[Journal of Electrochemistry](https://jelectrochem.xmu.edu.cn/journal)

[Volume 28](https://jelectrochem.xmu.edu.cn/journal/vol28) Issue 12 Special Issue: In Honor of Professor [Yu-Sheng Yang on the Occasion of His 90th](https://jelectrochem.xmu.edu.cn/journal/vol28/iss12) [Birthday \(](https://jelectrochem.xmu.edu.cn/journal/vol28/iss12)II)

2022-12-28

Advances on Composite Cathodes for Lithium-Sulfur Batteries

Xi-Yao Li

Chang-Xin Zhao

Bo-Quan Li

2. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;3. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;, libq@bit.edu.cn

Jia-Qi Huang

Qiang Zhang

1. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;, zhang-qiang@mails.tsinghua.edu.cn

Recommended Citation

Xi-Yao Li, Chang-Xin Zhao, Bo-Quan Li, Jia-Qi Huang, Qiang Zhang. Advances on Composite Cathodes for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2022 , 28(12): 2219013. DOI: 10.13208/j.electrochem.2219013 Available at:<https://jelectrochem.xmu.edu.cn/journal/vol28/iss12/2>

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

$\frac{d}{dt}$ $\frac{d}{dt}$ 电 化 学
J. Electrochem. 2022, 28(12), 2219013 (1 of 13)
DOI: 10.13208/j.electrochem.2219013 http://electrochem.xmu.edu.cn
 osite Cathodes for Lithium-Sulfur Batteries

 $\begin{array}{lll}\n&\text{\#} &\text{\#} &\text{\#} &\text{\#} &\text{\#} \\\text{\textit{Re}} &\text{\#} &\text{\#} &\text{\#} &\text{\#} \\\text{\textit{New}} &\text{DOI: 10.13208/j.electrochem.} &\text{http://electrochem.xml.edu_en} \\\ \text{\textit{Advances on Composite Cathodes for Lithium-Sulfur Batteries}} &\text{\#} &\text{\#} &\text{\#} \\\text{\textit{Xi-Yao Li}, Chang-Xin Zhao', Bo-Quan Li^{23*}}, Jia-Qi Huang²³, Qiang Zhang^{1*} \\ \text{\#}}$ **2.** *I. Electrochem.* 2022, 28(12), 2219013 (1 of 13)

DOI: 10.13208/j.electrochem.2219013
 2.2.5.2.19013 http://electrochem.
 2.2.5.2.19013 http://electrochem.
 2.2.5.2.11. Chang-Xin Zhao¹, Bo-Quan Li^{2,3*}, Jia **E.** $\#$
 J. Electrochem. 2022, 28(12), 2219013 (1 of 13)

DOI: 10.13208/j.electrochem.2219013 http://electrochem.xmu.edu.cn
 Composite Cathodes for Lithium-Sulfur Batteries

, Chang-Xin Zhao¹, Bo-Quan Li^{23*}, Jia *H. Blettrochem, 2022, 28*(12), 2219013 (1 of 13)
 May Alvances on Composite Cathodes for Lithium-Sulfur Batteries

Xi-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li^{23*}, Jia-Qi Huang²³, Qiang Zhang¹

(1. Beijing Key Lab $\begin{array}{ll} \textcolor{blue}{\bigtriangledown} & \textcolor{blue}{\bigtriangleup} & \textcolor{blue}{\bigtriangleup} & \textcolor{blue}{\bigtriangleup} & \textcolor{blue}{\big$ *U. Electrochem.* 2022, 28(12), 2219013 (1 of 13)

DOI: 10.13208 j , electrochem. 2219013
 CCS ON COMPOSITE Cathodes for Lithium-Sulfur Batteries

Xi-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li²³⁺, Jia-Qi Huang^{2.3}, Qia 3. School of Materials Science, Beijing Institute of Technology, sherical Engineering during Material Science and Engineering, Beijing Institute of Technology, Beijing Institute of Chemical Engineering, Beijing 100084, Ch

 $\begin{minipage}[t]{0.5cm} \begin{tabular}{ll} \multicolumn{3}{l}{{\textbf{R}}}\mbox{\textbf{F}}\\ \hline \multicolumn{3}{l}{\textbf{R}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\mbox{\textbf{F}}\$ $\begin{array}{ll} \text{\#} & \mathcal{H} & \mathcal{H} \\ \text{[Review]} & \text{1:} \; \text{Rerevchem, 2022, 28(12), 2219013} & \text{hyp/electrochem, xmus, char.} \\ \text{[Review]} & \text{1:} \; \; 101132087_5 \text{dscenohem, } 2219013 & \text{hyp/electrochem, xmus, char.} \\ \text{\#} & \text{Ai} & \text{Var} & \text{Diag } 2 \text{N} \\ \text{[Figure 1]} & \text{Ai} & \text{Diag } 2 \text{N} \\ \text{[$ *L Electrochem*, 2022, 28(12), 2219013 (1 of 13)

1001: 10.13208/₃ electrochem, 2219013
 Advances on Composite Cathodes for Lithium-Sulfur Batteries

Xi-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li²³⁺, Jia-Qi Huang²³, **Composite Cathodes for Lithium-Sulfur Batteries**
 Colicity cathodes and subsequently and the subsequently approach and the subsequently approach and the subsequently $(1.$ Beijing Key Laboratory of Green Glennical Reac DOI: 10.13208/j.slexenobem.2219013
 Advances on Composite Cathodes for Lithium-Sulfur Batteries
 χ i-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li²³, Jia-Qi Huang²³, Qiang Zhang¹

(*I. Beijing key Laboratory of Green* **Advances on Composite Cathodes for Lithium-Sulfur Batteries**

Xi-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li²³, Jia-Qi Huang²³, Qiang Zhang²⁴

(*I. Beijing Key Lalontary of Greenical Recation Engineering, The S/C cath* Advances on Composite Cathodes for Lithium-Sulfur Batteries

Xi-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li²²⁺, Jia-Qi Huang²⁻³, Qiang Zhang¹⁶

(*I. Beijing Key Laboratory of Green Chemical Reaction Engineering and Tec* **Advances on Composite Cathodes for Lithium-Sulfur Batteries**

Xi-Yao Li', Chang-Xin Zhao', Bo-Quan Li²³, Jia-Qi Huang^{2,3}, Qiang Zhang'

(*I. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technolog* X_i-X_0 O. L¹₁, Chang-Xin Zhao¹, Bo-Quan Li²²², Jia-Qi Huang²³, Qiang Zhang¹²

(*I. Reijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of

<i>Chemical Engineering, Tsinghu* Xi-Yao Li¹, Chang-Xin Zhao¹, Bo-Quan Li²³^r, Jia-Qi Huang²³, Qiang Zhang¹
(*I. Beijing Key Laboratory of Green Glemical Reaction Engineering and Technology, Department of
Chemical Engineering, Tsinghua Universi* (1. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering. Tsinghua University, Beijing 100084, China; 2. Advanced Research Institute of Multidiscriplinary Scienc (1. Beyong Key Laboratory of Green Chemical Necation by appearing and Technology, Uleyartami of
Chemical Kegineering, Thington University, Beijing 100084, China; 2. Advanced Research Institute of
Multidisciplinary Science Chemical Engineering, Tsinghua University, Reijing 100084, China; 2. Advanced Research Institute of

3. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;

3. School of Mat Multidistriplinary Science, Beijing Institute of Technology, Beijing 100081, China;

3. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)
 Abstract: Lithium-sulfur (Li-3. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)
 Abstract: 1.ithium-sulfur (1i-S) hateries are dcemed as high-promising next-generation energy storage technique du uligh theoretical energy density, where the sulfar cathodes with high specific capacity guarantee the energy density advantage

directly descrimes the battery performances. A for decades of sephoration, the most promising and directly determine the battery performances. After decades of exploration, the most promising sulfar cathodes are sulfur-
carbons composite (SCC) cathodes and sulfurizated polyceryloonticle (SPAN) cathodes. In this ma composite (SC) cuthodes and sulfurized polyencyloniirle (SPAN) cuthodes. In this munoscript, recent udvances on SC and SPAN

activides in 1.i-S hatteries are comprehensively revived. The electrochemical reaction eirers
an eathodes in Li-S hatteries are comprehensively reviewed. The electrochemical reaction circumstances on S/C and SPAN cathodes
are firstly introduced and compared to revers the working mechanism of the two types of Li-S batt are finly introduced and compared to reveal the working mechanisms of the two types of Li-S batteries. The SC cathools mainly undergo solid-liquid-solid conversion processes with typical distributed in the sumparison, the undege solid-liquid-solid multi-plaste conversion processes with spinal donkbe-plasau change-discharge polarization curves. In
the comparison, the SPAN cultodes follow solid-solid conversion and exhibit single-plateau chan comparison, the PAN cultureles iolitow side-desired conversion and exhibit single-platear directions and conversion and exhibit single-platear directions, in the system content of the SC and SPAN cultures with SC cultures mg ant, are onalized a parameteris and a metallon and the significant parameters are respectively meson and a metallon entired intervals are proportional methods attention, efficient leachtroataly de-
sign, and redox come For extramelent we can
also, and redox comediation. For SPAN catholos, the main optimizing attaques are electrode structure modification, morphology
regulation by co-polymerization, heteroatem doping at molecular level, a omising next-generation energy storage technique due to their
high specific capacity guarantee the energy density advantage
ploration, the most promising sulfur cathodes are sulfur/carbon
athodes. In this manuscript, recen due to their

y advantage

ulfur/carbon

and SPAN

N cathodes

odes mainly

1 curves. In

ics. Follow-

d discussed.

catalyst de-

morphology

esearch sta-

parameters,

researches.

plysulfide

in theory,

in theory,
 onlaring incregativation crice to entropy solicing being the intervention in the mergy density advantage ploration, the most promising sulfit cantologs are sulfur/carbon athodes. In this manuscript, recent advances on S/C mgn-promation, the most promising sulfur cathodes are sulfur/carbon
ploration, the most promising sulfur cathodes are sulfur/carbon
athodes. In this manuscript, recent advances on S/C and SPAN
cohemical reaction circumstan and thoses. In this manuscript, recent advances on S/C and SPAN cothemical reaction circumstances on S/C and SPAN cathodes ms of the two types of Li-S batteries. The S/C cathodes mainly pricell double-plateau charge-disch reportional reaction circumstances on S/C and SPAN cathodes
ms of the two types of Li-S batteries. The S/C cathodes mainly
ppical double-plateau charge-discharge polarization curves. In
zxhibit single-plateau charge-discha ms of the two types of Li-S batteries. The S/C cathodes mainly
ppical double-plateau charge-discharge polarization curves. In
zxhibit single-plateau charge-discharge polarization curves. In
zxhibit single-plateau charge-di al double-plateau charge-discharge polarization curves. In
bit single-plateau charge-discharge characteristics. Follow-
dSPAN cathods are respectively presented and discussed.
electrode structure modification, efficient el Exhibit single-plateau charge-discharge characteristics. Followith and SPAN cathodes are respectively presented and discussed.

the electrode structure modification, efficient electrocataly

in degree and discussed electr and SPAN cathodes are respectively presented and discussed.

re electrode structure modification, efficient electrocatalyst de-

ing strategies are electrode structure modification, morphology

el, and extrinsic redox medi

Key words: lithium-sulfur buttery: sulfurcarbon composite culbode; sulfurized polysery bonixity of 2600 Wh · kg⁻¹ in theory,

The global mpid energy consumption drives mas-

which is 10 times higher than the current c egulation by co-polymerization, heterotom doping at moleculate level, and extrinsic reados uses of Li-S buteries with SC or SDAS cultubes are systematically umalgeed ubroads are specified buter possimulation. At last, curr S batteries with S/C or SPAN cathodes are systematically analyzed through the comparison of several battery paractives on challenges and opportunities of S/C and SPAN cathodes in Li-S batteries are presented to guide futur

1 Introduction ultrahigh energy density of $2600 \text{ Wh} \cdot \text{kg}^{-1}$ in theory, the electrode structure monitoation, einterni electroceataryst de-
theoretical species are electrode structure modification, morphology
rel, and extrinsic redox mediation. At last, current research sta-
nalyzed through the

 $#I\#(J. Electronen.) 2022, 28(12), 2219013 (2 of 13)$
as high as 1672 mAh·g⁻¹, which guarantees the ultra-
high energy densities of Li-S batteries^{12,13}. In this
way, the performance determining factor of Li-S bat-
teries mainly **EXALE ALE SECTION (BEFACE ALE SECTION AND THE SECTION OF A CONDUCT AND THE SECTION AND THE SECTION (BEFACE INTERNATE ALE SPACE ALE** 41(*k*($\frac{m}{2}$ (*k*). *Electrochem.*) 2022, 28(12), 2219013 (2 of 13)

as high as 1672 mAh·g⁻¹, which guarantees the ultra-

high energy densities of Li-S batteries^[12,13]. In this

way, the performance determining as high as 1672 m/h cells based on the S/C cathodes the UHz

way, the performance determining factor of Li-S batteries the ultra-

way, the performance determining factor of Li-S batteries based on the system of the s as high as 1672 mAh - g-1, which guarantees the ultra-

high energy chensities of Li-S batteries i¹⁰³ m, this

way, the performance determining factor of Li-S hat-

second SPAN enthodes and the cycling of Li-S batteri high energy densities of Li-S batteries^{172,13}). In this

use_x the performance determining factor of Li-S batteries and the second on the second on the second on the second

second on the second of the second on the se way, the performance determining factor of Li-S bat-

sice and SPAN cathedres and the cathological reformance of the cathological review interview on S/C and SPAN cathedres in the cathological review of the system of the s teries mainly lies in the cathodic performance of the www.seweeped⁷⁰⁸.¹⁸⁹

sulfur cathodics is the key for constructing

sulfured to sum-setes in SPAN

sulfured to sum-set align-performance Li-S batteries. After decad sulfur active materials¹⁸¹⁴. Therefore, developing ad-

variables the key for constructing

ingal-performance Li-S batteries. After decades of ex-

hereformance Li-S batteries. After decades of ex-

ploration, the most p vanced sulfur cathodes is the key for constructing

high-performance Li-S batteries. After decades of ex-

functions composite (SC) cathods and sulfurized

functions composite (SC) calcordes are actived

functions for fut H-performance Li-S batteries. After decades of ex-
 $\frac{3261}{181}$ becomes promising sulfit crahedos are all-
 $\frac{3261}{181}$ becomes and $\frac{321}{181}$ becomes and $\frac{321}{181}$
 $\frac{321}{181}$ becomes advances on the exer ploration, the most promising sulfur cathodes are sul-

function comprosite (SC) cathodes and sulfurized

functions comprosite (SC) cathodes in sulfurized

proplement of the above two serves in the comprometic (SC) candod fur/carbon composite (S/C) cathodes and sulfurized

able events during the check space and content of the name-

able events during the development of the above two

spaces on $\frac{2615}{2}$ reaction composite cathodes are polyacrylonitric (SPAN) cathodes ^{[33}], and the mark-

spake are depicted and the ank-

economic second of the above two carbodes are depicted and Figure 1. Re-

searches on these two cathodes have made significant

searc able events during the development of the above two reaching diring the control exacts and the second seconds are depicted in Figure 1. Res. control of the ware realisation of the second seconds on the second breakthrough composite cathodes are depicted in Figure 1. Re-

scance of conducts have methods have model significant

breakthrough very creatity. For instance, Cheng et.

al. constructed 700 Wh-kg⁻¹ rechargeable Li-S pouch

eclls b

breakthrough very recently. For instance, Cheng et.

al. constructed 700 Wh kg⁻¹ recharges

ble clels hased on the SC cathodes¹⁰⁰, Chen, Liu, and co-

eclels hased on the SC cathodes¹⁰, Chen, Liu, and co-

workers r al. constructed 700 Wh·kg^a rechargeable Li-S pouch

regime 1 A brief timeline about the development of SC and

colls

such considers^{tom}, Chen, Liu, and co-

workers realized status cycling of Li-S pouch cells

current cells based on the S/C cathodes^[18]. Chen, Liu, and co-
 Figure 1 A herd imeline about the development of SC and

under –60 °C based on the SPAN cathodes^[19]. To this

under –60 °C based on the SPAN cathodes^[19]. workers realized stable eycling of Li-S pouch cells

unders⁻⁶⁰ C has and on the SPAN cathodes¹⁹. To this

end, a systematical review on SC and SPAN catho-

odes are composed of nanosized sultir and conduc-

and, a sys under –60 °C based on the SPAN cathodes⁽¹⁰. To this

end, a systematical review on SiC card-

ends, in Li-S batteries is essentially required to sum-

odes are composed of nanosized sulfur and conduc-

marize the recent end, a systematical review on S/C and SPAN cath-
odes are composed of nanosized sulfur and conduc-
odes in Li-S batteries is essentially required to sum-
odes are composed of nanosized sulfur and conduc-
marize the recent odes in Li-S batteries is essentially required to summarize the recent advances and provide insightful tive carbon after ball-milling and heat melting. War

Herepectives for future development.

Herein, recent advances on marize the recent advances and provide insightful

tive carbon after ball-milling and heat melting. Wang

perspectives for future development.

Here, in Li-S batteries are comprehensively reviewed.

In 2009, Nazar's group perspectives for fiture development.

et. al. firstly reported the S/C com

Herein, recent advances on S/C and SPAN cath-

odes in L-S batteries are comprehensively reviewed.

In 2009, Nazar's group made a br

The electro Herein, recent advances on S/C and SPAN cath-

2002 and applied it as the cathode in Li-S batteries¹⁹¹.

The electrochemical reaction circumstances on S/C veloping highly odred a horsal

The electrochemical reaction cir

searches on these two eathodes have made significant

broakhrough very recent of SVC and broakhrough very recently the current of SVC and

al. constructed 700 Wh kg⁻¹ rechargeable Li-S pouch

cells based on the S/C carbo EPAN structures and

SPAN structures and

SPAN structures and

were investigated g_{top}

were investigated g_{top}

were investigated g_{top}

Figure 1 A brief timeline about the development of S/C and

SPAN catho SPAN structures and

were explored 2015

were investigated ¹⁹⁶¹

were explored

were explored

were explored and positing order order investigated ¹⁹⁶¹

Pigure 1 A brief timeline about the development of S/C and

SP SPAN structures and

were explored

were explored

were explored

were explored

were explored

accommodations

were emphasized^[19]

Pouch cell evaluations

were explored

were emphasized^[19]

Pouch cell evaluations
 2015

Electric of the the intestigated [80]

2020

Redox co-mediators (coRMs)

were introduced ^[41]

2020

Redox co-mediators (coRMs)

were introduced ^[41]

imeline about the development of S/C and

intrinsical starte Their were explored

Were explored

Were explored

Were emphasized^[15]

Trigure 1 A brief timeline about the development of S/C and

SPAN cathodes in Li-S batteries.

tive carbon materials^[18]. Therefore, typical S/C Were emphasized¹⁰⁹

Redox co-mediators (coRMs)

Were infroduced ⁽⁴¹⁾
 Figure 1 A brief timeline about the development of S/C and

SPAN cathodes in Li-S batteries.

tive carbon materials^[18]. Therefore, typical S/C **Example 18**
 Example 1 A brief timeline about the development of S/C and
 SPAN cathodes in Li-S batteries.
 Example 1 A brief timeline about the development of S/C and
 SPAN cathodes in Li-S batteries.
 Example Figure 2.1 A brief timeline about the development of S/C and AN cathodes in Li-S batteries.

