic illustrations of the function mechanism of polysulfide dissolution and diffusion in ether (a) or PP13TFSI-based (b) solvent^[46]

计.

4 复合隔膜研究进展

为了减小多硫化物的"穿梭效应",可以进一步优化隔膜,即在隔膜上涂覆碳层,实现复合隔膜的结构.在正极材料和隔膜间的碳层可以进一步将多硫化物限制在在正极区域,可以减小多硫化物"穿梭效应".此外,隔膜上具有电子导电性的碳层可以使沉积在其表面的 Li₂S 在充电过程中得到有效的利用.例如,Arumugam 等设计了一系列基于不同碳层复合隔膜,并提升了锂-硫电池的性能^[4349].除此之外,Chen 等^[46]将石墨烯加入复合隔膜,也取得了较好的循环寿命.但是中间加入了一层导电的碳层会使得电池容易短路,造成安全隐患.此外,隔膜上的碳层增加了电池的含碳量,这会降低电池的比能量密度.

基于此,作者课题组在传统的电池隔膜前加 入了一种全新的玻璃纤维中间插层,构成了复合 隔膜^[47],其结构和电化学性能如图 7 所示.由于在 该电池结构中具有玻璃纤维和电池隔膜两种不同 的隔膜对多硫化物的吸附作用,多硫化物的"穿梭 效应"在这里得到了很大程度的缓解.这种独特的 电池结构即使只用普通的碳碳/硫复合物正极材料 也可以取得优异的电化学性能 (比如非常小的自 放电,大的比容量,高的容量保持率和好的倍率性 能).虽然该玻璃纤维中间层可以很大程度的减小 锂-硫电池的自放电,并取得优异的循环性能,但还 是增加了电池的重量降低了电池的能量密度.

5 硫化锂正极研究进展

金属锂枝晶问题是一个以金属锂为负极的锂 二次面临的古老问题.在金属锂进行充放电循环 的过程中会产生锂枝晶,而锂枝晶的产生会刺穿 电池隔膜,导致电池短路,由此造成严重的安全隐 患.针对该问题,人们把金属锂负极替换为了石 墨,而正极替换为了嵌锂的金属化合物,形成了目 前的商业化的锂离子电池.但对于锂硫电池,由于 其正极是不含锂的单质硫,所以难以将金属锂负 极替换为无锂的负极,由此存在严重的锂枝晶问 题.研究人员在电解液中加入 LiNO₃等添加剂可 以在金属锂负极表面形成 SEI 膜从而抑制锂枝晶 的生长,但其不能从根本上解决金属锂负极的枝 晶的问题.要彻底解决锂枝晶的问题只能将金属 锂负极替换为无锂的负极材料而正极采用嵌锂的 正极材料,形成锂离子电池.

图 7 基于玻璃纤维复合隔膜的锂-硫电池的结构示意图 及其电化学性能.(a)电池结构;(b)倍率性能;(c)循 环性能;(d)自放电的开路电压;(e)静置一周后的放 电曲线^[47]

Fig.7 Structure and electrochemical performance of Li-sulfide battery with the hybrid separator based on the composite Celgard and glassy fiber: (a) Schematic illustration of battery structure; (b) rate performance; (c) cycle performance; (d) OCV curves for self-discharge; (e) discharge curves after rest for one week^[47]

硫化锂是锂-硫电池的放电产物,由于硫化锂 本身是嵌锂化合物,用作正极材料本身可以对外 提供锂离子.这样就可以将负极的金属锂片替换 为一些无锂的负极,从而可以解决锂枝晶的问题. 因此,人们正在致力于开发以硫化锂为正极的电 池[48-52],但是硫化锂的运用也面临着更多的挑战, 其中多硫化物溶解扩散等问题和硫正极是相同的. 除此之外,硫化锂的电导率比硫小很多,作为电极 其活化更加困难.因此,目前报道的硫化锂正极通 常需要将硫化锂纳米化以减小电子传输路径.但由 于硫化锂易于和空气中的水分发生反应放出硫化 氢气体,其处理和运用变得困难很多. Cairns 等[49报 道了运用硫在甲苯溶液中和三乙基硼氢化锂反应 直接生成有机物包覆的纳米化的硫化锂再将其进 行高温碳化后得到碳包覆的硫化锂. 该电池在 0.5 C下循环 400 周后,容量保持率仅为 57%. 这主要 是由于碳包覆难以长时间的将多硫化物限制在碳 层中.

