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Electrical Potential Distribution around a Charged Colloidal

Particle Nonlinear Integral Equation
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D et o Gemphys Exploration, Jianghan Petroleum Inst , Jingzhou, H ubei 434102)
Deng Hao, Yang Guangzheng
(Det o Chemn. Engin Jianghan Petroleum Inst , Jingzhou, H ubei 434102)

Abstract The electrical potential distribution around a charged colloidal particle in a
olution of general electrolytes is governed by the nonlinear Poisson-Boltanann equation,
w hich isa diff erential equation and difficult to lve analytically. In thispaperw e numerically
calculate the electrical potential using nonlinear Q ian Poisson-Bolaaznann integral equation
(PBIE). First, we introduce the PB IE derived from the physical principles for electrostatic
fields and themodynamic systens Then the PB IE isnumerically 0lved by meansof iteration,
in w hich the discrete potential is olely used Finally, the accuracy of the numerical olutions
proposed here isdiscussed The potentialsfor the colloidal particlesw ith scaled radius ka of Q
1{ 2 and Q 2{ 2 areobtained in the case that scaled surface potential e/kT isequal to 1, 2,
4, and 6, regectively. The surface charge densities are al9 calculated to be comparedw ith the
accurate numerical olutionsin 3- 1 electrolyte given by L oeb et al (1961) and O shima (1995).
Excellent agreament is achieved T he relative errors of surface charge densities betw een the
compared olutions are less than 1 0%.

Keyw ords Electrical potential distribution, Colloidal particle, General electrolyte,
Electrical double layer, Poisson-Boltanann equation, Integral equation

INTRODUCTION

Know ledge of electrical potential distribution is an essential basisof analyzing the electro-
static interaction of charged oolloidal particles in a lution of electrolytes, such as surface
charge density/surface potential relationship, stability of the digersion, and electrokinetic ef-

fects™?

Thepotential distribution around a charged colloidal particle is governed by nonlinear
Poison-Boltaznann equation (PBE), which is a differential equation and difficult to solve ana-
lytically. The PBE can be analytically solved only w hen the scaled surface potential is 20 snall
that linearized PBE can be used

On the other hand, the nonlinear PBE can be numerically ®olved forw hole range of scaled
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surface potentials using finite difference method™*, finite elenent method™, and network
method®. U nfortunately, these numerical approachesmay be get into trouble and out of work
w hen the scaled surface potential ismuch larger, because the potential near the surface of the
particle varies very stegply and its derivatives can not be reasonably approached To avoid the
steep variation, Strausset al'’’ proposed a transfom of the potential Bowen et al'¥ then im-
proved the transform and used it to 0lve numerically the PBE However, the transform does
not completely avoid the steep variation, because their numerical calculation is based on Pois
on-Boltzmann diff erential equation (PBDE) and the derivativesof the potential can not be rea-
nablely approximated by their differeces in the case of high scaled surface potentials

Qian et al™®® proposed another numerical method, called integral equation method
(IBM ), based on PoissonBoltamann integral equation (PBIE) inw hich the derivatives of the
potential are not used In the present paperw e extend the IBM from for a charged capillary to
for a charged gherical colloidal particle First, we introduce a PB IE governing the potential
around the particle according to the physical principles for electrostatic fields and themody-
namic systans Then, the PB IE is numerically olved by meansof iteration, inw hich the dis-
crete potential is olely used Finally, we discuss the accuracy of the numerical olutionspro-
posed here The potential for particlesw ith scaled radius ka of Q 1{ 2 and @ 2{ 2 areob-
tained in the case that scaled surface potential e(/kT isequal to 1, 2, 4, and 6, regectively.
T he surface charge densities are also calculated to be comparedw ith the accurate numerical -
lutions in 3-1 electrolyte given by Loeb et al'®’ and Oshima®®. Excellent agreament is
achieved The relative errors of surface charge densities betw een the compared lutions are
less than 1 0%.
SPHERICAL PO ISSON-BOL TZM ANN D IFFERENTIAL EQUATION