e carbon materials^[18]. Therefore, typical S/C cath-

es are composed of nanosized sulfur and conduc-

carbon after ball-mil **Figure 1** A brief timeline about the development of S/C and SPAN cathodes in Li-S batteries.
tive carbon materials^[18]. Therefore, typical S/C cathodes are composed of nanosized sulfur and conductive carbon after ball-**Example 2** Theoret unisance usosia are development of SC dustrive carbon materials^[18]. Therefore, typical S/C cathodes are composed of nanosized sulfur and conductive carbon after ball-milling and heat melting. Wang e tive carbon materials^[18]. Therefore, typical S/C cath-
odes are composed of nanosized sulfur and conduc-
tive carbon after ball-milling and heat melting. Wang
et. al. firstly reported the S/C composited material in
200 tive carbon materials^[18]. Therefore, typical S/C cath-
odes are composed of nanosized sulfur and conduc-
tive carbon after ball-milling and heat melting. Wang
et. al. firstly reported the S/C composited material in
200 tive carbon materials^[18]. Therefore, typical S/C cath-
odes are composed of nanosized sulfur and conduc-
tive carbon after ball-milling and heat melting. Wang
et. al. firstly reported the S/C composited material in
200

es electrochemic are comprehensively reviewed. In 2009, Nazar's group made a breakthrough by de-

electrochemical reaction circumstances on SCC condigiby different increases on SCC condigiby ordered numeral surface increa The electrochemical reaction circumstanes on SC veloping highly ordered nanostructured carbon to
and SPAN cathodes are firstly intoduced and com-
encommodate S₄⁰⁰. Since then, SC cathodes started
pared to reveal the w and SPAN cathodes are firstly introduced and com-

accommodate S<sub>k^{pa)}. Since then, S/C cathodes started

to reveal the whothing mechanism of the two their booming development in aspects of each

sponding optimizing stra</sub> pared to reveal the working mechanism of the two

types of Li-S hatteries. Key challenges and corresponding optimizing strategies and corresponding optimizing strategies of the current SC and

interface regulations, elect odes are composed of nanosized sulfur and conductive carbon after ball-milling and heat melting. Wang et. al. firstly reported the S/C composited material in 2002 and applied it as the cathode in Li-S batteries^[19]. In and conduc-
elting. Wang
d material in
S batteries^[19].
rough by de-
d carbon to
nodes started
carbon opti-
ations, polar
intions, polar
into soluble
action path-
ischarge pro-
into soluble
 \sim 8) dissolv-
e LiPSs then
 tive carbon after ball-milling and heat melting. Wang
et. al. firstly reported the S/C composited material in
2002 and applied it as the cathode in Li-S batteries^[19].
In 2009, Nazar's group made a breakthrough by de-
v et. al. firstly reported the S/C composited material in 2002 and applied it as the cathode in Li-S batteries^[19].
In 2009, Nazar's group made a breakthrough by developing highly ordered nanostructured carbon to accommod 2002 and applied it as the cathode in Li-S batteries^[19].
In 2009, Nazar's group made a breakthrough by developing highly ordered nanostructured carbon to accommodate $S_8^{[20]}$. Since then, *S/C* cathodes started their In 2009, Nazar's group made a breakthrough by developing highly ordered nanostructured carbon to accommodate $S_8^{[20]}$. Since then, *S/C* cathodes started their booming development in aspects of carbon optimizations, ele veloping highly ordered nanostructured carbon to
accommodate $S_8^{(20)}$. Since then, S/C cathodes started
their booming development in aspects of carbon opti-
mizations, electrode structural modifications, polar
interface accommodate S₈⁽²⁹⁾. Since then, S/C cathodes started
their booming development in aspects of carbon opti-
mizations, electrode structural modifications, polar
interface regulations, etc.
Notably, the working mechanism their booming development in aspects of carbon optimizations, electrode structural modifications, polar
interface regulations, etc.
Notably, the working mechanism of typical S/C
cathodes obeys the solid-liquid-solid react

the $\#E^{\#}(I. \text{Electrochem.})$ 2022, 28(12), 2219013 (3 of 13)

pathway (Figure 2b). Concretely, the first plateau from al irreversible reactions taking place in the first dis-

2.4 V to 2.1 V represents the conversion process **ELEVALUATE 12.1**
 ELEVALUATE $#E#L(Lectrochem.)$

(Figure 2b). Concretely, the first plateau from

al irreversible reactions taking place in the

2.4 V to 2.1 V represents the conversion process

from solid S_s to soluble LiPSs, and the second

SPAN stru **ing mechanism of** S/C cathodes obeys the solid-liq-
the battery performances.
 ind the solution of S/C cathodes obeys the conversion process obelige expected for the SPAN cathode, during which the

from solid S_8 to ± 2 (*LEtectrochem.*) 2022, 28(12), 2219013 (3 of 13)

pathway (Figure 2b). Concretely, the first plateau from all irreversible reactions taking place in the first dis-

2.4 V to 2.1 V represents the conversion process **itself but also solve the matrix of SPAN Cath** Section Section stating place in the first distant the platted Vi of Distance Concretely, the first plateau from all irreversible reactions taking place in the first distant **Example 19**
 Example 19 $\frac{dE}{dt}(f, Electmchem,)$ 2022, 28(12), 2219013 (3 of 13)

1918 (Figure 2b). Concretely, the first plateau from all irreversible reactions taking

2.4 V to 2.1 V represents the conversion process frame cycle of the SPAN cat

19 **EVALUATION EXAMONDER (Figure 2b).** Oncretely, the first plateau from all irreversible reactions taking place in the first dis-
2.4 V to 2.1 V represents the conversion process charge cycle of the SPAN cathode, during wh

odes

EMALUATE THE EXECUTE OF THE EXECUTE THE EXECUTE THE EXECUTE PAIR (Figure 2b). Concretely, the first plateau from al irreversible reactions taking place in the first dis-
2.4 V to 2.1 V represents the conversion process $\# \ell \neq (J. Electrochem.)$ 2022, 28(12), 2219013 (3 of 13)

pathway (Figure 2b). Concretely, the first plateau from al irreversible reactions taking place in the first dis-

2.4 V to 2.1 V represents the conversion process charge c $\pm \frac{1}{2}$. *Electrochem.*) 2022, 28(12), 2219013 (3 of 13)

ly, the first plateau from al irreversible reactions taking place in the first dis-

the conversion process charge cycle of the SPAN cathode, during which the
 $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above $28(12)$, 2219013 (3 of 13)

al irreversible reactions taking place in the first dis-

charge cycle of the SPAN cathode, during which the

SPAN structure is reformed and the SPAN cathode is

activated^[30]. Once the ab 28(12), 2219013 (3 of 13)

al irreversible reactions taking place in the first dis-

charge cycle of the SPAN cathode, during which the

SPAN structure is reformed and the SPAN cathode is

activated^[30]. Once the above (12), 2219013 (3 of 13)
irreversible reactions taking place in the first dis-
rge cycle of the SPAN cathode, during which the
AN structure is reformed and the SPAN cathode is
ivated^[30]. Once the above activation proces $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^{[30}]. Once the above 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (3 of 13)

, the first plateau from al irreversible reactions taking place in the first dis-

e conversion process charge cycle of the SPAN cathode, during which the

SPS, and

EVALUAT CONTECT (FOCUTE A SPAN CONTECT THE SPAN CALLET SPAN CONTECT (FOCUTE A SPAN CALLET AND MONOGET (FOCUTE AND A SPAN CALLET AND A SPAN CALLET A SP ²¹(*Le ⁴⁴*(*L Khetrochem*) 2022, 28(12), 2219013 (3 of 13)

22.4 V to 2.1 V represents the conversion process

24 V to 2.1 V represents the conversion process

24 V to 2.1 V represents the conversion process

26 O cou **EVALUAT ENTERT (FOCT 2000)** (16 (Figure 2b). Concretely, the first plateau from all irreversible reactions taking place in the first dis-

2.4 V to 2.1 V represents the conversion process charge cycle of the SPAN cathode pathway (Figure 2b). Concretely, the first plateau from

2.4 V to 2.1 V represents the conversion process

2.4 V to 2.1 V represents the conversion process

charge cycle of the SPAN cathode, during which the

from solid S pathway (Figure 2b). Concretely, the first plateau from al irreversible reactions taking place in the first dis-

2.4 V to 2.1 V represents the conversion process charge cycle of the SPAN cathode, during which the

from so 2.4 V to 2.1 V represents the conversion process

charge cycle of the SPAN cathode, during which the

from solid S₄ to soluble LiPSs, and the second

SPAN stratetre is reformed and the SPAN cathode is

plateau around 2. from solid S_R to soluble LiPSs, and the second

SPAN structure is reformed and the SPAN cathode is

plateau around 2.1 V represents the conversion pro-

activated¹⁹⁸. Once the above exitivation process is fin-

ing me plateau around 2.1 V represents the conversion pro-
entivated⁵⁰. Once the above activation process is fin-
eign concharing these polyces and the specifical digits²⁹⁷. In bring, the valid-liq ing enchanism of SC cathods cess from LiPSs to solid Li₅⁽²⁴²⁾. In brief, the work-ished, the SPAN cathode can reversibly cycle during
ing mechanism of SC cahoos obcys the solid-dia-
possible implacements of SC cahoos obcysts to solid-line long-l ing mechanism of S/C cathodes obeys the solid-liq-

ulog-lasting charge-discharge processes.

uld-solid reaction pathway, thus not only the cathode

user-of the condition be not only the calibration and determining

trist uid-solid reaction pathway, thus not only the cathode

Worthy to be noted, the working mechanism of

resident tallow cross or exerculy to particle and the solute of the candidation particles

resident tallow the solute of $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above 28(12), 2219013 (3 of 13)

al irreversible reactions taking place in the first dis-

charge cycle of the SPAN cathode, during which the

SPAN structure is reformed and the SPAN cathode is

activated^[30]. Once the above 28(12), 2219013 (3 of 13)

al irreversible reactions taking place in the first dis-

charge cycle of the SPAN cathode, during which the

SPAN structure is reformed and the SPAN cathode is

activated^[30]. Once the above 28(12), 2219013 (3 of 13)

al irreversible reactions taking place in the first dis-

charge cycle of the SPAN cathode, during which the

SPAN structure is reformed and the SPAN cathode is

activated^[30]. Once the above 28(12), 2219013 (3 of 13)

al irreversible reactions taking place in the first dis-

charge cycle of the SPAN cathode, during which the

SPAN structure is reformed and the SPAN cathode is

activated^[30]. Once the above 28(12), 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above acti $28(12)$, 2219013 (3 of 13)
al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above at irreversible reactions taking place in the first discharge cycle of the SPAN cathode, during which the SPAN structure is reformed and the SPAN cathode is activated^[30]. Once the above activation process is finished, al irreversible reactions taking place in the first dis-
charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above activation process is fin-
ish charge cycle of the SPAN cathode, during which the
SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above activation process is fin-
ished, the SPAN cathode can reversibly cycle during
long-las SPAN structure is reformed and the SPAN cathode is
activated^[30]. Once the above activation process is fin-
ished, the SPAN cathode can reversibly cycle during
long-lasting charge-discharge processes.
Worthy to be noted activated¹³⁰. Once the above activation process is fin-
ished, the SPAN cathode can reversibly cycle during
long-lasting charge-discharge processes.
Worthy to be noted, the working mechanism of
SPAN cathodes obeys the s ished, the SPAN cathode can reversibly cycle during
long-lasting charge-discharge processes.
Worthy to be noted, the working mechanism of
SPAN cathodes obeys the solid-solid reaction pathway
(Figure 2c), which is quite dif by cycle during
es.
g mechanism of
reaction pathway
t from the sol-
S/C cathodes^[31].
that a robust
layer is formed
species and the
nt dissolution of
ill not be gener-
processes. The
ries with SPAN
m the ones with
l sing long-lasting charge-discharge processes.

Worthy to be noted, the working mechanism of

SPAN cathodes obeys the solid-solid reaction pathway

(Figure 2c), which is quite different from the sol-

id-liquid-solid reaction p Worthy to be noted, the working mechanism of
SPAN cathodes obeys the solid-solid reaction pathway
(Figure 2c), which is quite different from the sol-
id-liquid-solid reaction pathway for S/C cathodes^[31].
Some previous

 $\#E\#(J. Electron) \ge 222, 28(12), 2219013 \text{ (4 of 13)}$
it, it can be assured that the capacity for SPAN cath-
odes is provided by the reversible breaking and gen-
pervious literatures have reported that introducing
eration of S—S b $\# \# \# \langle J. \text{Electrochem.} \rangle$ 2022, 28(12), 2219013 (4 of 13)

it, it can be assured that the capacity for SPAN cath-

odes is provided by the reversible breaking and gen-

Previous literatures have reported that introducing

e $\exists k$ between $\exists k$. If $\exists k$ (*L Electrochem.*) 2022, 28(12), 2219013 (4 of 13)

it, it can be assured that the capacity for SPAN cath-

ordos is provided by the reversible breaking and gen-

previous literatures have re $\frac{dE}{dt}$ $\frac{dE}{dt}$

gish kineties especially under harsh working condi-
specific capacity were greatly enhanced, and an ultra-
times (e.g., large current densities, high sulfir loading high hara capacity of 1.6 mAh \cdot cm⁻² at a high saltions (e.g., large current densities, high sulfur loading high area capacity of 11.6 mAh · cm⁻²
and content, lean electrolyte, etc.)^{[35,10}]. The sluggish fur loading of 10 mg_s · em⁻² could be act
cathodic kinteric

 $\# \ell \Hrightarrow{\mathcal{H}}(L \to Electrochem.)$
 $\# \ell \Hrightarrow{\mathcal{H}}(L \to Electrochem.)$ 2022, 28(12), 2219013 (4 of 13)

it, it can be assured that the capacity for SPAN cath-

odes is provided by the reversible breaking and gen-

Previous literatures have r (Litective the same of \mathbb{R}^2), *Electrochem.*) 2022, 28(12), 2219013 (4 of 13)

it, it can be assured that the capacity for SPAN cath-

ordes is provided by the reversible breaking and gen-

Previous literatures hav $\pm \frac{1}{2}$ $\pm \frac$ th (*Electrochem.*) 2022, 28(12), 2219013 (4 of 13)

3.1, it can be assured that the capacity for SPAN cath-

3.1 **Electrode Structure Modification**

does is provided by the reversible breaking and gen-

Previous literatu ± 0.04 Electrochem.) 2022, 28(12), 2219013 (4 of 13)

can be assured that the capacity for SPAN cath-

is provided by the reversible breaking and gen-

from a for S-S bonds¹⁸¹. In brief, the working mechanical respec the main challenge for S/C cathodes is the slug-

the main challenge for the main challenge for the main challenge for the slug-

the main control of the slug-

it can be assumed by the reversible breaking and gen-

Frovi **EVALUATION CONFIDENTIFY**
 EVALUATION (Excel of SPAN cuth-
 EVALUATION CONFIDENTIFY (**3.1) Electrode Structure Modification**

ords is provided by the reversible breaking and gen-
 PRONOCONFIDENTIFY reaching the pr \pm (E.4) Electrockem.) 2022, 28(12), 2219013 (4 of 13)

it, it can be assured that the capacity for SPAN cath-

3.1. **Electrode Structure Modification**

ords is provided by the reversible breaking and gen-

previous lit it, it can be assured that the expacity for SPAN cuth-
 and content in the sluggish of the sluggish of SPAN cuth-
 3.1 Electrode Structure Modification

condes is provided by the reversible breaking and gen-

Previous **EVALUAT UNIVELA (ALUAT UNIT)**
 CAT UNIVELAT UNITE CONDUPLE ANOTE CONDUPLATE ANOTEE CONDUPLE THE SET UNIVELATE SURVEY AND CONDUPLE THE UNITE CONDUPLE THE INTERFERIST (THE POLARIST CONDUPLE THE INTERFERIST OF SPANY can be the $(2\pi/2, 1\pi/2, 2\pi/2)$ and $(3\pi/2, 2\pi/2)$, $(3\pi/2, 2\pi/2)$, $(3\pi/2, 2\pi/2)$, $(3\pi/2, 2\pi/2)$ and $\pi/2$ and $\pi/$ it, it can be assured that the capacity for SPAN cath-

3.1 Electrode Structure Modification

oldes is provided by the reversible breaking and gen-

Previous literatures have reported that introducing

mains of SPAN catho it, it can be assured that the capacity for SAN can-
Interesting and expected to the performance of SS-S bonds¹⁹¹. In brief, the working med-
ratios is provided by the reversible breaking and gan-
experiments are report ones is provided by the reversion between tracking and gen-

periodic strain of S--S bond⁵⁹¹, in brief, the working mech-

ensinon of SPAN cuthodes obeys the solid solid reac-

mism of SPAN cuthodes obeys the solid soli eration of S—N in prior. It is mell, the working mech-

eration of SPAN eathedes obeys the solid-solid rea-

earion scrib spirelic area materials can provide abundant-

time of SPAN eathedes obeys the solid-solid rea-

ti ann of bYAN caliboses onesys the sould scattering and profilence are actions into a particular reductions, and modifical the LiPSs and this diffusion properties^{38,28}. Combining the above two of SPAN itself constitute to to particle and the tracted structure of the particle structure and the structure and the structure and functions $\int_{1/2}^{1/2} f_{1/2}^{1/2} f_{2/2}^{1/2} f_{2/2}^{1/2} f_{2/2}^{1/2} f_{2/2}^{1/2} f_{2/2}^{1/2} f_{2/2}^{1/2} f_{2/2}^{1/2} f_{2/2}$ LENEVAN), and the
FOREX) and the method with the surface are alternational constrained to discussed of SPAN itself constitute to be the research focus.
 Constrained area, the main challenges and Optimizing Strate-
 Exa of SPAN itself constitute to be the research locus. methods together, Zhang et. al. adopted an ant-nest-
 Collenges and Optimizing Strate- like hierarchical protous carbot with high specific
 CEOS CARINOGES

The main **3 Challenges and Optimizing Strate-** like hierarchical porous carbon with high specific
 rigies for S/C Cathodes for some and regulated pore structure in S/C

The main challenge for S/C cathodes is the slug-

adhodes⁽ **gies for S/C Cathodes**

The main challnge for S/C antoodes is the slug-

informinalization and the The main challnge for S/C cathodes is the slug-

specific capacity were greatly enhanced, and an ultra-

tions (e.g., lar The main challenge for S/C cathodes is the slug-
staboles¹⁴⁴¹. As a result, both the polarization and the
sight kintices especially under harsh working condi-
specific equacity over geneally whenced, and an ultra-
and c $28(12)$, 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, 12), 2219013 (4 of 13)
 1 Electrode Structure Modification

Previous literatures have reported that introducing

gh specific area materials can provide abundant re-

tion sites for the sulfur redox reactions, and modi-
 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a Li⁺diffusion properties^[42,43]. Combining the above two 2), 2219013 (4 of 13)
 Electrode Structure Modification

Previous literatures have reported that introducing

the specific area materials can provide abundant re-

ion sites for the sulfur redox reactions, and modi-

ng 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a 28(12), 2219013 (4 of 13)

3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, and 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a 28(12), 2219013 (4 of 13)

3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, and cation
at introducing
e abundant re-
ns, and modi-
he LiPSs and
the above two
d an ant-nest-
high specific
cture in S/C
zation and the
, and an ultra-
at a high sul-
nieved. Never-
ceific area and
ode taking up
vial especi 28(12), 2219013 (4 of 13)
 3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, a **re Modification**
reported that introducing
can provide abundant re-
edox reactions, and modi-
in regulate the LiPSs and
Combining the above two
t. al. adopted an ant-nest-
arbon with high specific
d pore structure in S/C 28(12), 2219013 (4 of 13)

3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, and 28(12), 2219013 (4 of 13)

3.1 Electrode Structure Modification

Previous literatures have reported that introducing

high specific area materials can provide abundant re-

action sites for the sulfur redox reactions, and **3.1 Electrode Structure Modification**
Previous literatures have reported that introducing
high specific area materials can provide abundant re-
action sites for the sulfur redox reactions, and modi-
fying the pore struct 3.1 Electrode Structure Modification
Previous literatures have reported that introducing
high specific area materials can provide abundant re-
action sites for the sulfur redox reactions, and modi-
fying the pore structur Previous literatures have reported that introducing
high specific area materials can provide abundant re-
action sites for the sulfur redox reactions, and modi-
fying the pore structure can regulate the LiPSs and
Li⁻ di high specific area materials can provide abundant re-
action sites for the sulfur redox reactions, and modi-
fying the pore structure can regulate the LiPSs and
Li⁺ diffusion properties^(2,2,3). Combining the above two action sites for the sulfur redox reactions, and modi-
fying the pore structure can regulate the LiPSs and
Li⁺ diffusion properties^(2,43). Combining the above two
methods together, Zhang et. al. adopted an ant-nest-
l fying the pore structure can regulate the LiPSs and Li⁺ diffusion properties^(42,43). Combining the above two methods together, Zhang et. al. adopted an ant-nest-like hierarchical porous carbon with high specific surfa Li⁺ diffusion properties^(42,43). Combining the above two
methods together, Zhang et. al. adopted an ant-nest-
like hierarchical porous carbon with high specific
surface area and regulated pore structure in *S/C*
catho methods together, Zhang et. al. adopted an ant-nest-
like hierarchical porous carbon with high specific
surface area and regulated pore structure in S/C
cathodes^[44]. As a result, both the polarization and the
specific like hierarchical porous carbon with high specific
surface area and regulated pore structure in S/C
cathodes^[44]. As a result, both the polarization and the
specific capacity were greatly enhanced, and an ultra-
high a surface area and regulated pore structure in S/C
cathodes^[44]. As a result, both the polarization and the
specific capacity were greatly enhanced, and an ultra-
high area capacity of 11.6 mAh · cm⁻² at a high sul-
fu cathodes^[44]. As a result, both the polarization and the specific capacity were greatly enhanced, and an ultra-
high area capacity of 11.6 mAh·cm⁻² at a high sul-
fur loading of 10 mg·cm⁻² could be achieved. Never-
 specific capacity were greatly enhanced, and an ultra-
high area capacity of 11.6 mAh · cm⁻² at a high sul-
fur loading of 10 mg_s · cm⁻² could be achieved. Never-
theless, carbon materials with high specific area an ed, and an ultra-