基于硫化锂所存在的问题,作者课题组首次 提出了一种基于硫化锂正极的双液电池体系(如图 8 所示)^[52]. 该电池正负极之间通过一片快离子导体 膜(锗酸锌锂 LISCON 膜)将正负极分开. 正极一 侧以 1 mol·L⁻¹LiClO₄ 的四氢呋喃溶液为电解液, 而负极一侧则用普通的锂离子电池的电解液1 mol·L⁻¹LiPF₆EC/DEC/DMC. 由于该快离子导体膜 只能通过锂离子而多硫化物阴离子不能通过,可 以完全的消除多硫化物的"穿梭效应".此外,在该 报道中作者首次提出了通过硫和微米级硫化锂原 位反应在微米级硫化锂表面形成多硫化物、通过 表面形成的多硫化物活化微米级硫化锂.由于 LISICON 膜只允许锂离子通过而把多硫化合物完 全的限制在了正极区域,该电池完全不存在多硫 化物的"穿梭效应".因此,在经过前面几周活化 后,该电池表现出了稳定的循环性能,并且其库伦 效率在没有硝酸锂存在的时候可以达到 100%. 经 过150周循环后,其比容量没有任何衰减.为了进 一步证明该双液电池结构能够彻底消除多硫化物 的"穿梭效应",作者进一步做了自放电测试.结果 表明该电池结构无论静置多久都不存在任何自放 电行为.此外,作者将负极的锂片替换成为铝以及 石墨,设计出了一种完全没有金属锂的锂离子硫 电池,这有效防止了锂枝晶的生成.该电池虽然彻 底的解决了锂-硫电池"穿梭效应"问题,但该电池 依旧存在源自于离子导体膜的一些问题.由于在

图 8 基于硫化锂(Li₂S)正极的双液锂离子电池体系结构 示意图

Fig. 8 Schematic illustration of dual phase Li-ion battery based on the lithium sulfide (Li₂S) cathode.

常温下 LISCON 膜的锂离子扩散速率比较差,这 导致了该电池的倍率性能很差,只能在 0.1 C 或者 0.05 C 下进行充放电循环.只有当温度提高到 50 ℃ 时候,该 LISICON 膜的锂离子扩散速率才会有所 提升,从而该锂离子硫电池的倍率性能才有所提 高.而电池通常只能在室温下进行工作.高温下工 作时,由于有机电解液挥发性强,且易燃易爆会引 起严重的安全问题.基于此,该电池距离实际应用 还要对 LISICON 膜进行进一步研究,设计出一种 新的价格低廉且在常温下具有更快锂离子传到速 率的快离子导体膜.因此,陶瓷隔膜在锂离子电池 中离实际应用尚有很长的距离.

6 结 论

近些年,锂-硫电池研究得到了迅猛发展,科研 工作者提出了各式各样的解决多硫化物"穿梭效 应"的办法.但目前取得研究结果表明,单从碳碳/ 硫复合电极、电解液、隔膜及锂负极等中的一方面 入手,并不能彻底解决锂-硫电池所面临问题."穿 梭效应"的彻底解决需要综合考虑多方面因素的 协同效应,另一方面,从已报道的数据来看,锂-硫 电池已经取得了非常好的循环寿命,然而这些结 果往往基于较低的硫含量以及较低的硫担载量. 距离实际应用还有很远的距离.此外,关于自放电 的研究仍然不足,很多已取得循环寿命是基于连 续充放电测试结果.而在锂-硫电池的实际应用中, 则往往是间歇式的循环,即"充电-休息-放电".在 这类间歇式循环模式下,锂-硫电池的自放电问题 更加突出,并使得其无法实际应用.最后,金属负 极的有效且安全利用是一个很古老的课题.近年 来,已有不少科研团队再一次聚焦金属锂的有效 安全利用,并取得了一定的进展,这也许有利于促 进锂-硫电池的实际应用.采用 Li₂S 正极,构建锂 离子硫电池是克服金属锂负极问题的有效方法之 一.但是,由于硫化锂的电子导电性远远低于硫的 电子导电性,这导致微米级别的硫化锂难以被有 效利用.传统做法是将硫化锂纳米化制作出纳米 级别的硫化锂,从而缩短电子传输路径达到提高 硫化锂的利用率,但由于硫化锂极其易于和水发 生副反应不宜在空气中进行操作,其纳米化过程 十分困难.因此,Li₂S 的有效利用则同样面临着诸 多挑战,甚至更多的挑战.