A sOhshimadoes in paper [10], consider a pherical colloidal particle of radiusa immersed
in a lution of general electrolytesw hich is composed of N ionic mobile gecies of valence zi
and bulk number density n’(i= 1,2,... , N), where

N
2,zn’=0 (1)
since electroneutrality holds in the bulk olution phase In the condition of electrostatic equilib-
rium, the electrical potential ¥{r) at a distance r from the center of the particle (measured rela-
tive to the bulk olution phase, where {r) = 0) is detem ined by the gpherical PoissonBoltz-
mann equation (PBE),
2 N
g?(zp"' % g‘l(rp: - ‘egzlzin? exp (- Lki_qg (2)
w here e is the elanentary electric charge, € is the pemittivity of the lution, k is theBoltz-
mann constant, and T is the absolute temperature For themost casew e enploy the constant
surface potential condition, that is,
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HAr) = T atr= a 3
w here Tis the surface potential ( zeta potential ) of the particle The natural boundary condi-
tions are also used,

Hr) = g_(rp= 0 atr= oo. (4)

W hen the scaled potential &, the scaled surface potential €, and the scaled radiusR are used,
that is,

_e®P __eT _ _
®= 1 &5 o R= K (5)
w here K is the D ebye-H uckel paraneter of the solution and is defined as
2 N 1/2
- | & 2,0
K= | T Zl zini| (6)
then Eqs (2)-(4) become
N
d’®  2dd_ 0 .
dR2 + RdR— - leICI eXp (' Zlq)), (7)
®R) = £ atR=R< Ka, (8)
_doe Y
®R) = yg=0 atR=o, (9)

w here C{= n?/z zin? is the relative concentration, Rs is the scaled radiusof the particle, and
Eq (7) iscalled nomalized PBDE Eqgs (2)-(4) or Egs (7)-(9) set the boundary value prob-
lan of the electrostatic potential distribution around a charged colloidal particle

The surface charge density oof the particle is given by

d_ﬂ _ €KKT
0= - €d r r:a+_ e |, (10)
w here

_ do

I= - dR g Ry (11)

Equation (10) with Eq (11) gives the surface charge density/surface potential relationship or
the 1 /€ relationship for the particle
SPHERICAL PO ISSON-BOL TZM ANN INTEGRAL EQUATION

Follow ing Q ian et al®®”, we now give a nhonlinear pherical Poisson-Boltanann integral e
quation ( PB IE ) governing the potential at the outside of a charged colloidal particle In ther-
mal equilibrium, the ionic number density ni(r) of its gpecies around the particle obeysBoltz-
mann distribution:

ni(r) = n'exp (- ziePkT). (12)
A nd the charge density P(r) is
p(l’) = zl ezini(r). (13)

In electrostatic equilibrium, the electric field strength E (r) at the outside of the particle is de-
scribed by Gauss Theoren™!, andwe can get in Sl units,

e = 4+ (14)

477€ 1*
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w here
q(r) = 4 . p(r) rzdr_ (15)
The charge q(r) in Eq (15) is the total electric chargew ithin the spherical surface of radiusr.

A ccording to the electroneutrality in all olution gace around the particle, It can be derived
from Eq (15) that

q(r) = - 41'0: P(r) rzdr.

Based on the definition of electric potential difference given by Guo
tial difference betw een potential ¥H{r) at r and potential e )= 0 at r= oo,

(16)

(1 the electric poten-

Hr)- He) = [E() dr an
Substituting Eqs (12)- (14) into Eq (17), we get
Ar) = - 'JG"Zl eZin?J-:o%Ij yZexp (- ezKRy)/kT)dy, (18)

w here variables x and y are auxilliary integral variablesw ith no physical sense Eq (18) is
called gpherical nonlinear PB IE T he boundary conditions connected w ith Eq (18) are,

Wa) = T W) = T2 (19)

If scaled potential &, scaled zetapotential & and scaled radiusR are used, the nomalized PB IE
can be obtained,