⁻² at a high sul-

achieved. Never-

pecific area and

thode taking up

ficial especially

Recently, Lu and

pecific area, and

mstrated a dense

3a)^[39]. Concrete-

ticles, relatively

1 promote ele high area capacity of 11.6 mAh \cdot cm⁻² at a high sul-
fur loading of 10 mg \cdot cm⁻² could be achieved. Never-
theless, carbon materials with high specific area and
porosity inevitably make the S/C cathode taking up
 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (4 of 13)
pacity for SPAN cath-
ible breaking and gen-
ief, the working mech-
ingh specific area materials can provide abundant re-
rest the solid-solid read-
anticon city for

 $# \&L \# (J. Electron) 2022, 28(12), 2219013 (5 of 13) = 4 μL·mg⁻¹). Other electrode structure modification
approaches such as designing S/C shell structures
and network structures also obtained favorable ef-
fects^[46,47]. In brief, the porosity, specific surface area,
and tortuosity are three significant parameters to be
behaviors inevitably$ $\#E\#(J. Electronchem.)$ 2022, 28(12), 2219013 (5 of 13)
 $\#L \cdot mg^{-1}$). Other electrode structure modification

approaches such as designing S/C shell structures

and network structures also obtained favorable ef-

fects^[46,47]. I $\pm 4 \mu L \cdot mg^{-1}$). Other electrode structure modification
 $\pm 4 \mu L \cdot mg^{-1}$). Other electrode structure modification

the Mo₆S₈ surface got lithiation into Li_nMo₆S₈ during

approaches such as designing S/C shell s **for** $\mathbb{E}E^{\#}(J. Electrochem.)$ **2022, 28(12), 2219013 (5 of 13)**
 Fectro-hem.) 2022, 28(12), 2219013 (5 of 13)
 Fectro-hem.) 2022, 28(12), 2219013 (5 of 13)

approaches such as designing S/C shell structures the discharge pr

= 4 μ L-mg⁻¹). Other electrods state and stream-

= 4 μ L-mg⁻¹). Other electrods state and direction the Mos₅, surface got lithiation into Li,N₀₅, during

approaches such as designing S/C shell structures th =4 μ L -mg⁻¹). Other electrode structure modification the Mo₆S₁ surface got lithiation into Li,Mo₆S₁ during
approachs such as designing SC shell structures the discharge proces;¹⁶³, and the MoS₂ surface wa approaches such as designing S/C shell structures

and network structures sube obsined favorable ef-

covered by a gel layer due to the solvent simulaneous

fictis^{46.47}. In brief, the prossity, specific surface area,

po and network structures also obtained favorable ef-
covered by a gel layer due to the solvent simultaneous
fects⁴⁶⁶⁷, In brief, the porosity, specific surface area, polymerization¹⁹³³. The above surface reconstruction
 fcets^(wa,7). In brief, the porosity, specific surface area, polymerization¹⁵³. The above surface reconstruction and ortinuality are three significant parameters to be behaviors inevidably affect the LiF's electroceath and tortuosity are three significant parameters to be behaviors inevitably affect the LiPS electrocatalysis
considered during SC cathode design, and the SC mechanisms and cffects. In brief, electrocatalysts are
cathodes ca considered during S/C cathode design, and the S/C mochanisms and cffcets. In brief, clectrocatalysts are carbitative assumestives are realized to overcome the sluggish charge transferse the above three parameters are well eathodes can exhibit superior performances only when

throbuced to overcome the sluggish charge transfer

the above three parameters are vell balanced (Table 1). kincties, and their design should fully consider the in-

3 the above three parameters are well balanced (Table 1). kinetics, and their design should fully consider the in-

TE purpose of introducing clettrocalizy sto soft refacial issues as well as the solidiquid-solid reaction
 3.2 **Efficient Electrocatalyst Design** terfacial issues as well as the solidiquid-solid reaction
The purpose of introducing electrocatalysts to S/C pathways in Li-S batteries.
can be strengthen LiPS adsorption and facil-
 The purpose of introducing electrocatalysts to S/C pathways in Li-S batteries.

cathodes is to strengthen LiPS adsorption and facili-

2.33 Redox Comediation on LiPSs

tate interfacial charge transfer¹⁶⁸¹. Previous rese cathodes is to strengthen LiPS adsorption and facili-

atate interfacial charge transfer^{tan}. Previous research-

and the electrode structural modifica-

tas have proved that electrodealy sorted as transis-

tion metall tate interfacial charge transfer^{t68}. Previous research-

is have proved that electrocale stractural modifica-

tion strategy overcoming the LiFSs diffusion issues

tion metal components, herero-doped curbon, and

their es have proved that electrocatalysts such as transi-
tion metal compounds, hetero-doped carbon, and
and the electrocatalysis
their composites can efficiently reduce the reaction
reactivativy, the reactivation energy and p

 $#E\# (J. Electrochem.) 2022, 28(12), 2219013 (5 of 13)$ (b). Other electrode structure modification the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during tuch as designing S/C shell structures the discharge process^[54], an ¹⁴ (*L Electrochem.*) 2022, 28(12), 2219013 (5 of 13)
 Example 10 (*Mo_i*S_s during

approaches such as designing S/C shell structures

the Mo_iS_s surface got lithiation into Li,Mo_iS_s during

and network stru $\pm 4\mu L \cdot mg^{-4}$). Other electrode structure modification

= 4 $\mu L \cdot mg^{-4}$). Other electrode structure modification the Mo₈S_s surface got lithiation into Li,Mo₈S_s during

approaches such as designing S/C shell stru $\mathbb{E}/\mathbb{E}^2(L_E(\epsilon_{trrochem}) \geq 23(12), 2219013$ (5 of 13)
 $= 4 \mu L \cdot mg^{-1}$). Other electrode structure modification the Mo₆S₄ surface got lithiation into Li,Mo₆S₄ during

approaches such as designing S/C shell structur **EXALUATE ABOVE THE A** ^HL^T . *mg*⁻¹). Other electrode structure modification the Mo₆S, surface got lithiation into Li,Mo₆S, during
proaches such as designing S/C shell structures the discharge process^[54], and the MoS₂ surface wa **EXAMPLE 11**
 EXAMPLE 11
 EXAMPLE 11
 EXAMPLE 11 (The relation and the MoS₅ surface got lithiation into LiMoS₅ during

approaches such as designing S/C shell structures the discharge process¹⁹¹, and the MoS₅ the $\ell^2\ell^2$ (ℓ $\ell^2\ell^-$ (ℓ $\ell^2\ell^-$ (ℓ $\ell^2\ell^-$) (Other electrodes structure modification the MoS_b surface got linitation into LiMoS_b, during approaches such as designing S/C shell structures the discha \pm (*Emg*⁻¹). Other electrode structure modification the Mo_S₆ surface got lithiation into Li,Mo_S₆ during
approachos such as designing S/C shell structures the discharge process^[54], and the MoS₅ surface wa $+ \frac{1}{2}$ ($\frac{1}{2}$ $+ \frac{1}{2}$ $t_1/2 + t_2/2$. Deterocheme, 2022, 28(12), 2210013 (5 of 13)

approaches such as designing S/C shell structures the discharge process¹⁸¹, and the MoS₅ during

approaches such as designing S/C shell structures the disch $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_xMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_xMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_xMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] 28(12), 2219013 (5 of 13)

the Mo₆S₈ surface got lithiation into Li_xMo₆S₈ during

the discharge process^[54], and the MoS₂ surface was

covered by a gel layer due to the solvent simultaneous

polymerization[[] 28(12), 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^[55] 28(12), 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^[55] 28(12), 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^[55] $28(12)$, 2219013 (5 of 13)
the Mo₆S_s surface got lithiation into Li_sMo₆S_s during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] $28(12)$, 2219013 (5 of 13)
the Mo₆S_s surface got lithiation into Li,Mo₆S_s during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^{[53} (12), 2219013 (5 of 13)

Mo_oS_s surface got lithiation into Li,Mo_oS_s during

discharge process^[54], and the MoS₂ surface was

vered by a gel layer due to the solvent simultaneous

lymerization^[55]. The above $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li_MO₆S₈ during
the discharge process^[34], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^{[5} $28(12)$, 2219013 (5 of 13)
the Mo_oS₈ surface got lithiation into Li_xMo_oS₈ during
the discharge process^[34], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization[[] $28(12)$, 2219013 (5 of 13)
the Mo₆S₈ surface got lithiation into Li,Mo₆S₈ during
the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^{[53} **Example 12**
the Mo₆S₈ surface got lithiation into Li,Mo₆S₈ during
the discharge process^[34], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^[35]. The above sur the Mo_sS_s surface got lithiation into $LiMo₆S₈$ during
the discharge process^[34], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^[35]. The above surface re $\frac{\text{H} \& \frac{2}{3} \times (J. \text{ *Electrochem.*}) 2022, 28(12), 2219013 (5 of 13)}{\text{structure modification}}$ the Mo₆S₈ surface got lithiation into Li_sMo₆S₈ during

S/C shell structures the discharge process^[34], and the MoS₂ surface was

btai

ed that electrocatalysts such as transi-

tion strategy overcoming the LiPSs diffusion issues

tens can efficiently reduce the reaction

tens can efficiently reduce the reaction

tergetical reduces are effect the reaction tion metal compounds, hetero-doped carbon, and und the electrocatalysis strategy promoting the LiPSs
their composites can efficiently reduce the reaction
functions rategy can
derivation onergy and promote the SCC cathode their composites can efficiently reduce the reaction
redox reactivity, the redox connectiation carreggy and promote the SC callode per-
accelerate that the SC callodes per-
formances^{169,30}. Since the solid-liquid-solid activation energy and promote the S/C cathode per-

accelerate the reactivity and diffusivity of LiPSs on

formances(^{as,78}). Since the solid-liquid-solid reaction

galardikas and disclendes at are time. In detail, organ formances^{(*n.sn*}). Since the solid-liquid-solid reaction S/C cathodes at the same time. In detail, organic
partway incruishly resulted solids LiFSs for disulfides and disclenides can serve as redox concid-
navay from th pathway inevitably results partial soluble LiPSs far disulfides and diselenides can serve as redox comedi-
away from the canholic interhece and difficult to par-
ators (co-RMs) to spontancously react with LiPSs in
trigine away from the cathodic interface and difficult to par-
actors (co-RMs) to spontaneously react with LiPSs in
ticipate in electrode reactions, expanding the interac-
Li-S batterics, afford an additional electrodenical partticipate in electrode reactions, expanding the interac-
Li-S batteries, afford an additional chemical reaction
have aspect into considerations, Zhao et. al. designed
way besides the original electrochemical park-
also abs tion range of electrocatalysts is essential. Taking the pathway besides the original electrochemical path-
above aspect into considerations. Zhoo et al. designed way, and promote the overall sulfur redox kinetics^{86.91},
 above aspect into considerations, Zhao et al. designed

as way, and promote the overall sulfur redox kinetics^{(86,9}),

at security hurds concernally by parting the ac-

Trive interved di-tertiary butyl

tive sites (porphy a semi-immobilized electrocatalyst by grafting the ac-

For instance, Zhao et. al. introduced di-tertiary butyl

divise disc (prophyrin) onto soft segments (polypyrrole)

disculfie (DDDS) into Li-S batteries as a co-RM

f tive sites (porphyrin) onto soft segments (polypyrrole) distifide (DtbDS) into Li-S batteries as a co-RM

(Figure 36)¹⁶⁰. Consequently, the semi-immobilizing (Figure 36)¹⁶¹¹, Concertely, the S—S bond in DbDS

(Figure (Figure 3b)¹⁶⁰). Consequently, the semiimmobilizing (Figure 3c)⁴⁰¹. Concretely, the S—S bond in DtbDS
strategy in practical Li-S batterics realized superior breaks spontaneously and the sulfur chains in LiPS
rate perf strategy in practical Li-S batterics realized superior

threaks spontaneously and the sulfur chains in LiPs

rate performances as well as long lifespan, and it also

endowed pouch cells with high energy density up to

Dtb rate performances as well as long lifespan, and it also molecules are subsequently intervalated into the endoved pouch cells with high energy density up to DhbNS molecule to form modified LiPS molecules and 343 Wh ·kg⁻¹ was sulfurized into \cos_x phases during initial cycles^[53], density of 384 Wh · kg⁻¹ was achieved in working Li-S the discharge process^[54], and the MoS₂ surface was
covered by a gel layer due to the solvent simultaneous
polymerization^[58]. The above surface reconstruction
behaviors inevitably affect the LiPS electrocatalysis
m covered by a gel layer due to the solvent simultaneous
polymerization^[53]. The above surface reconstruction
behaviors inevitably affect the LiPS electrocatalysis
mechanisms and effects. In brief, electrocatalysts are
int polymerization^[55]. The above surface reconstruction
behaviors inevitably affect the LiPS electrocatalysis
mechanisms and effects. In brief, electrocatalysts are
introduced to overcome the sluggish charge transfer
kineti behaviors inevitably affect the LiPS electrocatalysis
mechanisms and effects. In brief, electrocatalysts are
introduced to overcome the sluggish charge transfer
kinetics, and their design should fully consider the in-
terf mechanisms and effects. In brief, electrocatalysts are
introduced to overcome the sluggish charge transfer
kinetics, and their design should fully consider the in-
terfacial issues as well as the solidliquid-solid reaction introduced to overcome the sluggish charge transfer
kinetics, and their design should fully consider the in-
terfacial issues as well as the solidliquid-solid reaction
pathways in Li-S batteries.
3.3 Redox Comediation on kinetics, and their design should fully consider the in-
terfacial issues as well as the solidiquid-solid reaction
pathways in Li-S batteries.
3.3 **Redox Comediation on LiPSs**
Different from the electrode structural modif terfacial issues as well as the solidliquid-solid reaction
pathways in Li-S batteries.
3.3 **Redox Comediation on LiPSs**
Different from the electrode structural modifica-
tion strategy overcoming the LiPSs diffusion issues pathways in Li-S batteries.
 3.3 Redox Comediation on LiPSs

Different from the electrode structural modifica-

tion strategy overcoming the LiPSs diffusion issues

and the electrocatalysis strategy promoting the LiPSs
 3.3 Redox Comediation on LiPSs
Different from the electrode structural modifica-
tion strategy overcoming the LiPSs diffusion issues
and the electrocatalysis strategy promoting the LiPSs
redox reactivity, the redox come Different from the electrode structural modifica-
tion strategy overcoming the LiPSs diffusion issues
and the electrocatalysis strategy promoting the LiPSs
redox reactivity, the redox comediation strategy can
accelerate t tion strategy overcoming the LiPSs diffusion issues
and the electrocatalysis strategy promoting the LiPSs
redox reactivity, the redox comediation strategy can
accelerate the reactivity and diffusivity of LiPSs on
S/C cath and the electrocatalysis strategy promoting the LiPSs
redox reactivity, the redox comediation strategy can
accelerate the reactivity and diffusivity of LiPSs on
S/C cathodes at the same time. In detail, organic
disulfides redox reactivity, the redox comediation strategy can
accelerate the reactivity and diffusivity of LiPSs on
S/C cathodes at the same time. In detail, organic
disulfides and diselenides can serve as redox comedi-
ators (coaccelerate the reactivity and diffusivity of LiPSs on
S/C cathodes at the same time. In detail, organic
disulfides and diselenides can serve as redox comedi-
ators (co-RMs) to spontaneously react with LiPSs in
Li-S batter S/C cathodes at the same time. In detail, organic
disulfides and disclenides can serve as redox comedi-
ators (co-RMs) to spontaneously react with LiPSs in
Li-S batteries, afford an additional chemical reaction
pathway be disulfides and diselenides can serve as redox comediators (co-RMs) to spontaneously react with LiPSs in Li-S batteries, afford an additional chemical reaction pathway besides the original electrochemical pathway, and prom $\mu L \cdot mg^{-1}$ and high sulfur loading (5.0 mg_s \cdot cm⁻²) RMs) to spontaneously react with LiPSs in
ries, afford an additional chemical reaction
besides the original electrochemical path-
promote the overall sulfur redox kinetics^{[66,67}].
coe, Zhao et. al. introduced di-tertiar $\left(\frac{1}{2} \right)$ Li-S batteries, afford an additional chemical reaction
pathway besides the original electrochemical path-
way, and promote the overall sulfur redox kinetics^{[96,87}].
For instance, Zhao et. al. introduced di-tertiary buty pathway besides the original electrochemical path-
way, and promote the overall sulfur redox kinetics^{[96,67}].
For instance, Zhao et. al. introduced di-tertiary butyl
disulfide (DtbDS) into Li-S batteries as a co-RM
(Fig way, and promote the overall sulfur redox kinetics^{[96,97}].
For instance, Zhao et. al. introduced di-tertiary butyl disulfide (DtbDS) into Li-S batteries as a co-RM (Figure 3c)^[41]. Concretely, the S—S bond in DtbDS br For instance, Zhao et. al. introduced di-tertiary butyl
disulfide (DtbDS) into Li-S batteries as a co-RM
(Figure 3c)^[41]. Concretely, the S—S bond in DtbDS
breaks spontaneously and the sulfur chains in LiPS
molecules ar disulfide (DtbDS) into Li-S batteries as a co-RM
(Figure 3c)^[41]. Concretely, the S—S bond in DtbDS
breaks spontaneously and the sulfur chains in LiPS
molecules are subsequently intercalated into the
DtbDS molecule to f (Figure 3c)^[41]. Concretely, the S—S bond in DtbDS
breaks spontaneously and the sulfur chains in LiPS
molecules are subsequently intercalated into the
DtbDS molecule to form modified LiPS molecules
grafted with organic breaks spontaneously and the sulfur chains in LiPS
molecules are subsequently intercalated into the
DtbDS molecule to form modified LiPS molecules
grafted with organic groups (*i.e.*, tb-S_{*m*-I}Li). Both the
diffusivity molecules are subsequently intercalated into the
DtbDS molecule to form modified LiPS molecules
grafted with organic groups (*i.e.*, tb-S_{n+1}Li). Both the
diffusivity and the reactivity of the modified LiPSs
are higher t

 $#E\#(J. Electrochem.)$ 2022, 28(12), 2219013 (6 of 13)
pouch cells^[59]. In brief, the redox comediation strat-
egy is impressively effective in accelerating both the
diffusivity and the reactivity of LiPSs, and it can pro-
tivel the \mathcal{C}_{rel} is impressively effective in accelerating both the Since the electronic conductivity of SPAN is rela-
eifflisivity and the reactivity of LiPSs, and it can pro-
time the electronic conductivity of SPAN is odes.

ders (around 10 -⁹ ^S窑cm-¹ ders (around 10^{-9} S \cdot cm⁻¹)^[66]. Meanwhile, volume issues as well. However, different from the S/C conductive network (Figure 4a)⁶⁸⁸. As a result, Lie cathodes, the optimizing strategies do not aim at cells with the GO composited SPAN cathodes consolide LiFSs but rather