参考文献 (References):

- [1] 吴宇平,袁翔云,董超等. 锂离子电池[M]. 北京:化学工业出版社,2012:3-30.
- [2] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术
 [M]. 北京: 化学工业出版社,2008, 5-70.
- [3] Armand T.M., Tarascon J.M. Buiding better batteries[J] Nature, 2008, 451(7179), 652-657.
- [4] Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J.M., Li-O₂ and Li-S batteries with high energy storage[J] Nature Materials, 2012, 11 (1), 19-29.
- [5] Manthiram A., Fu Y., Su Y.S. Challenges and prospects of lithium sulfur batteries[J] Account of Chemical Research, 2013, 46 (5), 1125-1134.
- [6] Manthiram A., Fu Y., Chung S.-H. et al. Rechargeable lithium-sulfur batteries[J] Chemical Reviews, 2014, 114 (23), 11751-11787.
- [7] Yang Y, Zheng G -Y, Cui Y, Nanostructured sulfur cathodes[J] Chemical Society Reviews, 2013, 42(7), 3018-3032.
- [8] Ji X-L, Lee K T. Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J] Nature Materials, 2009, 8(6), 500-506.
- [9] Schuster J. He G. Mandlmeier B. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J] Angewandte Chemie International Edition, 2012, 51 (15), 3591-3595
- [10] Zhang K, Qin F, Lai Y. et al. Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery[J] ACS Applied Materials &Interfaces, 2016, 8 (9), 6072-6081.
- [11] Yang K, Gao Q -M., Yan L-T. et al. Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium-sulfur batteries[J] Chemistry-A Europe Journal, 2016, 22(10), 3239-3244.
- [12] Zhang Z -W., Li Z -Q, Hao F -B. et al. 3D interconnected

porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability[J] Advanced Functional Materials. 2014, 24(17), 2500-2509.

- [13] Li D, Han F, Wang S, et al. High sulfur loading cathodes fabricated using peapod like, large pore volume mesoporous carbon for lithium sulfur batteries[J] ACS Applied Materials&Interfaces, 2013, 5(6), 2208-2213.
- [14] Liang C-D., Dudney N J, Howe J Y, Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J] Chemistry of Materials, 2009, 21(19), 4724-4730.
- [15] Zhang B, Lai C, Zhou Z, et al. Preparation and electrochemical properties of sulfur acetylene black composites as cathode material[J] Electrochimica Acta, 2009,54(14), 3708-3713.
- [16] He G, Ji X-L. Nazar L F, High "C" rate Li-S cathode: sulfur imbibed bimodal porous carbons[J] Energy&Environmental Science, 2011, 4(8), 2878-2883.
- [17] Zhang B., Qin X., Lai G-R., et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J] Energy & Environmental Science, 2010, 3(10),1531-1537.
- [18] Xin S, Gu L, Zhao N-H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J] Journal of American Chemistry Society, 2012, 134(45), 18510-18513.
- [19] Li Z, Yuan L, Yi Z, et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J] Advanced Energy Materials, 2014, 4(7), 1301473.
- [20] Li Z, Jiang Y., Yuan L-X, et al. A highly ordered meso@ microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S Batteries[J] ACS Nano, 2014, 8(9), 9295-9303.
- [21] Wang J-L, Yang J, Wang C -R,et al. Sulfur composite cathode materials for rechargeable lithium batteries [J] Advanced Functional Materials, 2003, 13(6), 487-492.
- [22] Xiao L-F, Cao Y-L. Xiao J, et al. A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J] Advanced Materials, 2012, 24(9), 1176-1181.
- [23] Li W -Y, Zhang Q -F, Zheng G -Y, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J] Nano Letters, 2013, 13(11), 5534-5540.
- [24] Zheng G-Y, Zhang Q-F, Cha J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J] Nano Letters, 2013,

13(3), 1265-1270.

- [25] Qiu Y, Li W-F, Zhao W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene[J] Nano Letters, 2014, 14(8), 4821-4827.
- [26] Song J-X, Xu T, Gordin M L., et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J] Advanced Functional Materials, 2014, 24(9), 1243-1250.
- [27] Yuan S -Y, Bao L, Wang L -N., et al. Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides[J] Advanced Energy Materials, 2016, 6(5), 1501733.
- [28] Song J -X, Gordin M, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J] Angewandte Chemie International Edition, 2015, 54(14), 4325-4329.
- [29] Pang Q, Tang J-T, He H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J] Advanced Materials, 2015, 27(39), 6021-6028.
- [30] Wang H-L, Yang Y, Liang Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium sulfur battery cathode material with high capacity and cycling stability [J] Nano Letters, 2011, 11(7), 2644-2647.
- [31] Ji L-W, Rao M-M, Zheng H-M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J] Journal of American Chemistry Society, 2011, 133 (46), 18522-18525.
- [32] Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J] Nature Communications, 2015, 6, 5682.
- [33] Chen R -J, Zhao T, Lu J, et al. Graphene-based three-dimensional hierarchical sandwich-type archi tecture for high-performance Li/S batteries[J] Nano Letters, 2013, 13 (10), 4642-4649.
- [34] Zhao M -Q, Liu X -F, Zhang Q, et al. Graphene/singlewalled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries [J] ACS Nano, 2012, 6(12), 10759-10769.
- [35] Yuan S-Y, Guo Z-Y, Wang L-N, et al. Leaf-like grapheneoxide wrapped sulfur for high-performance lithium-sulfur battery[J] Advanced Science, 2015, 2(8), 1500071.
- [36] Younesi R, Veith M, Johansson P, et al. Lithium salts for advanced lithium batteries: Li-metal, Li-O₂, and Li-S [J]

Energy& Environmental Science, 2015, 8(7), 1905-1922.