 $\mathbb{E}\left(\mathbb{R}^2\right)$. In brief, the redox comediation strat-
pouch cells^[99]. In brief, the redox comediation strat-
eigy is impressively effective in accelerating both the Since the electronic conductivity of SPAN is r $\frac{dE}{E}$ (*Leterochem.*) 2022, 28(12), 2219013 (6 of 13)

pouch cells^[59]. In brief, the redox comediation strat-

egy is impressively effective in accelerating both the

since the electronic conductivity of SPAN is r $#R \cong (J. Electrochem.) 2022, 28(12), 2219013 (6 of 13)$

pouch cells⁽³⁹⁾. In brief, the redoc comediation strat-

egy is impressively effective in acceleration strat-

diffusivity and the reactivity of LiPSs, and it can pro-

invest $\text{#E}^{\text{g}}(J. \text{ *Electrochem.*}) 2022, 28(12), 2219013 (6 of 13) \\\\ \text{the cells}^{\text{(59)}}. \text{ In brief, the redox compediation strat-} \textbf{4.1} \text{ *Electrode Structure Modification* is impressively effective in accelerating both the
\n5. Since the electronic conductivity of SPAN
\n2. If the probability of CPAN is the activity of LIPSs, and it can pro-} \text{ is increasing to modify electro-} \\\ \text{the full-range sulfur redox kinetics on S/C cath-} \text{tures by introducing high-conductive carbon
\nas and constructing efficient ionic and e
\n**Challenges and Optimizing Structure** ($ **EVALUATION EXAMORE 1999** (50 m) and etherwise are conjuncted for the simple simple simple simplessively effective in accelerating both the Since the electronic conductivity of SPAN is relativity of LiPSs, and it can prov **Example 19**
 Example 1998. In brief, the redox comediation strat-**4.1 Electrode Structure Modification**

egy is impressively effective in accelerating both the

Since the electronic conductivity of SPAN is rela-

diffu **EVALUATION THE SET ALTERT CONTIFICATE CONTIFICATE SET ALTERT AND THE SET ART AND THE SET AND THE SET** soluble LiPSs but rather SPAN itself. Concretely, 4×4 *Electrochem.*) 2022, 28(12), 2219013 (6 of 13)
pouch cells¹⁵⁹¹. In brief, the redox comediation strat-
egy is impressively effective in accelerating both the
diffusivity of SPAN is rela-
diffusivity and the rea (0.42×1) Electrochem, 2022, 28(12), 2219013 (6 of 13)
pouch cells⁵⁹⁾. In brief, the redox connediation strat-
equision strate-
equision in the size definition of the size of the size of the size of definition of FAN $#_3(E\#^2(L \text{ *Electrochem*), 2022, 28(12), 2219013 (6 of 13)$

redox comediation strat-

in accelerating both the

since the electronic conductivity of SPAN is rela-

of LiPSs, and it can pro-

tively low, it is promising to modi th $\ell E^{\phi}(L \text{ Rlectmeden})$ 2022, 28(12), 2219013 (6 of 13)
pouch cells¹⁶⁹. In brief, the redox comediation strat-
4.1 Electrode Structure Modification
egy is impressively effective in accelerating both the
since the clectr pouch cells¹⁹⁹¹. In brief, the redox comediation strate-

egy is impressively effective in accelerating both the

diffusivity and the reactivity of LiPSs, and it can pro-

diffusivity and the reactivity of LiPSs, and it pouch cells¹⁹⁹. In brief, the redox connediation strat-

egy is impressively directive in accelerating both the since the lectronic conductivity of PRAN is rela-

difflisivity and the reativity of LiPSs, and it can pro-
 egy is impressively effective in accelerating both the

diffusivity of due tractivity of SPAN is rela-

diffusivity and the reactivity of SPAN is the more ively low, it is promising to modify electrode struction

one full diffusivity and the reactivity of LiPSs, and it can pro-

interestign in modify obcerted struc-

odes.

modify although high-conductive archor materi-

odes.
 4 Challenges and Optimizing Strate- and sonstructing efficie mote full-range sulfur redox kinetics on S/C cath-

are by introducing high-conductive carbon materi-

ds. Challenges and Optimizing Strate-

pathways. For instance, Yin et.al. introduced oxi-

gies for SPAN Cathodes

Main als and constructing efficient ionic and electronic
 gies for SPAN Cathodes
 dizero challenges and Optimizing Strate- pathways. For instance, Yin etal. introduced oxi-

Main challenges for SPAN enhodes are kincic make **4 Challenges and Optimizing Strate-** pathways. For instance, Vin et.al. introduced oxigies for SPAN cathodes

including three case of CO) into the SPAN carbodes are kinetic

make the SPAN powders evenly dispersed on the
 gies for SPAN Cathodes

Main challenges for SPAN cathodes are kinetic make the SPAN carbodes to the

issues as well. However, different from the SC conductive network (Figure 4a)¹⁶⁸), as a result, Li-S

issues as well Main challenges for SPAN cathodes are kinetic

inske the SPAN powders evenly dispersed on the

issues as well. However, different from the S/C conductive network (Figure 4a)⁵⁰¹. As a result, Li-S

cells with the GO comp $28(12)$, 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon 12), 2219013 (6 of 13)
 I Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

ely low, it is promising to modify electrode struc-

es by introducing high-conductive carbon materi-

and c $28(12)$, 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbo $28(12)$, 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbo 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma $28(12)$, 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbo 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma (6 of 13)
 de Structure Modification

lectronic conductivity of SPAN is rela-

is promising to modify electrode struc-

ducing high-conductive carbon materi-

ructing efficient ionic and electronic

rustance, Yin et.al. 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma $(6 \text{ of } 13)$
 Code Structure Modification

electronic conductivity of SPAN is rela-

is promising to modify electrode struc-

ducing high-conductive carbon materi-

tructing efficient ionic and electronic

or instance, 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma 28(12), 2219013 (6 of 13)
 4.1 Electrode Structure Modification

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon ma **4.1 Electrode Structure Modification**

Since the electronic conductivity of SPAN is rela-

tively low, it is promising to modify electrode struc-

tures by introducing high-conductive carbon materi-

als and constructing **4.1 Electrode Structure Modification**
Since the electronic conductivity of SPAN is rela-
tively low, it is promising to modify electrode struc-
tures by introducing high-conductive carbon materi-
als and constructing eff Since the electronic conductivity of SPAN is rela-
tively low, it is promising to modify electrode struc-
tures by introducing high-conductive carbon materi-
als and constructing efficient ionic and electronic
pathways. F tively low, it is promising to modify electrode struc-
tures by introducing high-conductive carbon materi-
als and constructing efficient ionic and electronic
pathways. For instance, Yin et.al. introduced oxi-
dized graphe tures by introducing high-conductive carbon materials and constructing efficient ionic and electronic pathways. For instance, Yin et.al. introduced oxidized graphene (GO) into the SPAN cathodes to make the SPAN powders eve als and constructing efficient ionic and electronic
pathways. For instance, Yin et.al. introduced oxi-
dized graphene (GO) into the SPAN cathodes to
make the SPAN powders evenly dispersed on the
conductive network (Figure pathways. For instance, Yin et.al. introduced oxidized graphene (GO) into the SPAN cathodes to make the SPAN powders evenly dispersed on the conductive network (Figure 4a)⁽⁶⁸⁾. As a result, Li-S cells with the GO compos dized graphene (GO) into the SPAN cathodes to
make the SPAN powders evenly dispersed on the
conductive network (Figure 4a)^[68]. As a result, Li-S
cells with the GO composited SPAN cathodes could
cycle stably and exhibit make the SPAN powders evenly dispersed on the
conductive network (Figure 4a)^[68]. As a result, Li-S
cells with the GO composited SPAN cathodes could
cycle stably and exhibit a specific capacity of nearly
900 mAh·g⁻¹ e conductive network (Figure 4a)^{(68]}. As a result, Li-S
cells with the GO composited SPAN cathodes could
cycle stably and exhibit a specific capacity of nearly
900 mAh·g⁻¹ even under a high rate of 6.0 C (1 C =
1672 mA· micrometer-sized SPAN pow-

I672 mA·g⁻¹). However, GO with high specific area

com⁻¹)^{(66]}. Meanwhile, volume

always takes up much electrolyte conditions. To this incompatible

issues. Additionally, in ether-

signi 1672 mA · g⁻¹). However, GO with high specific area
always takes up much electrolyte and is incompatible
with lean electrolyte conditions. To this end, electro-
spinning processing is reported to compensate the
electron g f). However, OO with migh spectra accass up much electrolyte and is incompatible electrolyte conditions. To this end, electro-
rocessing is reported to compensate the conductivity and tolerant low electrolyte the same t Fable 1 Summary of advanced Li-S battery performances with S/C or SPAN cathodes.

Table 1 Summary of advanced Li-S battery performances with S/C or SPAN cannot and incorporate of the sulfur performance and the same time. 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (6 of 13)
dox comediation strat-
a correlating both the Since the electronic conductivity of SPAN is rela-
EiPSs, and it can pro-
tively low, it is promising to modify electro

variation during cycling destroys the structural stabil- ity of SPAN cathodes, which may further aggravate the cathodic kinetics issues. Additionally, in ether- based electrolyte, part of the sulfur species may be dissolved into the electrolyte, impair the SPAN kinet- ics, and reduce the cathodic cycling stability ^[67] . Aim- ing at the above challenges, major optimizing strate- gies are proposed, including electrode structure mod- ification, morphology regulation by co-polymeriza- tion, heteroatom doping at molecular level, and ex- trinsic redox mediation (Figure 4). Table 1 Summary of advanced Li-S battery performances with S/C or SPAN cathodes.			with lean electrolyte conditions. To this end, electro- spinning processing is reported to compensate the electronic conductivity and tolerant low electrolyte volume at the same time. For example, Wang et al. mixed carbon nanotubes (CNTs) and PAN together through the electrospinning method, and then sulfur- ized them under high temperatures ^[64] . Consequently, the SPAN exhibited a nanosized slice morphology on the CNTs, which endowed the Li-S cells with a spe- cific capacity of 1180 mAh \cdot g ⁻¹ without capacity fad- ing over 1000 cycles. In brief, electrode structure		
	Component	Sulfur loading $(mg_s \cdot cm^{-2})$	Specific capacity $(mAh·g-1)$	Cycling lifespan	Reference
	G@ppy-por	5.0	940 @ 0.2 C	70 @ 0.2 C	Zhao et al.[40]
	$MoS2$ with TEA	4.0	988 @ 0.3 C	100 @ 0.3 C	Li et al. [37]
			924 @ 0.1 C	55 @ 0.1 C	Zhao et al. ^[58]
	DPDSe	5.0			
S/C cathode	LPC	4.0	1001 @ 0.1 C	$100 \ (a) 0.1 C$	Feng et al.[39]
	$7TiN:3TiO2-G$	1.2	800 @ 1.0 C	2000 @ 1.0 C	Zhou et al. ^[51]
	Co_4N/NG	4.1	1109 @ 0.5 C	150 @ 0.5 C	Zhao et al. ^[53]
	Se _{0.06} SPAN	$1 \sim 3$	1240 @ 0.26 C	800 @ 0.26 C	Chen et al.[60]
	BEAQ	1.5	1109 @ 1.0 C	160 @ $1.0 C$	Zhao et al. ^[61]
	Fibrous SPAN	0.672	600 @ 4.0 C	$1000 \; (\omega, 4.0 \; \text{C})$	Frey et al. ^[62]
SPAN cathode	SPAN-CNT20	$0.9 \sim 1.1$	1106 @ 1.0 C	500 @ 1.0 C	Razzaq et al.[63]
	SPAN/CNT-12	$2.0\,$	1180 @ 0.48 C	1000 @ 0.48 C	Wang et al. ^[64]

eration.

EXAMPLE 12
 EXAMPLE 12 HEPACE Electrochem.) 2022. 28(12), 2219013 (7 of 13)
 modification mainly concentrates on the SPAN con-

conduction networks and provided directed Li⁺ diffu-

ductivity enhancement. Compatibility with high sulfur

m **EVALUATION THE SEAT (FOLUATION ACCES)**
 EVALUATION THE POLY CONDUCT THE SEAT (WE ART AND THE SEAT (WE ART AND THE SEAT (WE ART AND THE SEAT (FOLUATION CONDUCT THE SEAT (FOLUATION THE SEAT (FOLUATION THE SEAT (POLY COND th (k ²⁶(μ *Electrochom*,) 2022, 28(12), 2219013 (7 of 13)

modification mainly concentrates on the SPAN concentrates and provided directed Li² diffu-

ductivity enhancement. Computable with high sulfire sinth co 40. (*k*</sup>/ε *Blectochem*) 2022, 28((2), 2219013 (7 of 13)

modification mainly concentrates on the SPAN concentrates suggested that the directed Li⁺ diffu-

ductivity enhancement. Compatibility with high sulfare

con modification mainly concentrates on the SPAN concentrates on conduction networks and provided directed Li⁺ diffu-
ductivity enhancement. Compatibility with high sulfar sion pathways. As a result, Li-S cells showed high
 modification mainly concentrates on the SPAN con-

conduction networks and provided directed Li⁴ diffu-

ductrivity enhancement. Compatiblity with high sulfrier sion pathways. As a result, Li-S- cells showed high

conte ductivity enhancement. Compatibility with high sulfur

exontant and can clearly by the fit expanding to the consideration.

exoncent and lean clearly by the spatial be taken into consideration of the spatial behavior of t content and lean electrolyte shall be taken into considential mate capability up to 8.0 C and excellent cycling sta-
 ation.
 412 Morphology Regulation by Co-Poly- implyed years. In brief, regulating the SPAN
 412 Mo

 $\frac{\text{d} \mathcal{H}^{\text{H}}(J. \text{Electrochem.}) 2022, 28(12), 2219013 (7 \text{ of } 13)}{\text{modification mainly concentrates on the SPAN con-}}$ conduction networks and provided directed Li⁴ diffu-

ductivity enhancement. Compatibility with high sulfur

conduction networks and provided $\#E\#(J. Electron, 2022, 28(12), 2219013 (7 of 13)$

modification mainly concentrates on the SPAN concentrators of conduction networks and provided directed Li⁺ diffu-

ductivity enhancement. Compatibility with high sulfur

conten **Example 19** Example 1992, 2012), 2219013 (7 of 13)

Englisheductivity enhancement. Compatibility with high sulfur

ductivity enhancement. Compatibility with high sulfur

content and lean electrolyte shall be taken into ^{ti} det²² (*L* Electrochem.) 2022, 28(12), 2219013 (7 of 13)

modification mainly concentrates on the SPAN concentration networks and provided directed Li⁺ diffu-

ductivity enhancement. Compatibility with high sulf **merization** the precursor composition by co-polymerization is ef-**EVALUATION**
 EVALUATION
 EVALUATION in the SPAN particles are rather than the SPAN particles are related to the SPAN con-
 in the SPAN con- conduction networks and provided directed Li⁺ diffu-

ductivity enhancement. Compatibility with high sulfur sio **Example 120**
 Example 12 EXALUAT THE SIZE INTERT AN ASSAM CONDUCTER CONDUCTED AND MONOGRAPHERIS (STAN THE SIZE IN A STAN THE SIZE IS SIZE IS SIZE IS A SURFALUS INTERTED INTERTATION (THE SIZE IS A STAIN THE SCHE SIZE IS A STAIN THAT AND THE SIZE $28(12)$, 2219013 (7 of 13)
conduction networks and provided directed Li⁺ diffu-
sion pathways. As a result, Li-S cells showed high
rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In br conduction networks and provided directed Li⁺ diffu- $28(12)$, 2219013 (7 of 13)
conduction networks and provided directed Li⁺ diffu-
sion pathways. As a result, Li-S cells showed high
rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In br $28(12)$, 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. I $28(12)$, 2219013 (7 of 13)
conduction networks and provided directed Li⁺ diffu-
sion pathways. As a result, Li-S cells showed high
rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In br 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br issues. 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br (12), 2219013 (7 of 13)

Induction networks and provided directed Li⁺ diffu-

In pathways. As a result, Li-S cells showed high

e capability up to 8.0 C and excellent cycling sta-

ity over 1200 cycles. In brief, regula 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br 28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (7 of 13)

es on the SPAN conconduction networks and provided directed Li⁺ diffu-

ibility with high sulfur sion pathways. As a result, Li-S cells showed high

1 be taken in

28(12), 2219013 (7 of 13)

conduction networks and provided directed Li⁺ diffu-

sion pathways. As a result, Li-S cells showed high

rate capability up to 8.0 C and excellent cycling sta-

bility over 1200 cycles. In br 28(12), 2219013 (7 of 13)
conduction networks and provided directed Li⁺ diffu-
sion pathways. As a result, Li-S cells showed high
rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In brief, conduction networks and provided directed Li⁺ diffusion pathways. As a result, Li-S cells showed high rate capability up to 8.0 C and excellent cycling stability over 1200 cycles. In brief, regulating the SPAN morpholog conduction networks and provided directed Li⁺ diffus-
sion pathways. As a result, Li-S cells showed high
rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In brief, regulating the SPAN
morp works and provided directed Li⁺ diffu-
As a result, Li-S cells showed high
ap to 8.0 C and excellent cycling sta-
cycles. In brief, regulating the SPAN
d reducing their size through altering
mposition by co-polymerizati rected Li⁺ diffu-
Ils showed high
lent cycling sta-
lating the SPAN
through altering
merization is ef-
nd tackle kinetic
lecular Level
nium (Se) and
n regulating the
erties of SPAN
Se and Te dop-
tivity of SPAN.
into S sion pathways. As a result, Li-S cells showed high
rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In brief, regulating the SPAN
morphology and reducing their size through altering
the prec rate capability up to 8.0 C and excellent cycling sta-
bility over 1200 cycles. In brief, regulating the SPAN
morphology and reducing their size through altering
the precursor composate conductivity and tackle kinetic
iss

 $\#E\#(J. Electrochem.)$ 2022, 28(12), 2219013 (8 of 13)

electrolytes, and del ivered high capacities of 1507 5 Conclusions and Outlooks

and 861 mAh·g⁻¹ at 0.1 and 10 A·g⁻¹, respectively. The Li-S batteries with S/C or SPAN c $#E\#(J. Electrochem.)$

Electrolytes, and delivered high capacities of 1507 5 Conclusions and

and 861 mAh·g⁻¹ at 0.1 and 10 A·g⁻¹, respectively.

On the other hand, Se and Te doping in SPAN can

bibit distinct characteristi th $\ell \neq (J. Electrochem.)$ 2022, 28(12), 2219013 (8 of 13)

electrolytes, and delivered high capacities of 1507 **5 Conclusions and Outlooks**

and 861 mAh · g⁻¹ at 0.1 and 10 A · g⁻¹, respectively. The Li-S batteries with S/C o $\frac{4E}{\epsilon}$ (*L. Electrolemi*) 2022, 28(12), 2219013 (8 of 13)

electrolytes, and del ivered high capacities of 1507 **5 Conclusions and Outlooks**

and 861 mAh · g⁻¹ at 0.1 and 10 A · g⁻¹, respectively. The Li-S batter **ELET ALCONST (Example 2022, 28(12), 2219013 (8 of 13)**
 Electrolytes, and del ivered high capacities of 1507 5 Conclusions and Outlooks

and 861 mAh ·g⁻¹ at 0.1 and 10 A ·g⁻¹, respectively.

The Li-S batteries with Se into SPAN cathode and found that the irreversible ± 64 (*J. Electrochem.*) 2022, 28(12), 2219013 (8 of 13)

electrolytes, and del ivered hip depactities of 1507 **5 Conclusions and Outlooks**

and 861 mAh ·g⁻¹ at 0.1 and 10 A ·g⁻¹, respectively. The Li-S batteries w $\pm \frac{1}{2}$ (*L. Electrochem.*) 2022, 28(12), 2219013 (8 of 13)
 electrolytes, and del ivered high capacities of 1507 5 Conclusions and Outlooks

and 861 mAh ·g⁻¹ at 0.1 and 10 A ·g⁻¹, respectively. The Li-S batte \pm the cathodic reaction rates are greatly ac-

and an ultilooks can all diverd high capacities of 1507 **5 Conclusions and Outlooks**

and 861 mAh \cdot g⁻¹ at 0.1 and 10 A \cdot g⁻¹, respectively. The Li-S batteries w \pm (*L Electrocheem*, 2022, 28(12), 2219013 (8 of 13)

electrolytes, and delivered high capacities of 1507 **5 Conclusions and Outlooks**

and 861 mAh \cdot g⁻¹ at 0.1 and 10 A · g⁻¹, respectively. The Li-S batteries w **Example 19**
 Example 1980 (*L Electrochem*, 2022, 28(12), 2219013 (8 of 13)
 Electrolytes, and delivered high capacities of 1507 5 Conclusions and Outlooks

and 861 mAh $_2$ ⁻⁴ at 0.1 and 10 A $_2$ ⁻⁴, respectiv **EVALUATION FOR THE 12000 EXALUATION THE SECT AT ALL AT AL Example 19**
 Example 19 the $2^x(L$ *Recurreduen,* 2022, 28(12), 2219013 (8 of 13)

electrolytes, and delivered high expacities of 1507

and 861 mAh $_2$ ⁻¹ at 0.1 and 10 A $_2$ ⁻¹, respectively.

On the other hand, Se and Te doping in SPAN can $m_1/k^2\%$ (*L Electrochem*ical 2022, 28(12), 2219013 (8 of 13)

electrolytes, and del vered high capacities of 1507 **5 Conclusions and Outlooks**

and 861 mAh ·g⁻¹ at 0.1 and 10 A ·g⁻¹, respectively. The Li-S batteries electrolytes, and delivered high capacities of 1507 **5 Conclusions and Outlooks**

and 861 mAh g^{-1} at 0.1 and 10 A $\cdot g^{-1}$, respectively. The Li-S batteries with S/C or SPAN cathodes ex-

On the other hand, Se and Te d electrolyte, and delivered mgn capacites of 1507

and 861 mAh g^{-1} at 0.1 and 10 A s^{-1} , respectively.

The Li-S batteries with SC cor SPAN cathodes ex-

on the other hand, Se and Te doping in SPAN can

generate severa and 861 mAh ·g" at 0.1 and 10 A ·g", respectively. The Li-S batteries with S/C or SPAN cather

on the other hand, Se and Te doping in SPAN can

entired that stime terrate is externed in the stime dependent of the

depende In the unit of small is the material, se all the unit of small is the state is the state in the compatibility of the state is with set can be the state of the shemical reactivity⁶⁷⁰. Chen et al. introduced 6at⁹⁶ batter givental several of the interests with EN cathodes a particles with SC cathods are leadingly advanta-
Sc into SPAN cathods and found that the irreversible
several moderate with SCC cathods are relatively advanta-
Sc into increation in Section and Theoretic and American Caroline and American conducts in SEAN calibods are relatively awaitable since SPAN calibods and predominant in sulfur content. However, Li-Selectrolyte is genatly relieved se under a searly distance and point of the interesting and the ending sulfir besteen the mergy density is greatly relieved and predominant in sulfir content. However, Li-S electrolyte is greatly relieved^{fora}. The above

[2-methoxyethoxy]ethoxy)anthra-9,10-quinon
metal anode is originated from the soluble LiPSs gen-In morphology of SPAN usaully exminds builty with Li metal anode as well as electrolyte. The morphology of SPAN usaully exsults in long electronic conduction
inevitably results in long electronic conduction
intervalse in particles with several micromores in diameter, wind

investigate and angle electronic conduction

in the institute issues are due to the intrinsic sol-

distance and large contact resistance¹⁰⁸. From this point

of view, metallation end longe electronic conduction

in this in long electronic conduction

distance and large contact resistance^{pes}. From this point

of view, extrinsic redox mediation is expert in

the carried soluble LiPSs wi distance and large condact restsiance"⁻ rrom us point
of view, extrinsic redox mediation is expert in centrated soluble LiPSs with limited charge transfer
handling the poor electronic conductivity by coupling rates and l of vew, extrinse recox mediation is expert in

the proof electronic conductivity by coupling

a chemical pathway on the original electrochemical

and the redox mediations. Therefore, both mechanism in-

a chemical pathway naming the poor electroche conductivity is volupling
and parameterizal parameterizal and parameterizal and according the according the poor conductivity is can alternate parameterizal parametery. Than or at alternative pr a nemnal partimony on the original electronemental

and marking partimonal structure and kinetic promoters are specially need-

[2-methoxyethoxy)ethoxy)ethoxy)athan-9,10-quinon

(DEAQ) as an extrinsic redox mediator, and t parmay. Znao et al. aaoptea the 1,5-bis(\angle -(\angle)))))), murthis \angle , (10, hunom

at 0.1 and 10 A窑g-¹ *Electrochem.*) 2022, 28(12), 2219013 (8 of 13)

cities of 1507 **5 Conclusions and Outlooks**

, respectively. The Li-S batteries with S/C or SPAN cathodes ex-

in SPAN can

hibit distinct characteristics (Figure 5). In de 28(12), 2219013 (8 of 13)

5 **Conclusions and Outlooks**

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

hat 12), 2219013 (8 of 13)
 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

bit distinct characteristics (Figure 5). In detail, com-

red with Li-S batteries with SPAN cathodes, Li-S

tteries with 28(12), 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

bat 28(12), 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

bat 28(12), 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

bat $28(12)$, 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S $28(12)$, 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S $28(12)$, 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S 28(12), 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

bat $28(12)$, 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S 28(12), 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

ba $28(12)$, 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S $28(12)$, 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S $28(12)$, 2219013 (8 of 13)
 55 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-28(12), 2219013 (8 of 13)
 5 Conclusions and Outlooks

The Li-S batteries with S/C or SPAN cathodes ex-

hibit distinct characteristics (Figure 5). In detail, com-

pared with Li-S batteries with SPAN cathodes, Li-S

bat **5 Conclusions and Outlooks**
The Li-S batteries with S/C or SPAN cathodes ex-
hibit distinct characteristics (Figure 5). In detail, com-
pared with Li-S batteries with SPAN cathodes, Li-S
batteries with S/C cathodes are re **Conclusions and Outlooks**
The Li-S batteries with S/C or SPAN cathodes ex-
bit distinct characteristics (Figure 5). In detail, com-
red with Li-S batteries with SPAN cathodes, Li-S
tteries with S/C cathodes are relatively The Li-S batteries with S/C or SPAN cathodes ex-
hibit distinct characteristics (Figure 5). In detail, com-
pared with Li-S batteries with SPAN cathodes, Li-S
batteries with S/C cathodes are relatively advanta-
geous in ou hibit distinct characteristics (Figure 5). In detail, com-
pared with Li-S batteries with SPAN cathodes, Li-S
batteries with S/C cathodes are relatively advanta-
geous in output voltage, superior in energy density,
and pre pared with Li-S batteries with SPAN cathodes, Li-S
batteries with S/C cathodes are relatively advanta-
geous in output voltage, superior in energy density,
and predominant in sulfur content. However, Li-S
batteries with SP batteries with S/C cathodes are relatively advanta-
geous in output voltage, superior in energy density,
and predominant in sulfur content. However, Li-S
batteries with SPAN cathodes exhibit fantastic
lean-electrolyte tole geous in output voltage, superior in energy density,
and predominant in sulfur content. However, Li-S
batteries with SPAN cathodes exhibit fantastic
lean-electrolyte tolerance, higher rate capability, and
generally longer 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (8 of 13)
gh capacities of 1507 **5 Conclusions and Outlooks**
10 A · g⁻¹, respectively. The Li-S batteries with S/C or SPAN cathodes ex-
e doping in SPAN can hibit distinct c

some to share a simula three-times the prediction in the prediction and predicted incores and the expert in the state of the state of the state in the state of the capacity decept in the capacity decept is predicted and t electrony is peatry increased and better and and conduction and the solution and the poor electronic state of the angle of the solution and the conductivity and eclerated and the capacity decay is inhibited. Consequently l meare that the vealure of state greate particles with the reader of the chemical value of the original electrochemical pathway of the original electrochemical pathway on the set of the set original electrochemical space of eterative and the equality vector is equality the effect and the equality. We be diped spectral and the along the standard of the area and the along the standard solo cycles with nearly 100% Coulombic efficiency literatur on vycies with insing throws containing emisative and the entropy and the state of the state and numeral over the species in the species of Section and the electronic stars and the distribution of $\sinh x = 0$ and $\sinh x$ ore, neterotomic oppuging can impower in execution. The section and exergence is the same time, resulting in greatly and opportunities of SC and SPAN cathodes in Li-S
cathodes at the same time, resulting in greatly and opp conductively and extended redox to the median method of the same time, resulting in greatly end batteries are respectively presented as follows.
 4.4 Extrinsic Redox Mediation
 4.4 Extrinsic Redox Mediation
 4.4 Extr eature sature the state and state and the space of the state state and battery performances. To rS/C cathodes, there are mainly three aspects of **4.4 Extrinsic Redox Mediation** challenges: kinetics issues under high rates, The Hauthous kinetics assumed valuation and the station of LiFSs in the conduct and the compatition of PAN by the morphology of SPAN usually exhibits bulk issues under low E/S ratios, and eathodic incompatities with severa **4.4 EXIFINE REQUA YOUGHDATION**
 EXIFINE REQUA YOUGHDATION
 EXIFINE REQUA YOUGHDATION
 EXIFINE REQUALITY IS THE DEVELONAMIC SURFER TO THE DEVELONAMIC TO THE DETECT THE DEVELONAMIC TRIGGENT IS IS THE DETECT OF THE DEV and predominant in sulfur content. However, Li-S
batteries with SPAN cathodes exhibit fantastic
lean-electrolyte tolerance, higher rate capability, and
generally longer stability. Note that above arguments
are based on the batteries with SPAN cathodes exhibit fantastic
lean-electrolyte tolerance, higher rate capability, and
generally longer stability. Note that above arguments
are based on the average level according to reported
literatures. lean-electrolyte tolerance, higher rate capability, and
generally longer stability. Note that above arguments
are based on the average level according to reported
literatures. Therefore, Li-S batteries with S/C or SPAN
cat generally longer stability. Note that above arguments
are based on the average level according to reported
literatures. Therefore, Li-S batteries with S/C or SPAN
cathodes face different challenges, and the future re-
sear are based on the average level according to reported
literatures. Therefore, Li-S batteries with S/C or SPAN
cathodes face different challenges, and the future re-
search directions shall be different. Key challenges
and o literatures. Therefore, Li-S batteries with S/C or SPAN
cathodes face different challenges, and the future re-
search directions shall be different. Key challenges
and opportunities of S/C and SPAN cathodes in Li-S
batteri cathodes face different challenges, and the future re-
search directions shall be different. Key challenges
and opportunities of S/C and SPAN cathodes in Li-S
batteries are respectively presented as follows.
For S/C cathod search directions shall be different. Key challenges
and opportunities of S/C and SPAN cathodes in Li-S
batteries are respectively presented as follows.
For S/C cathodes, there are mainly three aspects of
challenges: kinet and opportunities of S/C and SPAN cathodes in Li-S
batteries are respectively presented as follows.
For S/C cathodes, there are mainly three aspects of
challenges: kinetics issues under high rates, kinetics
issues under lo batteries are respectively presented as follows.
For S/C cathodes, there are mainly three aspects of challenges: kinetics issues under high rates, kinetics issues under low E/S ratios, and cathodic incompatibility with Li For S/C cathodes, there are mainly three aspects of challenges: kinetics issues under high rates, kinetics issues under low E/S ratios, and cathodic incompati-
bility with Li metal anode as well as electrolyte. The first t challenges: kinetics issues under high rates, kinetics issues under low E/S ratios, and cathodic incompati-
bility with Li metal anode as well as electrolyte. The
first two kinetic issues are due to the intrinsic sol-
id-l issues under low E/S ratios, and cathodic incompati-
bility with Li metal anode as well as electrolyte. The
first two kinetic issues are due to the intrinsic sol-
id-liquid-solid reaction pathway, which renders con-
centra bility with Li metal anode as well as electrolyte. The
first two kinetic issues are due to the intrinsic sol-
id-liquid-solid reaction pathway, which renders con-
centrated soluble LiPSs with limited charge transfer
rates first two kinetic issues are due to the intrinsic sol-
id-liquid-solid reaction pathway, which renders con-
centrated soluble LiPSs with limited charge transfer
rates and low diffusion rates dominating the cathodic
interfa id-liquid-solid reaction pathway, which renders con-
centrated soluble LiPSs with limited charge transfer
rates and low diffusion rates dominating the cathodic
interfacial kinetics. Therefore, both mechanism in-
vestigatio ntrated soluble LiPSs with limited charge transfer
es and low diffusion rates dominating the cathodic
rerfacial kinetics. Therefore, both mechanism in-
stigation and kinetic promoters are specially need-
to address this is rates and low diffusion rates dominating the cathodic
interfacial kinetics. Therefore, both mechanism in-
vestigation and kinetic promoters are specially need-
ed to address this issue. The incompatibility with Li
metal an interfacial kinetics. Therefore, both mechanism investigation and kinetic promoters are specially needed to address this issue. The incompatibility with Li metal anode is originated from the soluble LiPSs generating at cat vestigation and kinetic promoters are specially needed to address this issue. The incompatibility with Li metal anode is originated from the soluble LiPSs generating at cathode, diffusing to the anodic compartment, corrodi ed to address this issue. The incompatibility with Li
metal anode is originated from the soluble LiPSs gen-
erating at cathode, diffusing to the anodic compart-
ment, corroding the Li metal, and rendering rapid an-
ode fai

cathodes.

This work was supported by Natural Scientific

Energy

Energy

Energy

Foundation of China (22100007), Beijing hatitute of

Technology Research Fund Program for Young Schol-

Subtroption

Subtroption are used the other ha Eventry
 Eventry Cosming Schones Conduction of China (22109007), Beijing Natural

Signing Schones Schones (11020004), Resign Institute of
 Euronometric conductive conductive carbon
 Euronometric carbon and the subset content in turn. Due to the unclear chemical struc-**Example 19**

Subtroontent

stating

stating

stating

stating
 $-$ SPAN cathode

stating
 $-$ SPAN cathode
 $-$ SPC caltrode
 $-$ SPC caltrode

Dr. Xue-Qiang Zhang for the helpful discussion.

Figure 5 (comparison of Li-**Surface of the structure and the Tsinghua University Initiative Scientific

Figure 5 Comparison of Li-S batteries with SC or SPAN

EP Research Program. We thank Dr. Wei-Jing Chen and

EP Research Program. We thank Dr. We Example 19** Research Program. We thank Dr. Wei-Jing Chen and
 Equire 5 Computison of Li-S batteries with SC or SPAN
 Equire 5 Computison of Li-S batteries with SC or SPAN
 Example 2 (1) Share 1, Song 8 V, Wang 1, Z **Bonds and the set in t Figure 5** Compatison of Li-S batteries with SC or SPAN
 References:

[1] Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y,

 21 Zhang X Q, Li B Q, Zhang Q. Synergistic eatalysis on du-

alteriors or exponentially ethodes.
 References:

[1] Shen, 1, Nong 1, Nhan C. X, Bi C. X, Sam S Y,

1) Shen, 1, Nong 2, Nhang Q. Synergistic cathosis on da-

al-atom sites for high-performance lithium-sulfor batteries

the precursor composition (1) Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sin S Y,

2) 24 al-atom sites for high-performance lithium-sulfite burstly is a change of the B (2) 2022 (2022) (2022) (2022) (2022) (2023)

PAN crystallinity, and make tion are two effective approaches. In detail, tuning

al-atom sites for high-performance limin-sultir state-

the precursor composition and structure may alter the

ID. Small Stuct., 2022: 2200205.

PAN erystallinity, and tion are two effective approaches. In detail, tuning

(1), Small Smuct, 2022: 2200120s. IEt ill, Small Smuct, 2022: 2200120s. IEt ill, Small Smuct, 2022: 2200120s. IEt ill, Small Smuct, 2022: 2200126. IET is well-

PAN ery the precursor composition and structure may alter the

1913 Nong N, To N, Salt Street, 2022, 2200, 2200, 151 H, Wu F. 5V-

reacting with the PAN precursor. Optimizing the subtrized spinel cultos all-solid-

manufacturing IN crystallinity, and make more clemental sulfur
 $\frac{1}{2}$ sum $\frac{1}{2}$ and \frac reacting with the PAN precursor. Optimizing the

manufacturing process (e.g., introducing electrosyin-

ming technique), on the other hand, may reduce it as W_N D, X_Li, Li, L_i, Wang S, X_N P, Li, Li, Now S, Li, Li, manufacturing process (e.g., introducing electrospin-

in Wu F, Liu L, Wang S, Xu J R, Liu P S, Yan W L, Peng J,

migreching techniques the sulfure in the columer based on the rand, may reduce the sulfure simulations is s ming technique), on the other hand, may reduce the

wo D X, Li H. Soild state ionies -selected topics and new

account in turn. Due to the unclear chemical struc-

content in turn. Due to the unclear chemical struc-
 $\frac{$ amount of conductive carbon and increase the sulfur

originations of the integral structure distantions and the tender chemical structure (separations on SPAN cathodes may be confused

ture, researches on SPAN cathodes ma content in turn. Due to the unclear chemical struc-

ture, researches an PAN calmbolic intention and machine-learning molecular dynamics simulature, researches on PAN canbodis may be confused into the machine-learning mol ture, researches on SPAN cathodes may be confused

into its one the liquid electrolyte for ecchargeable batteries [J].

Spectroscopics are cxpected to probe the specific

spectroscopics are cxpected to probe the specific

 $28(12)$, 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for $28(12)$, 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for $28(12)$, 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for 28(12), 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for Li-S 28(12), 2219013 (9 of 13)

with SPAN cathodes are promising for large-scale

energy storage due to their advantages of low costs

and long cycling lifespan. Witnessing the recent pro-

gresses of S/C and SPAN cathodes for $28(12)$, 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for (12), 2219013 (9 of 13)

h SPAN cathodes are promising for large-scale

rrgy storage due to their advantages of low costs

1 long cycling lifespan. Witnessing the recent pro-

sess of S/C and SPAN cathodes for Li-S batter 28(12), 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for Li-S 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (9 of 13)

with SPAN cathodes are promising for large-scale

energy storage due to their advantages of low costs

Rate

performance

energy storage due to their advantages of l

Acknowledgements:

 $28(12)$, 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for 28(12), 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for Li-S 28(12), 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for Li-28(12), 2219013 (9 of 13)
with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for Li-28(12), 2219013 (9 of 13)

with SPAN cathodes are promising for large-scale

energy storage due to their advantages of low costs

and long cycling lifespan. Witnessing the recent pro-

gresses of S/C and SPAN cathodes for with SPAN cathodes are promising for large-scale
energy storage due to their advantages of low costs
and long cycling lifespan. Witnessing the recent pro-
gresses of S/C and SPAN cathodes for Li-S batteries,
researchers ar rgy storage due to their advantages of low costs
long cycling lifespan. Witnessing the recent pro-
sses of S/C and SPAN cathodes for Li-S batteries,
archers are full of confidence on the development
dvanced Li-S batteries. long cycling lifespan. Witnessing the recent pro-
sess of S/C and SPAN cathodes for Li-S batteries,
archers are full of confidence on the development
dyanced Li-S batteries.
convidedgements:
This work was supported by Na sess of S/C and SPAN cathodes for Li-S batteries,
sess of S/C and SPAN cathodes for Li-S batteries,
archers are full of confidence on the development
dyanced Li-S batteries.
mowledgements:
Confidence on the development greasse or so can error vantances for Lr B stateries,
researchers are full of confidence on the development
of advanced Li-S batteries.
Acknowledgements:
This work was supported by Natural Scientific
Foundation of China stations are furt of collidence of the development
dvanced Li-S batteries.
 Endivery Endivery Sulfide State in Sulfide 3.1 and the Tsing dvanced Li-S batteries.
 convelogements:

This work was supported by Natural Scientific

mdation of China (22109007), Beijing Institute of

hnology Research Fund Program for Young Schol-

and the Tsinghua University Init Acknowledgements:

This work was supported by Natural Scientific

Foundation of China (22109007), Beijing Natural

Science Foundation (JQ20004), Beijing Institute of

Technology Research Fund Program for Young Schol-

ars, This work was supported by Natural Scientific
mdation of China (22109007), Beijing Natural
ence Foundation (JQ20004), Beijing Institute of
hnology Research Fund Program for Young Schol-
and the Tsinghua University Initiati mdation of China (22109007), Beijing Natural

ence Foundation (JQ20004), Beijing Institute of

hnology Research Fund Program for Young Schol-

and the Tsinghua University Initiative Scientific

earch Program. We thank Dr. Science Foundation (JQ20004), Beijing Institute of
Technology Research Fund Program for Young Schol-
ars, and the Tsinghua University Initiative Scientific
Research Program. We thank Dr. Wei-Jing Chen and
Dr. Xue-Qiang Zh hnology Research Fund Program for Young Schol-
and the Tsinghua University Initiative Scientific
earch Program. We thank Dr. Wei-Jing Chen and
Xue-Qiang Zhang for the helpful discussion.
ferences:
Shen L, Song Y W, Wang

References:

- and the Tsinghua University Initiative Scientific
earch Program. We thank Dr. Wei-Jing Chen and
Xue-Qiang Zhang for the helpful discussion.
Eerences:
Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y,
Zhang X Q, Li B earch Program. We thank Dr. Wei-Jing Chen and
earch Program. We thank Dr. Wei-Jing Chen and
Xue-Qiang Zhang for the helpful discussion.
ferences:
ferences:
Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on du-
al-at IDENTIFY OF UNITY OF THE SURVERTIES (SURFACT IN SURFACT INCORD THE SURFACT IN SHARE IN SAMELY IN SURFACT IN SURFACT IN SURFACT IN THE SURFACT IN THE SURFACT IN THE SURFACT IN WE FULL USE THAN WE THAN WE THAN WE THAN WE THA Xue-Qiang Zilang for the helphut discussion.

Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y,

Zhang X Q, Li B Q, Zhang Q. Synergistic eatalysis on du-

ad-adom sites for high-performance lithium-sulfur batteries

[J] **ferences:**

Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y,

Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on du-

al-atom sites for high-performance lithium-sulfur batteries

Wang Y, Lv Y, Su Y B, Chen L Q, Li **ferences:**

Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y,

Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on du-

al-atom sites for high-performance lithium-sulfur batteries

[J]. Small Struct, 2022: 2200205.
 [1] Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y,

Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on du-

al-a-tom sites for high-performance lithium-sulfitr batteries

[19] Small Struct, 2022: 2200205.

[2] Wan
-
-
- Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on dual-
atom sites for high-performance lithium-sulfur batteries
[J]. Small Struct., 2022: 2200205.
Wang Y, Lv Y, Su Y B, Chen L Q, Li H, Wu F. 5V-class
sulfurized spinel al-atom sites for high-performance lithium-sulfur batteries
[J]. Small Struct., 2022: 2200205.
Wang Y, Lv Y, Su Y B, Chen L Q, Li H, Wu F. 5V-class
sulfurized spinel cathode stable in sulfide all-solid-state
batteries[J]. [J]. Small Struct, 2022: 2200205.