- [37] Zhang S -S. The role of LiNO₃ in rechargeable lithium/ sulfur battery[J] Electrochimica Acta, 2012, 70, 78-86.
- [38] Suo L -M, Hu Y -S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J] Nature Communications, 2013, 4, 1481.
- [39] Li W -Y, Yao H -B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J] Nature Communications, 2015, 6, 7436.
- [40] Gordin M, Dai F, Chen S -R, et al., Bis (2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries[J] ACS Applied Materials&Interfaces, 2014, 6(11), 8006-8010.
- [41] Wang L-N, Liu J-Y, Yuan S-Y, et al., To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes[J] Energy&Environmental Science, 2016, 9(1), 224-231.
- [42] Wang J-L, Lin F-J, Jia H, et al. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J] Angewandte Chemie International Edition, 2014, 53(38), 10099-10104.
- [43] Su Y-S, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J], Nature Communications, 2012, 3, 1166.
- [44] Chung S -H, Manthiram A, Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J] Advanced Fun-ctional Materials, 2014, 24(33), 5209-5216.
- [45] Chung S -H, Manthiram A., High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J] Journal of Physical Chemistry Letters, 2014, 5,(11) 1978-1983.
- [46] Zhou G -M, Pei S -F, Li L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J] Advanced Materials, 2013, 25(4), 625-631.
- [47] Wang L-N, Liu J-Y, Haller S, et al. A scalable hybrid separator for a high performance lithium-sulfur battery[J] Chemical Communication, 2015, 51(32), 6996-6999.
- [48] Nan C -Y, Lin Z, Liao H -G, et al., Durable carbon-coated Li₂S core-shell spheres for high performance lithium/ sulfur cells[J] Journal of the American Chemical Society, 2014, 136(12), 4659-4663.
- [49] Qiu Y -C, Rong G -L, Yang J, et al., Highly nitridated graphene-Li₂S cathodes with stable modulated cycles [J] Advanced Energy Materials, 2015, 5(23), 1501369.
- [50] Seh Z -W, Yu J -H, Li W -Y, et al., Two-dimensional layered transition metal disulphides for effective encapsula-

tion of high-capacity lithium sulphide cathodes[J] Nature Communications, 2014, 5, 5017.

[51] Zu C -X, Klein M, Manthiram A, et al. Activated Li₂S as a high-performance cathode for rechargeable lithium-sulfur batteries[J] Advanced Energy Materials, 2014, 5(22), 3986-3991.

[52] Wang L -N, Wang Y -G, Xia Y -Y, A high performance lithium-ion sulfur battery based on a Li₂S cathode using a dual-phase electrolyte [J] Energy&Environmental Science, 2015, 8(5), 1551-1558.

Advances and Prospects of Lithium-Sulfur Batteries

YUAN Shou-yi, PANG Ying, WANG Li-na, WANG Yong-gang*, XIA Yong-yao

Department of Chemistry, Fudan University, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, IChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai 200433, P.R. China

Abstract: Lithium-sulfur batteries have recently attracted worldwide attention due to the high specific theoretical energy density of sulfur cathode (2600 Wh·kg⁻¹), low cost and wide availability of sulfur. However, the practical application of lithium-sulfur batteries has been hindered by several challenges, such as the shuttling of polysulfide intermediates, the large volume expansion of sulfur during charge/discharge and the dendrites formation on lithium anode. Foremost among these is the shuttling effect arising from the dissolution of lithium polysulfides intermediate into the electrolyte from the cathode reaction and their diffusion to the anode where they react with metal lithium to form lower-ordered lithium sulfides that then return to the cathode, which results in the poor cycling stability and severe self-discharge. This review summarizes the recent research advances in the sulfur cathode, battery structures, electrolytes and lithium sulfide cathode to mitigate the shuttling effect of lithium polysulfides. The possible solutions proposed by our groups to mitigate the shuttling effect are introduced from the aspects of carbon/sulfur composite cathode, design of composite Celgard, electrolytes and lithium sulfide (Li₂S) cathode. Finally, perspectives and future developments of lithium-sulfur batteries are pointed out based on our previous studies and experiences.

Key words: lithium-sulfur batteries; shuttling effect; sulfur cathode; lithium sulfide cathode; composite Celgard; electrolyte.