[2] Wang Y, Lv Y, Su Y B, Chen L Q, Li H, Wu F. 5V-class

sultrivied spine clathode stable in sulfide all-solid-state

batteries[J]. Nano Energy, 2021, 90: 106589.

[3] Wu F, Liu L L, Wa Wang Y, Lv Y, Su Y B, Chen L Q, Li H, Wu F. 5V-class
sulfurized spinel cathode stable in sulfide all-solid-state
batteries[J]. Nano Energy, 2021, 90: 106589.
Wu F, Liu L L, Wang S, Xu J R, Lu P S, Yan W L, Peng J,
Wu D X, sulfurized spinel cathode stable in sulfide all-solid-state
batteries[J]. Nano Energy, 2021, 90: 106589.
Wu F, Liu L L, Wang S, Xu J R, Lu P S, Yan W L, Peng J,
Wu D X, Li H. Solid state ionics -selected topics and new
dir batteries[J]. Nano Energy, 2021, 90: 106589.
Wu F, Liu L L, Wang S, Xu J R, Lu P S, Yan W L, Peng J,
Wu D X, Li H. Solid state ionics -selected topics and new
directions[J]. Prog. Mater. Sci., 2022, 126: 100921.
Yao N, Che [3] Wu F, Liu L L, Wang S, Xu J R, Lu P S, Yan W L, Peng J,
Wu D X, Li H. Solid state ionics -selected topics and new
directions[J]. Prog. Mater. Sci., 2022, 126: 100921.
[4] Yao N, Chen X, Fu Z H, Zhang Q. Applying class Wu D X, Li H. Solid state ionics -selected topics and new
directions[J]. Prog. Mater. Sci., 2022, 126: 100921.
Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab
initio, and machine-learning molecular dynamics simula-
 directions[J]. Prog. Mater. Sci., 2022, 126: 100921.
Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab
initio, and machine-learning molecular dynamics simula-
tions to the liquid electrolyte for rechargeable batteries [4] Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, *ab*
 initio, and machine-learning molecular dynamics simula-

tions to the liquid electrolyte for rechargeable batteries[J].

Chem. Rev., 2022, 122(12): 10970-110
- initio, and machine-learning molecular dynamics simula-
tions to the liquid electrolyte for rechargeable batteries[J].
Chem. Rev., 2022, 122(12): 10970-11021.
Wang Y, Wang Z X, Wu D X, Niu Q H, Lu P S, Ma T H,
Su Y B, Chen
- Huang J O. Evaluation on a 400 Wh \cdot kg⁻¹ lithium-sulfur
-
-
-
- $\label{eq:2.1} \underbrace{\mathbb{E} \{\&\cong(I. \: \textit{Electrochem.}) \: 2022, 28(12), 2219013 \: (10 \text{ of } 13)}_{\text{1001~\text{Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y,}} \} \vspace{-.2cm}$ $# \{\&\cong (J. \n *Electrochem.*) 2022, 28(12), 2219013 (10 of 13)\n \}$ Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y,

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y,

Ziong J. *In-situloperando* Raman techniques in lithium-

xion the $\#E \cong (J. \nElectrochem.) 2022, 28(12), 2219013 (10 of 13)$

Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y, 11751-11787.

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, [22] Zak J J, Kim S S, Laskowski F A L, See K A. An explo
- B [†] (*L Electrochem.*) 2022, 28(12), 2219013 (10 of 13)

Sulfur batteries [J]. Nim S C, Huang J W, Yang C T, Wang X F, Hu Y,

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y,

Sulfur batteries[J]. Small Struct., 2022, 3($\label{eq:22} \begin{array}{ll} \text{\it \#0.131} \& \text{\it \#1.41, 252, 28 (12), 2219013 (10 of 13)}\\ \text{\it \#10.25, 28 (12), 2219013 (10 of 13)}\\ \text{\it \#1.45} \& \text{Y.15} \& \text{Y.15} \& \text{Y.15} \& \text{Y.15} \& \text{Y.15} \& \text{Y.15} \& \text{Y.25} \& \text{Y.36} \& \text{Y.47} \& \text{Y.58} \& \text$ $\frac{1}{2}$ (*L*²² (*L Electrochem.)* 2022, 28(12), 2219013 (10 of 13)

Xue L X, Li Y V, High-valence M, Lei T V,

Yang J W, Yang C T, Wang X F, Hu Y, [22] Zak J J, Kim S S, Laskowski F A L, See K A. An explo-

Xiong interphase stabilizes lithium metal anodes

Solid electrochem, 2022, 28(12), 2219013 (10 of 13)

The L. X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y, 11751-11787.

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, 122] Zak J **in lithium-sulfur batteries** (*J*). *Determochem.*) 2022, 28(12), 2219013 (10 of 13)

Xue I. X, Li Y Y, Hu A J, Zhou M J, Chem W, Lei T Y, 11751-11787.

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, [22] Zak J J, Kim S S 300-305. (10) Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y, $11751-11787$.

Tan Y C, Humg J W, Yang C T, Wang X F, Hu Y, 123 Zak J J, Kim S S, Laskuwski F A L, See K A. An explo-

Xiong J. *b*, $\sinh(\omega)$ eromdo Raman techniq Zhang Q. Understanding the impedance response of lithithe $1 \times 1 \times 1 \times 1$ state of the symmetric cells (J). Also M, Lei T v, The symmetric cells (J). Small Sci., 2021, 20013. The symmetric cells (J). Small Sci., 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2 (19) Xue I. X, I i Y V, Ving C T, Wan C, Let μ (19) Xue I. X, I i Y V, Ving C T, Wang Y C, Blumg J W, Ving C T, Wan C, Huang J Q, Li P, Zhu I, Zhao L, Then S, Leskovski F A L, See K A. An explore Nixony C, I U. S. Comp H₃($2\frac{m}{2}$ (L *Electrochem.*) 2022, 28(12), 2219013 (10 of 13)

Xus 1. X, 1 i Y Y, Hua A, J, Chen W, 1 circle W, 1 i 1751-11787.

Yun Y C, Huang J W, Yung C T, Wung X F, Hu Y, [22] Zak J, Kim S S, Luskowski F A I, S High $\frac{1}{2}$ (Electrochem.) 2022, 28(12), 2219013 (10 of 13)

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, 222 [Zak J J, Kim S S, Laskowski F A L, See K A. An explo-

Xieng J. In-stitu/operando Rarman techniques: in l 4(*E* \mathcal{R}^2 (*L Electrochem.*) 2022, 28(12), 2219013 (10 of 15)

Now L X, Li Y Y, Hu B (V, Yang C T, Wang C T, Wang S T, Mam S S, Laskowski F Λ L, See K Λ. Λα explo-

Yang V, Aling C T, Wang X T, Hum S, S, Lesk J, Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y,

Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, [22] Zak J J, Kim S S, Laskowski F A L, S

Xiong J. *In-situloperando* Raman techniques in lithium-

statif batteries[J]. [10] Xoe L X, Li Y Y, Hun A, Zhou M J, Chen W, Lei TY,

Y C, Hung E CT, Vung X F, Hu Y C, Hung I Of Ministrosophia (Fig. 11, Kin S. S, Laskowski F A L, See K. A. An explorations of Line and the batter both politic particl Van Y C, Huang J W, Yang C T, Wang X F, Hu V, (22) Zak J J, Kim S S, Laskowski F A I, See K A. An explored

Monor of suitar reduction of Suitar reduction of high methods for the reduction of high methods full demonstrat Xiong J. *In-situ/operumdo* Ramum techniques in lithium-

ration of sulfar redox in lithium- batteries[J]. Sulfur batteries[J]. Sulfur batteries[J]. The Last Sulfur batteries[J]. The Last Sulfur batteries Zhang X 0. Highsulfar bauteries [J]. Small Struct., 2022, 3(3): 2100170. Am. Chem. Soc., 2022, 144(23): 10119-10132.

I/bai P. X. An C. X, Ni B Q, I/lam, J Q, I/lam, J Q, I/lam, J Q, I/lam, J Q, I/lam, Chem. Soc., 2022, 144(23): 10119-1 [11] Hou L P, Yoo L Y, Bi C X, Xie J, Li B Q, Huang J Q, 23] Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J, Re-
 Zlim X, Highwallents suite containing species in $\text{Unif. } \text{M}$ and $\text{Unif. } \text{M}$ and $\text{Unif. } \text{M}$
- 2100042.
- 2100042.

The use of redox mediators for Cheng X B, Yan C, Huang J Q, Li P, Zhu L, Zhao L,

The use of redox mediators for the SC

Zhang Y, Zhu W, Yang S T, Zhang Q. The gap between

J. Phys. Chem. Lett, 2014, 5(5)

Iong
-
-
- Q, Huang J Q, Li B Q. Constructing a 700 Wh · kg⁻¹-level
- stable lithium-metal anodes in lithium-sulfur batteries

with sulfurized polygropointie callodes [1]. Angew.

2002, the LE Copyrigon (11) Angew.

2002, the LE Copyrigon (11) Angeles (11). Angeles the metal for List

Cheng
-
-
-
-

11751-11787.

- 28(12), 2219013 (10 of 13)

11751-11787.

[22] Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J.

Am. Chem. Soc., 2022, 144(23): 10119-10132.

[23] Li G R, Wang S (1990), 2219013 (10 of 13)

11751-11787.

Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

Am. Chem. Soc., 2022, 144(23): 10119-10132.

Li G R, Wang S, Zhang Y (2219013 (10 of 13)

11751-11787.

Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

Am. Chem. Soc., 2022, 144(23): 10119-10132.

Li G R, Wang S, Zhang Y N, Li 28(12), 2219013 (10 of 13)

11751-11787.

[22] Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J.

Am. Chem. Soc., 2022, 144(23): 10119-10132.

[23] Li G R, Wang 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (10 of 13)

ou M J, Chen W, Lei T Y, [1751-11787.

C T, Wang X F, Hu Y, [22] Zak J J, Kim S S, Laskowski F A L, See K A. An explo-

nan techniques in lithium-

tion of sulfur
	-
	-), 2219013 (10 of 13)

	11751-11787.

	Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	Li G R, Wang S, Zhang Y N, L (219013 (10 of 13)

	(2219013 (10 of 13)

	(2219013 (10 of 13)

	(2218) J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	(2018). Am. Chem. Soc., 2022, 144(23): 10119-10 $28(12)$, 2219013 (10 of 13)

	11751-11787.

	[22] Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	Am. Chem. Soc., 2022 , $144(23)$: $10119-10132$.

	[23] Li (1901), 2219013 (10 of 13)

	211751-11787.

	2ak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	Li G R, Wang S, Zhang (2219013 (10 of 13)

	(2219013 (10 of 13)

	2218 J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	22. Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the 28(12), 2219013 (10 of 13)

	11751-11787.

	[22] Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	[23] Li G R, Wang S (1917), 2219013 (10 of 13)

	11751-11787.

	Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	Li G R, Wang S, Zhang Y), 2219013 (10 of 13)

	11751-11787.

	Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	Li G R, Wang S, Zhang Y N, L
	-
	-), 2219013 (10 of 13)

	11751-11787.

	11751-11787.

	Zak J J, Kim S S, Laskowski F A L, See K A. An explo-

	zaki J , Kim S S, Laskowski F A L, See K A. An explo-

	ration of sulfur redox in lithium battery cathodes [J]. J.

	A 28(12), 2219013 (10 of 13)

	11751-11787.

	[22] Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	[23] Li G R, Wang), 2219013 (10 of 13)

	11751-11787.

	Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	Li G R, Wang S, Zhang Y N, 11751-11787.

	Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Re 963-965. [22] Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes [J]. J.

	Am. Chem. Soc., 2022, 144(23): 10119-10132.

	[23] Li G R, Wang S, Zhang Y N, Li J, Rc-

	visiting the rol ration of sulfur redox in lithium battery cathodes [J]. J.
Am. Chem. Soc., 2022, 144(23): 10119-10132.
Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Re-
visiting the role of polysulfides in lithium-sulfur batteries
[J]. Am. Chem. Soc., 2022, 144(23): 10119-10132.
Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries
[J]. Adv. Mater., 2018, 30(22): 1705590.
Lei J, Liu T, Chen J J,
	-
- Zhang X Q. High-valence sulfur-containing species in this vising the role of polysulfides in lithium-sulfat batteries

solid electrolyte interplation meth anoton and model and $[1, \lambda A]$. Althoug Q. F. Exploring and unders solid electrolyte interphase stablikes lithium metal anodes [1]. Adv. Mater., 2018, 30(22): 1705590.

in lithium-sulfur batteries [1]. I. Furgy Cherm., 2022, 68: [24] Lei J, Liu T, Chen JJ, Zheng M, Neng P, Mao B W, Song Q in this
tim-sulfur batteries [J]. J. Finergy Chem., 2022, 68:

2003-03.

Sing Q. Nao M, 1 at Y, Lin J N, Li H Q,

2004-8 Sing Q. Nao M, 1 at Y, Lin J N, Li H Q,

2006-8 (19): Standing the impedance response of lithis

200 300-305.

200-305.

Song Q F. Exploring and understanding the relos of

Song Y W, Peng Y Q, Zhao M, Lu Y, Liu J N, Li B Q,

2020, The meaning the impedance response of lithi-

Chem., 2020, (10): 2533-2557.

2100042.

21000 [12] Song Y W, Peng Y Q, Zhao M, Lu Y, Liu J N, Li B Q, and the strategies to beyond present Li-S batteries [J], \pm mang Q. Libertanding the inepelance response of linit, (25) Meini S, Elazari R, Rosenman A, Garsuch A, A Zhang Q, Undersunding the impedance response of lithi-

2010, (10): 2533-2557.

2010-042.

2100042.

2100042.

2100042.

2100042.

2100042.

2100042.

2100042.

2200042.

2200042.

2200042.

2200042.

2200042.

2200042.
 um polyvalida symmetric cells(J). Small Sci, 2021, 1(11): [25] Meini S, Harzari R, Rosennan A, Garsuch A, Aurhach D.

2100042.

Chemg X B, Yan C, Hung J Q, Li P, Zhu L, Zhuo L, [1st exe of redover mediators for encharge u [13] Cheng X B, Yan C, Hunng J Q, Li P, Zhu L, Zhuo L, Li S. canhods for advanced Li-S battery systems [J].

Zhung Y, Zhu W, Yang S F, Zhung C) The gap between the 2014, 2014, S(25) 915-918.

Iong lifespan Li-S coin and p Theys. Chen W, Yung S T, Zhou Q. The gap between

Ung Stype Climate 1. Phys. Chem. Lett., 2014, 5(5): 915-918.

Of lithium mstal anode protection [1]. Energy Storage

of philium mstal anode protection [1]. Energy Storage
 ing lifespan L+S coin and pouch cells: The importance [26] Wang J Xie J Y, Xu N X. A novel conductive

of linking metal anode protection [J]. Energy Stonge polyner-sulfat composite canode material for recharge

Mater, 201 of linium melal anode protection [J]. Energy Stornge

Mater, 2017, 6: 18-25.

Mong L, iln Q, Zhang X T, Li B Q, Chen J X, Zhu W C,

Huang 10, Zhang X T, Li B Q, Chen J X, Zhu W C,

Huang 10, Zhang C, Electrolyte infilatme Muter., 2017, 6: 18-25.

IFA Rong, 17, G is also this infinite based in the space of the spa Kong L, Jin Q, Zhang X T, Li B Q, Chen J X, Zhu W C,

Hung J Q, Zhang C, Theng V Q, Zhang C, D, Zhang C, Electrolyte with

I. Ency, Dec. D, 2012, 29: 17-22.

C. H IIuang J Q, Zhang Q, Towards full demonstration of high [27] Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yung J, Wung

areal tooding sulfit entrologic in lithium-sulfur batteries [J]. J. I. Nuil Y N, A compatible cathode in t areal loading sulfur cathode in lithium-sulfur batteries[J]. I L, Nuli Y N. A compatible carbonate el-

L. Foreny Chem., 2019, 39: 17-22.

C. Energy Chem., 2021, 39: 17-22.

C. E. Tuang J Q, Zhang Q. Electrolyte regulation 1. Foregy Chem, 2019, 39: 17-22.

161 Chem, V.1, Hang J, Chem, Wann T Q, Sun R

179 Chem, W. I. Hang J, Q. Zhao C. X, Zhao M, Yuann T Q, Sun R

179 Chem, Hang J, Q. Zhao C. X, Zhao C. X, Zhao C. X, Zhao M, Name Jilifitim-Chen W., 1. i H Q. Zhao C. X, Zhao M, Yuan ¹ Q, San R

C, Tuang J Q. Electrochim. Acta, 2018, 282: 555-562.

C, Tuang J Q. Zhang Q. Electrochim. Acta, 2018, 2022, Electro CA, Wu Y Q. Why Q. Wahyudi W.

with sulfuriour d C, Huang J Q, Zhang Q, Electrolyte regalation towards [28] Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W,

with sultinum-metal mediscribes in linium-sulfur butteries has the Hinteries and High Cavality and High Camping (E. Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries [J]. Adv. Mater., 2018, 30(22): 1705590.
Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W, Dong Q F. Explo visiting the role of polysulfides in lithium-sulfur batteries

[J]. Adv. Mater., 2018, 30(22): 1705590.

[24] Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W,

Dong Q F. Exploring and understanding the roles of Li₅S, [J]. Adv. Mater., 2018, 30(22): 1705590.
Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W,
Dong Q F. Exploring and understanding the roles of Li, S_o
and the strategies to beyond present Li-S batteries [J].
Chenn, 2020 Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W,
Dong Q F. Exploring and understanding the roles of Li_SS_a
and the strategies to beyond present Li-S batteries [J].
Chem, 2020, 6(10): 2533-2557.
Meini S, Elazari R, R Dong Q F. Exploring and understanding the roles of Li, S., and the strategies to beyond present Li-S batteries [J].
Chem, 2020, 6(10): 2533-2557.
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. The use of redox media and the strategies to beyond present Li-S batteries [J].
Chem, 2020, 6(10): 2533-2557.
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D.
The use of redox mediators for enhancing utilization of
Li,S cathoods for advance 2907. [25] Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D.

The use of redox mediators for enhancing utilization of

L₁S cathodes for advanced Li-S battery systems [J].

19. Phys. Chem. Lett, 2014, 5(5): 915-918.

[26] W The use of redox mediators for enhancing utilization of
Li₂S cathodes for advanced Li-S battery systems [J].
J. Phys. Chem. Lett., 2014, 5(5): 915-918.
Wang J L, Yang J, Xie J Y, Xu N X. A novel conductive
polymer-sulfur Li_SS cathodes for advanced Li-S battery systems [J].

J. Phys. Chem. Lett., 2014, 5(5): 915-918.

Wang J L, Yang J, Xie J Y, Xu N X. A novel conductive

polymer-sulfur composite cathode material for recharge

blowing blo J. Phys. Chem. Lett., 2014, 5(5): 915-918.
Wang J L, Yang J, Xie J Y, Xu N X. A novel conductive
polymer-sulfur composite cathode material for recharge
able lithium batteries[J]. Adv. Mater., 2002, 14(13-14):
963-965.
The polymer-sulfur composite cathode material for recharge
able lithium batteries [J]. Adv. Mater., 2002, 14(13-14):
963-965.
[27] Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yang J, Wang
J L, Nuli Y N. A compatible carbonate elec able lithium batteries[J]. Adv. Mater., 2002, 14(13-14):
963-965.
Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yang J, Wang
J L, Nuli Y N. A compatible carbonate electrolyte with
ithium anode for high performance lithium sulfur 963-965.
Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yang J, Wang
J L, Nuli Y N. A compatible carbonate electrolyte with
ithium anode for high performance lithium sulfur battery
[J]. Electrochim. Acta, 2018, 282: 555-562.
Mang [27] Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yang J, Wang

J L, Nuli Y N. A compatible carbonate electrolyte with

lithium anode for high performance lithium sulfur battery

[J]. Electrochim. Acta, 2018, 282: 555-562.

[28 J L, Nuli Y N. A compatible carbonate electrolyte with
ithium anode for high performance lithium sulfur battery
[J]. Electrochim. Acta, 2018, 282: 555-562.
Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W,
Abou-Hamad E, Emwas Iithium anode for high performance lithium sulfur battery
[J]. Electrochim. Acta, 2018, 282: 555-562.
Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W,
Abou-Hamad E, Emwas A H, Cavallo L, Li L J, Ming J.
Rec ognizing the mecha [J]. Electrochim. Acta, 2018, 282: 555-562.

Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W,

Abou-Hamad E, Emwas A H, Cavallo L, Li L J, Ming J.

Recognizing the mechanism of sulfurized polyacryloni-

trile cathode material [28] Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W,

Abou-Hamad E, Emwas A H, Cavallo L, Li L J, Ming J.

Recognizing the mechanism of sulfurized polyacryloni-

trie cathode materials for Li-S batteries and beyond in

Al-S Abou-Hamad E, Emwas A H, Cavallo L, Li L J, Ming J.
Recognizing the mechanism of sulfurized polyacryloni-
trile cathode materials for Li-S batteries and beyond in
Al-S batteries[J]. ACS Energy Lett., 2018, 3(12): 2899-
290
	- 5024-5028.
	-
	-
- with sulfinized polyacrylonicile cathodes [J], Angew.

These comitaing the mechanism of sulfinized polyacryloni-

[16] Cheng Q, Chen / X, 1 i X, Y, Hou 1. P, Hi C X, /Jang X

(16) Lengy Q, Li B Q, Constructing a 700 Wh-kg Chem, In: Ed., 2020, 59(27): 10732-10745,

Chem, In: Ed., 2020, 59(27): 10732-10745,

Chem, Q. Host Decemberg Chem, ZK, Lithium-sulfur power little and Web Facebook and Eq. (118 Q. Constructing a 700 Wh-kg⁻¹sevel

cechm Cheng Q, Chen Z X, Li X Y, Hou L.P, Bi C X, Zhang X

Al-S batteries[J], ACS Energy Lett., 2018, 3(12): 28

Q, Houng J Q, Li B Q, Constructing a 700 Wh - kg¹-level

rechargeable liftinium-sulfur pouch eell[J]. J. Energy Q, Hump J Q, 1 i H Q. Constructing a 700 Wh- kg⁻¹-level

2007.

2007.

2008. (2013) Tan State MR. Structure-related decreases the filming star (21)

2023. 76: 181-186.

2023. (6: 181-186. (2014) Tailors (2014) Tailors (recharged lithium-sulfur poich cell[J]. J. Energy Chem., [29] Futous J, Wegner M, Grimminger J, Andresen A, Buch

2023, 76: 181-186. Via X, 211, Yin Y. J. Xing X, Cai G

review the SMS chemical electrochemistry of sulfur-Recognizing the mechanism of sulfurized polyacryloni-
trile cathode materials for Li-S batteries and beyond in
Al-S batteries[J]. ACS Energy Lett., 2018, 3(12): 2899-
2907.
Fanous J, Wegner M, Grimminger J, Andresen Ä, Buc trile cathode materials for Li-S batteries and beyond in
Al-S batteries[J]. ACS Energy Lett., 2018, 3(12): 2899-
2907.
Fanous J, Wegner M, Grimminger J, Andresen Ä, Buch
meiser M R. Structure-related electrochemistry of su 299-307. 2907.

29) Fanous J, Wegner M, Grimminger J, Andresen Ä, Buch

meiser M R. Structure-related electrochemistry of sulfur-

poly (acrylonitrile) composite cathode materials for re-

chargeable lithium batteries[J]. Chem. Mat Fanous J, Wegner M, Grimminger J, Andresen Ä, Buch
meiser M R. Structure-related electrochemistry of sulfur-
poly(acrylonitrile) composite cathode materials for re-
chargeable lithium batteries[J]. Chem. Mater, 2011, 23(22
	-

- $# \&L \# (J. \nElectrochem.) 2022, 28(12), 2219013 (11 of 13)$

in rechargeable lithium batteries[J]. Chem. Commun., 2016,

S2(92): 13479-13482. [45] Kang N, Lin Y X, Yang L, Lu

Wei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Met-

al-s
- [35] Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. $E[222] = 13479-13482.$ $E[222] = 13479$ (46) Bendangeable lithium batteries [41) Let *Electrochenn*.) 2022, 28(12), 2219013 (11 of 13)

(145) Incredangeable lithium batteries

[45] Kang N, Lin Y X, Yang I, Lu D P, Xiao J, Qi V, Cai M, (14) Using S, Munice 1, Be
-
- **EERENDEE (EXECTED ACTES)**
 EERENDEE (EXECTED) CHEME (EXECTED) (11 OF 13)
 EERENDEE (EXECTED) CHEME (COMMON COMMON COMMON CONDUCTS) (14(1): 3942-3951.

[37) Wei S, Ma 1, Hendriekson K F, Tu Z, Archer I. A. Met
 Excha $#_1\&p^2\&p^2$ (*L Electrochem.*) 2022, 28(12), 2219013 (11 of 13)

in rechargeable lithium batteries[J]. Chem. Commun, 2016,

8.6s, 2021, 14(11): 3942-3951.

1452, Mat L, Hendrickson K. E, Tu Z, Archer L A. Met-

1463, $\begin{tabular}{l|ll} $ & $41 \cdot 42 \cdot 79 \cdot 1264 \cdot 1646 \cdot 164$
- 34(47).
- [34] Wei S, Ma L, Hendrickson K. E, Tu Z, Archer L.A. Met

also have provide porosity is a missing key parameter to optimize

indistributions based on PNN-sulfir computering this three years of the stars of the stars of t al-sulfir hattery cathodes hased on PAN-sulfir compositeric infilm meaths hasted on PAN-sulfir commun,

1610, 10.4597.

Thus Al, Li H Q, Perg H J, Yun H, Weil Y, H Mang J Q. [46] Wang F, Zan ZC, 111, He F, 11 Y L Cimphidyn ites[I]. J. Am. Chem. Soc., 2015, 137(37): 12143-12152. 2019, 10: 4597.

Zhow M, Li BQ, Peng H J, Yune H, Wei J/Y, Hung J (164 Wang F, Zho Z C, Li L, He F, Li Y L. Graphdiyne nanos-

Chullenges and opporatorino [Alti BQ, P Zhuo M, Li B Q, Peng H J, Vuon II, Wei J Y, Hung J Q.

(166] Womg F, Zuo Z C, Li Li EF, Li Y L, Gropholiyne nanois-

inthim-sulfir batteries (i) the condition-sulfir batteries (i) the condition-sulfir batteries (i) and th 3842-3853.
- 3842-3853.

2210353. heterostructures enabling sn

22103. heterostructures enabling sn

WJ, Liu XV, Zhao M, Chen Z X, Song Y W, Chen

WJ, In Vision of polysulfides towa

IFM, Liu IN, Wang B, Zhang X Q, Chen C M, Li B Q,

f
-
-
-
-

- $# \&L \# (J. Electrochem.) 2022, 28(12), 2219013 (11 of 13)$
in rechargeable lithium batteries[J]. Chem. Commun., 2016,
52(92): 13479-13482. [45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.
Wei S, Ma L, Hendrickson K E, Tu Z, A [34] Wei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Metal-sulfur batteries for Leetrochem, 2022, 28(12), 2219013 (11 of 13)

in rechargeable lithium batteries[J]. Chem. Commun., 2016,

S2(92): 13479-13482.

Wei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Met-

Wei S, Ma L, Hen $#E#CJ. Electrochem, 2022, 28(12), 2219013 (11 of 13)
\ninterchangeable lithium batteries[J]. Chem. Commun., 2016, Res., 2021, 14(11): 3942-3951.
\n52(92): 13479-13482. [45] Kang N, Lin Y X, Yang L, Lu D P, Xia J, Qi Y, Cai M.
\nWei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Met-
\nal-sulfur battery cathodes based on PAN-sulfur compos-
\nitshium-sulfur battery energy density[J]. Nat. Commun.,
\ntiest[J]. J. Am. Chem. Soc., 201$ $\label{eq:R20} \begin{tabular}{ll} $\text{#L@L} \textit{L'Electrochem}, 2022, $28(12), $2219013 ($11 of 13)$ \\\\ \text{inccharized bitium batteries} & \text{Rcs}_8, 2021, $14(11): 3942-3951. \\\\ $2(92): 13479-113482. \end{tabular} \begin{tabular}{ll} \text{L} & \text{K} & \text{L} \\ \text{L} &$ (2219013 (11 of 13)
Res., 2021, 14(11): 3942-3951.
Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.
Cathode porosity is a missing key parameter to optimize
lithium-sulfur battery energy density[J]. Nat. Commun.,
2019, 28(12), 2219013 (11 of 13)

Res., 2021, 14(11): 3942-3951.

[45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

Cathode porosity is a missing key parameter to optimize

lithium-sulfur battery energy density[J]. Nat (2219013 (11 of 13)

Res., 2021, 14(11): 3942-3951.

Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

Cathode porosity is a missing key parameter to optimize

lithium-sulfur battery energy density[J]. Nat. Commun.,
 (2219013 (11 of 13)

Res., 2021, 14(11): 3942-3951.

Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

Cathode porosity is a missing key parameter to optimize

lithium-sulfur battery energy density[J]. Nat. Commun.,
 (2219013 (11 of 13)

Res., 2021, 14(11): 3942-3951.

Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

Cathode porosity is a missing key parameter to optimize

lithium-sulfur battery energy density[J]. Nat. Commun.,
 $28(12)$, $2219013(11 of 13)$

Res., 2021 , $14(11)$: $3942-3951$.

[45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

Cathode porosity is a missing key parameter to optimize

lithium-sulfur battery energy density (219013 (11 of 13)

Res., 2021, 14(11): 3942-3951.

Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

Cathode porosity is a missing key parameter to optimize

lithium-sulfur battery energy density[J]. Nat. Commun.,

2 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (11 of 13)

s[J]. Chem. Commun., 2016, Res., 2021, 14(11): 3942-3951.

[45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

E, Tu Z, Archer L A. Met Cathode porosity is
	-
	- $\label{eq:2.1} \textbf{(a)} \quad \text{the 1,0000} \quad \text{the 2,011} \quad \text{the 3,001} \quad \text{the 4,011} \quad \text{the 4,012} \quad \text{the 5,013} \quad \text{the 6,014} \quad \text{the 6,015} \quad \text{the 6,016} \quad \text{the 7,017} \quad \text{the 8,018} \quad \text{the 9,018} \quad \text{the 9,018} \quad \text{the 9,018} \quad \text{the 9,018} \quad \text{the 9,$ H(*E²²*(*L Electrochem*.) 2022, 28(12), 2219013 (11 of 13)

	in rechargeable lithium-sulteries[*J*]. Chem. Commun, 2016,

	52(92): 13479-13482.

	52(92): 13479-13482.

	465 Nang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, C Adv. Energy Mater., 2017, 7(24): 1700260. (1) $\frac{1}{2}(2^x)(1 + \frac{1}{2}$ Reemselson, 2022, 28(12), 2219013 (11 of 13)

	in rechargeable lithium batteriesf]). Fhem. Commun, 2016,

	S2029: 13479-13482.

	Wei S, Ma L, Ilendrickson K. E, Tu Z, Archer I. A. Mes

	Wei S, Ma L (219013 (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. Nat. Commun.,

	2 28(12), 2219013 (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	[45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfar battery energy density[J]. Nat partic 11 of 13)

	Res., 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. Nat. Commun.,

	201 (1901), 2219013 (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. Nat. Com), 2219013 (11 of 13)
Res., 2021, 14(11): 3942-3951.
Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.
Cathode porosity is a missing key parameter to optimize
Urihum-sulfur battery energy density[J]. Nat. Commun.,
2019 28(12), 2219013 (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	[45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfir battery energy density[J]. Na (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. Nat. Commun.,

	2019, 10:
		-
	- the figure of the methanic states in the method particular of the method particular in recharges
be lithium batteries[J] Chem Commun, 2016,

	782(92): 13479-13482.

	782(92): 13479-13482.

	Wei S. Ma L, Hendrickson K E, Tu Z, Arelber L A. Meta

	1451] Kang N, 1in Y X, Yang 1, 1a D P, Xiao J, Qi Y, Cai M.

	14 in ething and high-neary bittim sulfit batteries [J]. Adv. Mater., 2021, 14(11): 3942-3951.

	25(29): 13479-13482.

	Wei S, Mu L, Henrickson K. E, Tu Z, Archer L A. Met

	alsohel porosity is a missing key purameter to optimiz), 2219013 (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	Resn, 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery 28(12), 2219013 (11 of 13)

	Ress., 2021, 14(11): 3942-3951.

	[45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. N (11 of 13)

	Res., 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. Nat. Commun.,

	lithium-s Res., 2021, 14(11): 3942-3951.

	Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	ithium-sultir battery energy density[J]. Nat. Commun.,

	ithium-sultir battery Res., 2021, 14(11): 3942-3951.

	Rang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lithium-sulfur battery energy density[J]. Nat. Commun.,

	2019, 10: 4597.

	Wang [45] Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M.

	Cathode porosity is a missing key parameter to optimize

	lihium-sulfir battery energy density[J]. Nat. Commun.,

	2019, 10: 4597.

	[46] Wang F, Zuo Z C, Li L, He Cathode porosity is a missing key parameter to optimize
Ithium-sulfur battery energy density[J]. Nat. Commun.,
2019, 10: 4597.
Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanos-
tracture for high-performance lithium-su lithium-sulfur battery energy density[J]. Nat. Commun.,
2019, 10: 4597.
Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanos-
tructure for high-performance lithium-sulfur batteries[J].
Nano Energy, 2020, 68: 104307.
Li B
		-
- Linkinn-sulfur batteries under learn deciralyte conditions:

Tatalogues 2nd popularities [JJ]. Angues: Chem. Int. Ed.,

2020, 93(3): 12636-12652.

2020, 93(3): 12636-12652.

Party. Humag J Q, Cheng K H, Zhang Q, Review on 2020, 59(31): 12636-12652.

2020, 59(31): 12636-12652.

2020, Frao G. Rome of Marina ognis framework holders spheres and their spheres and philoms (The Task in the spheres in this

implying and high-energy liftims suffit Forg H J, Huang J Q, Cheng X H, Zhang Q. Review on

high inghelooding and high-reargy thinking-sulfits battleting and high and high carbon in the
Mark Frang S, Zhang Q, Shan C X, Chen X, Li B Q, Chen X, Li ang J Q, Zhang Q high-loading and high-energy libilines-sulfire batteries [J].

(axis hardwit sheets, 2012, 7(24): 1702060.

(Afv. Energy Mater, 2018, 300

(axis here, 2017, 7(24): 1702060.

[Law, Kang Q. Xhang Q. Mathemselfar batteries p Adv. thorgy Mater, 2017, 7(24): 1707260.

i A X, ten X, i B Q, [48] Li a X, Hung-p Q, Xhai L, Nanostructured met-

It Eug S, Zhan M, Zhou O'X, Chen X, i B Q, [48] Li a X, Hung-p Q, Zhang Q, Mai L, Nanostructured met-

It Li X Y, Feng S, Zhao M, Zhao C X, Chen X, Li B Q, (48) Liu X, Huang J Q, Zhang Q, Mai L. Nanostrotured metroscollaristic galaxion mission in Soc. 2021, 143(47): 19865-19872.

Int. Ed., 2022, 61(7): e-202114671.

Int. Ed., Huang J Q, Zhang Q, Sartice gelation on distillate decayations and sulfides for this
time-sulfit butteries[1]. Adv.

Int. Ed., 2022, 6((7): e2022) 1467.

[48] Grong C N, Hua W X, Wang D W, Ling G W, Zhang C,

[38] Wang Q, trocedlyis in ithium-saulite butterial (11, Angew. Chem. Mater, 2017, 29(201) 1601759.

Int. B., 2022, 16(7): e202114671.

Wang Z K. Li Y, BiT Q, Zhou J Q, Qian T, Yan C L. Unity (See CN. Hue W. X Wang D W, Ling G W, Zhan Int. Ed., 2022, 6(1): e202114671.

Interior Chem, CM, Thua W X, Wung D W, Ling G W, Zhang C,

Wang 2 K, i X, i H Q, Zhang C, Qian T, Yan C I. Unity by the Q H. Demonstration methods and techniques [i].

Add(2): sulfudios [38] Wang ZK, Li Y, Ji H Q, Zheo J Q, Qian T, Yan C L. Unity Yang Q H. Demystifying the establysis in lithium-sulfar

of orposits between solable and instanted Himan poly-

susMat, 2022, 1(1): 51-65.

34 Men, Habo G, V. R of opposits between soluble and insoluble lithium poly-

batteries: Characterization methods and techniques [J].

Addes in lithium-sulfur batteries[J]. Adv. Mater., 2022,

SusMa, 2021, (10): 51-65.

Then S, Sangh R K, Fu sulfides in linkums-sulfar batteries[1]. Adv. Mater, 2022,

SignaMat, 2021, (1): 51-65.

34(4). The particle controlling redox shuttles

For Society 1. (1): 4) Comparison (2, 8) Let I , 1) is Comparison (2, 8)

34(5). A 54(47). Blog 13 Salem II, Babu G, V. Rao C, Anva L M R. Electro-

For S. Singh R K, Fu V C, Li Z, Wang V L, Bao J, Xu Z

process of Li-S butteries for controlling redox shuttle

scaffolds for life-spectral controlling red 2019, 10: 4597.

Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanos-

tructure for high-performance lithium-sulfur batteries [J].

Nano Energy, 2020, 68: 104307.

Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Por-

phy [46] Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanos-
tructure for high-performance lithium-sulfir batteries [J].
Nano Energy, 2020, 68: 104307.
[47] Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Por-
phyrin organic tructure for high-performance lithium-sulfur batteries [J].
Nano Energy, 2020, 68: 104307.
Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Por-
phyrin organic framework hollow spheres and their appli-
eations in lithium-sulf Nano Energy, 2020, 68: 104307.

Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Por-

phyrin organic framework hollow spheres and their appli-

eations in lithium-sulfur batteries[J]. Adv. Mater, 2018, 30

(23): 1707483.

Li Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Por-
phyrin organic framework hollow spheres and their appli-
eations in lithium-sulfur batteries[J]. Adv. Mater., 2018, 30
(23): 1707483.
Liu X, Huang J Q, Zhang Q, Mai L. Nan phyrin organic framework hollow spheres and their applications in lithium-sulfir batteries[J]. Adv. Mater., 2018, 30

(23): 1707483.

Liu X, Huang J Q, Zhang Q, Mai L. Nanostructured met-

al oxides and sulfides for lithiu 1703. (23): 1707483.

[48] Liu X, Huang J Q, Zhang Q, Mai L. Nanostructured met-

al oxides and sulfides for lithium-sulfur batteries[J]. Adv.

Mater, 2017, 29(20): 1601759.

[49] Geng C N, Hua W X, Wang D W, Ling G W, Zhang C, Liu X, Huang J Q, Zhang Q, Mai L. Nanostructured met-
al oxides and sulfides for lithium-sulfur batteries[J]. Adv.
Mater., 2017, 29(20): 1601759.
Geng C N, Hua W X, Wang D W, Ling G W, Zhang C,
Yang Q H. Demystifying the c al oxides and sulfides for lithium-sulfur batteries[J]. Adv.
Mater., 2017, 29(20): 1601759.
Geng C N, Hua W X, Wang D W, Ling G W, Zhang C,
Yang Q H. Demystifying the catalysis in lithium-sulfur
batteries: Characterization Mater., 2017, 29(20): 1601759.

Geng C N, Hua W X, Wang D W, Ling G W, Zhang C,

Yang Q H. Demystifying the catalysis in lithium-sulfur

batteries: Characterization methods and techniques [J].

SusMat, 2021, 1(1): 51-65.
 [49] Geng C N, Hua W X, Wang D W, Ling G W, Zhang C,

Yang Q H. Demystifying the catalysis in lithium-sulfur

batteries: Characterization methods and techniques [J].

SusMat, 2021, 1(1): 51-65.

[50] Al Salem H, Babu G, V Yang Q H. Demystifying the catalysis in lithium-sulfur
batteries: Characterization methods and techniques [J].
SusMat, 2021, 1(1): 51-65.
Al Salem H, Babu G, V. Rao C, Arava L M R. Electrocatalytic polysulfide traps for co batteries: Characterization methods and techniques [J].
SusMat, 2021, 1(1): 51-65.
Al-Salem H, Babu G, V. Rao C, Arava L M R. Electro-
eatalytic polysulfide traps for controlling redox shuttle
process of Li-S-2-11545.
Toto SusMat, 2021, 1(1): 51-65.

Al Salem H, Babu G, V. Rao C, Arava L M R. Electro-

catalytic polysulfide traps for controlling redox shuttle

process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137

(36): 11542-11545.

Zh [50] Al Salem H, Babu G, V. Rao C, Arava L M R. Electro-
catalytic polysulfide traps for controlling redox shuttle
process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137
(36): 11542-11545.
[51] Zhou T H, Lv W, Li J, Z catalytic polysulfide traps for controlling redox shuttle
process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137
(36): 11542-11545.
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu
B L, Li B H, Kang F Y, Yang Q H. process of Li-S batteries[J], J. Am. Chem. Soc., 2015, 137
(36): 11542-11545.

Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu

B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO₂-tin

heterostructures enabling smooth tr (36): 11542-11545.

Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu

B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO₂-tin

heterostructures enabling smooth trapping-diffusion-con-

version of polysulfides towards ultr Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu
B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO₂-tin
heterostructures enabling smooth trapping-diffusion-con-
version of polysulfides towards ultralong life lithium-sul-
	-
	-
- Feng S, Singh R K, Fu V C, Li Z, Wang V I, Bao J, Xu Z

Vasifiah P G, Material D A, Li Li In Y H, Knialiah P G,

Vasifiah P G, Sonderon C, Shi Li Li In Y H, Knialiah P G,

D G S, Material P, Li In Y H, Knialiah P G, Proce 1, Li G S, Anderson C, Shi L L, Lin Y H, Khalifah P G, process of Li-S batteries(J)]. J. Am. Chem. Soc., 2015, 137

Wang W, Liu JS Cos J, Li D P. Low-Mortons and desne

single-particle-layer electrode for high-energy lin Womg W. Liu J, Xiao J, Lu D P. Low-lottoous and dense

Single-particle-layer electrock for high-energy lithis [51] Zhou TH, Lv W. Li J, Zhou G M, Zhao Y, Fan S X. Liu

um-solfar between the high-energy lithis [52] Zhou TH, single-particle-layer electrode for high-nergy lithi-

151] Zhou T-H, Lv W, Li J, Zhou G-M, Zhao Y, Fan S-V, Li J, Challenges N. (2012, 150 H, Li B-H, Kamg P-V, Vamp Q-H. Twithiorn TGo-initial

2M-Li 3M-2-3853.

2M-Li J N, of this substrained (I). Energy Environ. Sci., 2022, 15(9):

B. L. i. B. II, Kang F Y, Yang Q H. Twinborn TrO-cian

2581-2853.

2761-2853.

2761. Lia J. N. Way B. B. Amery L. The Properties are the substrated to the princi [40] Zhao C X, Li X Y, Zhao M, Chen Z X, Song Y W, Chen

W J, Li D J W, Warg B, Zhang Y Q, Chen C M, Li B Q,

In Value D, Zhang O, Shang Y S, Chen C M, Li B Q,

Irroduced molecular elec-

ITOS, The concert Concert Concert W. J. Liu J. N. Wang B, Zhang X Q, Chen C. M, Li B Q,

Huong J Q, Zhang X C, Li B Q, Zhang X C, Li B Q, Wang I S, Zhang C, Li More Construction of M, Deng Y Q, He

IDJ. A. Ch. Chen Soc., 2021, 143(47): 19965-19972. A The C Huang J Q, Zhang Q, Semi-immobilized molecular elec-

trocondbys for high-performance highen bulking bulking bulking QF, EM (C, Live C, Weng T S, Zhang Y Q, H. (JJ, J, Am, Chem, Sec, 2021, 414(47): 19865-19872.

2D, J, Am trocatalysis for high-performance lithium-sulfits butteristic is [52] Womg R C, Luo C, Wong T S, Zhou G M, Deng Y Q, He (Note (71). Ann. Ghen, Soc., 2021, 1434(3) F(1). Ann. Ghen, Soc., 2021, 1434(3) F(1). Ann. Ghen, Soc. B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO₂-tin
heterostructures enabling smooth trapping-diffusion-con-
version of polysulfides towards ultralong life lithium-sul-
fur batteries[J]. Energy Environ. Sci., 2017, 10(7): heterostructures enabling smooth trapping-diffusion-con-
version of polysulfides towards ultralong life lithium-sul-
fiv batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-
1703.
[52] Wang R C, Luo C, Wang T S, Zhou G M version of polysulfides towards ultralong life lithium-sul-
fur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-
1703.
Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He
Y B, Zhang Q F, Kang F Y, Lti W, Yang Q H. Bidi fir batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-
1703.

Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He

Y B, Zhang Q F, Kang F Y, Lü W, Yang Q H. Bidirectional

catalysts for liquid-solid redox conversion in l 1703.

Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He

Y B, Zhang Q F, Kang F Y, Lü W, Yang Q H. Bidirectional

catalysts for liquid-solid redox conversion in lithium-

sulfur batteries[J]. Adv. Mater., 2020, 32(32): 20 Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He Y B, Zhang Q F, Kang F Y, Lü W, Yang Q H. Bidirectional
eatalysts for liquid-solid redox conversion in lithium-
sulfur batteries[J]. Adv. Mater., 2020, 32(32): 2000315.
Zha
	-
- $\text{#E*}(J. \text{ Electrochem.}) 2022, 28(12), 2219013 (12 of 13)$

[56] Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

Direct intermediate regulation enabled by sulfur contain-

high compatibility in both ether and carbonate ele Int. Ed., 2020, 59(49): 22150-22155.
-
- 2007298.
-
- (J.). J. Energy Chem., 2022, 65: 302-303.

27hao M, Chen X, Li X Y, Li B Q, Huang J Q. An organ-

entor to pevent polysufide disso

dedisedentical concellator to ficilitate sulfur redox kinetics

in linium-sulfur batterie
-
- [58] Zhao M, Chen X, 1 i K V, 1 i H Q, Huang J Q. An organ—

entor to present polysulfide disselution in lithium-sulfur

including sulfure which the reduction of the intervent polysulfide disselution mechanism[J]. New M, of schenide comediator to fiellitate sulfur redox kinetics

in this
hum-sulfur Mechanism (J.). Naro in the material of the material composites

2007298.

2007298.

2007298.

2007298.

2007298.

2007298.

2007298.

2007298. in this
tim-smaller batteries[1]. Adv. Mater., 2021, 33(13): hencyg, 2019, 60: 153-161.

2007298.

2007298.

Mater M, 1.i X V, Chen X, 1.i H Q, Kaskel S, Zhang Q, [66] Lebberz T, Frey M, Hintensach A, Buchmoins et aliter-2007298.

2007298.

Chan M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q,

Chan M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q,

1966 Leohneric looping to saithfur estions in high-moregy density thrium-sulfur

1967 University Zhao M, 1i X Y, Chen X, 1i B Q, Kaskel S, Zhang Q,

Huang J (Remonstrake and state and stat Huang J Q. Promoting the sulfur redox kinetics by mixed

lonitrile) composites used to

hatteries[5]. eSicince, 2021, 1(1): 44-52.

RSC Adv., 2019, 9(13): 718

chartics[5]. eSicince, 2021, 1(1): 44-52.

Echer X, Peng L F, organodiselemides in high-energy-dermity ithium-sulfur

sursculing simes of electrochemical performance [1].

[60] Chen X, Pang L F, Yaong L F, Yaong L R, Yaong L R, Yaong (67] Zhou 11, Guo Y S, Liang C D, Cho L J, Pan H batteries[J], eScience, 2021, 1(1): 44-52.

RSC Adv., 2019, 9(13): 7181-7188.

Chen X, Peng I, F, Wang I, II, Yuang J, Rao Z X, Xiang (67)

Zhou N S, Liam Chen X, Esta J, Noan L X, Xie J.

Mang H, Nana D, Yuan L X, Xie J.
 Chen X, Peng L F, Wang L H, Yung J Q, Hio Z X, Xiang [67] Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yung J, Wey, Yung J W, Yung H Methods enabled by the prior density of printing sulfur-
ther-companies sulfurived poly J W, Yuan K, Huang Y H. Shan B, Yuan L X, Xie J. Wang J L. A new ether-based electrolyte for hithium sulfor
energoinbed sulfurized polyophoryhoforitie earloed by the thereics vising a Sign/NN carbon
depictric storage Mate Ether-compatible sulfurized polyacrylonitrile cathode

stateries using a S@pPAN

with excellent performannee enabled by fast kineties via

selenium doping[J]. Nat. Commun., 2019, 10: 1021. [68] Yin L C, Wang J L, Lin I

Z with excellent performance embbel by fisst kineties via

selection 2018, 54(43): 5478-5481.

Selection deping[1], Nat. Commun., 2019, U1: 11, Wang L, Mi F, Wang I, Li F, Yang J, Nati Y, Polyarry-

[61] Zhao C X, Chan W, J
-
-

 $# \{\&\cong (J. \:Electrochem.)\; 2022, 28(12), 2219013\; (12 of 13)$

Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q. Y, Liu T X. Sulfurized polyaerylonitrile cathodes with

Direct intermediate regulation enabled by sulfur contain-(七学) (*Lettrochem.*) 2022, 28(12), 2219013 (12 of 13)

(ang Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

(b) $\frac{1}{2}$. Lint T X. Sulfurized polyaerylonitrile cathodes with

Direct intermediate regulation enabled by sulfur (12) (12) (13)

Y, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): 190292 high compatibility in both ether and carbonate with
high compatibility in both ether and carbonate elec-
trolytes for ultrastable lithium-sulfur batteries [J]. Adv.
Funct. Mater., 2019, 29(39): 1902929.
Li S P, Han Z L, Hu (2219013 (12 of 13)

T, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): 1 电化学(*J. Electrochem.*) 2022, 28(12), 2219013 (12 of 13)

I. H. J. Huang J. Q. Zhang Q.

T. V. Liu T. X. Sulfurized polyacrylonitrile cathodes with

enabled by sulfur contain-

high compatibility in both ether and carbona

- $[56] \text{ Kie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.} \label{eq:27}$ [56] Nie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

Direct intermediate regulation enabled by sulfar containing the containing of the store two birds: Dual-effect kinet-
 $\text{#L}(2\#(J, Electrochem.) 2022, 28(12), 2219013 (12 of 13) \label{eq:21}$

Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

Direct intermediate regulation enabled by sulfur containing to proper intermediate regulation strategy for pr (*H*_C²²(*J. Electrochem.*) 2022, 28(12), 2219013 (12 of 13)

Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

Direct intermediate regulation enabled by sulfur contain-

Intermediate regulation enabled by sulfu (56) Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

[58] Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q.

T. Liu T X. Sulfurized polyacylonitrile cathodes with

Direct intermediate regulation enabled by s odiselenide comediator to facilitate sulfur redox kinetics **in Active Scheme (1) in the Scheme (1) i Example 1) i Example 1) i Example 1) i Conserved Active Con** [59] Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, $\text{t}E\mathcal{L}\mathcal{L}L$ *Hermothem,* 2022, 28(12), 2219013 (12 of 13)

Nie.1, Song Y W, 1 ii 0, Promp H₂, 10, 2/hang J Q. Zhang Q.

Direct intermediate regulation enabled by sulfar contain-

high compatibility in both ethe tte $f(E \ncong (E \ncong E)$
 $\text{tr}(E \ncong (E \ncong E) \cdot \text{tr}(E \ncong E)$
 $\text{tr}(E \ncong E)$
 \text 46 (*b* (*b* (*k Bi* (*k s* (*k*) ($[66] \text{Xie.1}, \text{Singy Y W, I.1 B Q, Peng 11.1, Itang 1 Q, Zhang Q. Y., Liu T X. Sulfairized polyacryloninile canbodes with
\nDirect information resulted by subfro constant, high compatibility in both other and cathonate elec-
\ners in working lithium-sulfur batteris[IJ]. Answer. The
\n
$$
[67] \text{ Li X Y, Zhang Q, Oos 6500, 9699; 22150-2215, 2315, 9699, 190299, 19029929, 19029929, 19029929, 19029929, 1902
$$$ $4E\frac{25}{4}$ (*J. Electrochem*.) 2022, 28(12), 2219013 (12 of 13)

Nie J, Song Y W, 1.i H Q, Peng H J, Huang J Q, Zhang Q.

The intermediate regulation enabled by sulfar contain-

Direct intermediate regulation enabled by Xie J, Song Y W, LiB Q, Peng II J, Hung J Q, Zhang Q.

Y. Liu T X. Sulfurized polyacylonitrile cathodes with

Direct intermediate regulation enabled by sulfur contain-

thigh computibility in both efter and carbonate elec Xie J, Song Y W, Li D Q, Peng H J, Hunarg J Q, Zhang Q.

Direct intermediate regulation canbeld by suffit contained the based carbonation candidate regulation candidate regulation candidate by suffit. Al., 2020, 95(39): 2 Direct intermediate regalation enabled by sulfur contain-

tigh compatibility in both ether and carbonate election

tight Euge (Sould State and the bulk in the state of the state in the state of the state and the state in ers in working lithium-sulfur batteries[J]. Angew. Chem.

In the Ext. 2008. (969) 22150.2 Inc. i-d., 2020, 59(49): 22158-22155.

Li XV, Zhang Q, Ossens evo biotis. Dual-effect kinet

Li XV, Zhang Q, Ossens evo biotis Dual-effect kinet

II). Linengy Chen Construction states of sul-

II). Linengy Chenn, 2022, 65 Li X Y, Zhung Q. One stone two birds: Dual-effect kinet-

ic regulation strand Live, New EV, Shun B. Xer J. Manipulating kinetics fly 1, Energy Chem, 2022, 65: 302-303.

In Extern Abite 2022, 65: 302-303.

Initial ed bly ic regulation strategy for practiceal libitum-sulfur batteries

TJL. L. Energy Chern, 2021, 63: 302-303.

Then B. Kie J. Manipulating visite distributed interded such

Thus B. Then M. Li X Y, L i B Q. Huang J Q. An organ-
 (219013 (12 of 13)

T, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): 19 28(12), 2219013 (12 of 13)

Y, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29 (2219013 (12 of 13)

2219013 (12 of 13)

27, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Ma (12), 2219013 (12 of 13)

T, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): (219013 (12 of 13)

2219013 (12 of 13)

2219013 (12 of 13)

2219013 (in Book electrolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): 1902929.

Li S P, Han Z L, Hu W, Peng L F, Yang J Q battery 11 (12 of 13)

1219013 (12 of 13)

1219013 (12 of 13)

121 T.X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries [J]. (2219013 (12 of 13)

2219013 (12 of 13)

27, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater 28(12), 2219013 (12 of 13)

Y, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 2 (12) $(12 \text{ of } 13)$

7, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): (12) 13 (12 of 13)

219013 (12 of 13)

21 T. X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batterics [J]. Adv.

Funct. Mater., 201 (12 of 13)

T. Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): 1902929.
), 2219013 (12 of 13)

Y, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both the r and carbonate elec-

trolyts for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater., 2019, 29(39): 28(12), 2219013 (12 of 13)

Y, Liu T X. Sulfurized polyacrylonitrile cathodes with

high compatibility in both ether and carbonate elec-

trolytes for ultrastable lithium-sulfur batteries [J]. Adv.

Funct. Mater, 2019, 29), 2219013 (12 of 13)

Y, Liu T X. Sulfurized polyaerylonitrile cathodes with

high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Adv.

Funct. Mater., 2019, 29(3): 1902 Y, Liu T X. Sulfurized polyacrylonitrile cathodes with
high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfir batterics [J]. Adv.
Funct. Mater., 2019, 29(39): 1902929.
Li S P, Han Z L, H Y, Liu T X. Sulfurized polyacrylonitrile cathodes with
high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Adv.
Funct. Mater., 2019, 29(39): 1902929.
Li S P, Han Z L, Hu high compatibility in both ether and carbonate elec-
trolytes for ultrastable lithium-sulfur batteries [J]. Adv.
Funct Mater, 2019, 29(39): 1902929.
[65] Li S P, Han Z L, Hu W, Peng L F, Yang J Q, Wang L H,
Zhang Y Y, Shan trolytes for ultrastable lithium-sulfur batteries [J]. Adv.
Funct. Mater., 2019, 29(39): 1902929.
Li S P, Han Z L, Hu W, Peng L F, Yang J Q, Wang L H,
Zhang Y Y, Shan B, Xie J. Manipulating kineties of sul-
firized polyacr Funct. Mater., 2019, 29(39): 1902929.

Li S P, Han Z L, Hu W, Peng L F, Yang J Q, Wang L H,

Zhang Y Y, Shan B, Xie J. Manipulating kinetics of sul-

furized polyaerylonitrile with tellurium as eutectic accelerator to prev Li S P, Han Z L, Hu W, Peng L F, Yang J Q, Wang L H,
Zhang Y Y, Shan B, Xie J. Manipulating kinetics of sul-
finized polyaerylonitrile with tellurium as eutectic accel-
erator to prevent polysulfide dissolution in lithium
	- furized polyaerylonitrile with tellurium as eutectic accelemetor to prevent polysulfide dissolution in lithium-sulfirm battery under dissolution-deposition mechanism[J]. Nano Energy, 2019, 60: 153-161.

	[66] Lebherz T, Fre erator to prevent polysulfide dissolution in lithium-sulfur
battery under dissolution-deposition mechanism[J]. Nano
Energy, 2019, 60: 153-161.
Lebherz T, Frey M, Hintennach A, Buchmeiser M R. In-
fluence of morphology of m battery under dissolution-deposition mechanism[J]. Nano
Energy, 2019, 60: 153-161.
Lebherz T, Frey M, Hintennach A, Buchmeiser M R. In-
fluence of morphology of monolithic sulfur-poly (acry-
lonitrile) composites used as c Energy, 2019, 60: 153-161.

	Lebherz T, Frey M, Hintennach A, Buchmeiser M R. In-

	fluence of morphology of monolithic sulfur-poly (acry-

	lonitrile) composites used as cathode materials in lithi-

	num-sulfir batteries on e [66] Lebherz T, Frey M, Hintennach A, Buchmeiser M R. In-
fluence of morphology of monolithic sulfar-poly (acry-
lonitrile) composites used as cathode materials in lithi-
um-sulfir batteries on electrochemical performance
	-
	- 6972. fluence of morphology of monolithic sulfur-poly (acry-
lonitrile) composites used as cathode materials in lithi-
um-sulfur batteries on electrochemical performance [J].
RSC Adv., 2019, 9(13): 7181-7188.
Zhou J J, Guo Y S, lonitrile) composites used as cathode materials in lithium-sulfur batteries on electrochemical performance [J].
RSC Adv., 2019, 9(13): 7181-7188.
Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yang J,
Wang J L. A new etherum-sulfur batteries on electrochemical performance [J].
RSC Adv., 2019, 9(13): 7181-7188.
Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yang J,
Wang J L. A new ether-based electrolyte for lithium sulfur
batteries using a S
	-
	-
	- RSC Adv., 2019, 9(13): 7181-7188.

	[67] Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yang J,

	Wang J L. A new ether-based electrolyte for lithium sulfur

	batteries using a 8@pPAN cathode[J]. Chem. Commun.,

	2018, 54(43): Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yang J,
Wang J L. A new ether-based electrolyte for lithium sulfur
batteries using a S@pPAN cathode[J]. Chem. Commun.,
2018, 54(43): 5478-5481.
Yin L C, Wang J L, Lin F J, Yang Wang J L. A new ether-based electrolyte for lithium sulfur
batteries using a S@pPAN cathode[J]. Chem. Commun.,
2018, 54(43): 5478-5481.
Yin L C, Wang J L, Lin F J, Yang J, Nuli Y. Polyacry-
lonitrile/graphene composite as batteries using a S@pPAN cathode[J]. Chem. Commun.,
2018, 54(43): 5478-5481.

	Yin L C, Wang J L, Lin F J, Yang J, Nuli Y. Polyaery-

	lonitrile/graphene composite as a precursor to a sul-

	fir-based cathode material for hig 2018, 54(43): 5478-5481.

	Yin L C, Wang J L, Lin F J, Yang J, Nuli Y. Polyaery-

	lonitrile/graphene composite as a precursor to a sul-

	fur-based cathode material for high-rate rechargeable

	Li-5 batteries[J]. Energy Envir

锂硫电池复合正极研究进展 电化学渊J. Electrochem.^冤 2022, 28(12), 2219013 (13 of 13)

李西尧1,赵长欣1,李博权2,3*,黄佳琦2,3,张 强 k , 张 强^{1*}

^袁李博权2, 3* ^袁黄佳琦2, 3 (1. 清华大学化学工程系, 北京 100084, 中华人民共和国; 2. 北京理工大学前沿交叉科学研究院, 北京 100081, 中华人民共和国: 3. 北京理工大学材料学院, 北京 100081, 中华人民共和国)

摘要: 锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系, 其中高比容量的硫正极提 供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是 硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了 S/C 正极和 SPAN 正极的最新研究进展。首 先,简要介绍了两种正极的工作原理并进行了比较。S/C 正极发生固-液-固多相转化反应,充放电表现为双平台特 征。与之相比, SPAN 正极发生固-固反应, 充放电曲线为单平台。然后, 对两种正极所面临的挑战和目前报道的优 化策略进行了系统的分析与讨论。对于 S/C 正极, 主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还 原介体调控;对于 SPAN 正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介 体调控。最后,在电池尺度上对 S/C 正极和 SPAN 正极进行了综合比较,并对基于 S/C 正极和 SPAN 正极的锂硫 电池在未来所面对的机遇与挑战进行了展望。

关键词: 锂硫电池; 硫碳复合正极; 硫化聚丙烯腈正极; 多硫化锂