N
_ - ~0 .
®R) = -IRXZIXY 2. 2C7 exp (- z@(vV))dy (20)
w here variables X and Y are al® auxilliary integral variableswith no physical sense The
boundary conditions connected w ith Eq (20) are

ORY) = E B(w) = d%‘?: 0. (21)

NUM ERICAL OLUTION TO PBIE

Based on the method developed previously by Qian et al , we first select an interval
(Rs,Rc). Rec isa scaled radius as reference for numerical recursive procedure enployed below.
The reference radiusR.: is 2 selected that we can use D ebye-H uckel gpproximation to express
the potential w hen scaled radiusR is larger than Rc , that is,

|[819]

®(R) 'é‘ exp (- R), whenR2 Rq, (22)
and
o .o
J-RCCD(R)R dR= Re(1+ R)B(R<) (23)
D ivide the interval (Rs,R¢) intoM subintervals (R;- 1, Rj), j= 1,2, ..., M, and there areM

+ 1 nodes Rs= Ro< Ri<... < Rw= Rc in the interval (Rs,Rc). Discretize Eq (20) and get a
discrete gpherical PB IE,

M N
_ Fm B 2§ O .
Ba= B IRm-1X2 Z“J-Rj-ldY Y zlzICI exp (_ ziD (Y)), (24)
where &= ®Rn),m=0,1,...,M, A= Rj- R; 1 isthelengthof subinterval R;- 1 R)), j=
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1,2,...,M , whichmay be either constant or variable The integration in subinterval (Rj- 1
Rj) or (Rm- 1 Rm) is linearly approximated
A coording to Eq (21), & should be equal to & and it can be derived from Eqs (22 23)

that

) (29)

U sing Eq (24), the value of @ at each node can be recursively calculated from the refer-
ence point R. to the surface Rs of the particle

A coording to ¥sproperty of monotoneously increasing or deceasing, the updated starting
value & 'in (K+ 1) th iteration is achieved by setting

ql/l-lqu/l(l- A,

= (Dt Do) /2, (26)
w here if &> £ then
ma= @, @ mn= @ min, (27)
and if &< & then
‘mac= @ ma, Tmin= . (28)
In the first iteration w e take
@i ma= & Bimn= O, (29)

where & is the Kth starting value T he iterative process is continued until the relative error
between &5 and the correct boundary value Emeets the requirement
The above updating m ethod of starting value makes the iterative process be of faster con-

[8,9]

vergence than that proposed by Q ian et al in paper
EXAM PLES

For comparison of the present resultsw ith the exact numerical values by L oeb et al (Table
3 in Ref (3)) and accurate analytic approximation by O shina (Table 1 in Ref. (10)), we take
3-1 electrolytes of concentration n as an exanple In our numerical computation of &, let
subinterval length A constant and equal to (R.- Rs) /5000, desired relative error of the poten-
tial at Rs less than Q 001%, that is | &- £l /< a 001%.

Figure 1 illustrates our numerical resultsof ®from Eq (24), provided that scaled radius
Rs= Q {2 and scaled potential &= 1, 2, 4, and 6, regectively. Figure 2 illustratesour solu-
tionsof ®from Eq (24), in the case that scaled radiusRs= Q 2{ 2 and scaled potential &= 1
2,4, and 6, regectively. These results show usw hat the electrical potential near the outer
surface of a charged colloidal particle mmersed in a o lution of general electrolytes looks really
like
ACCURACY OF L UTIONS

For testing the accuracy of our numerical olutions, w e use the existed resultsprovided by
Loeb et al'™® and O shima!™®, and calculate the surface charge density/surface potedntial rela-
tionship shown in Eqs (10) and (11) using finite differencemethod That is
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Scaled potential ¢
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|
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Scaled radius R

Fig 1 Numerical olutions of potential for a
charged particlew ith radiusRs of O 1

‘J 2 in 3-1 electrolyte solution
do - P

dR I, A

Scaled potential ¢
O _2NWAMOO
|
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04 08 12 16 20 24
Scaled radius R

Fig 2 Numerical lutions of potential for a
charged particle w ith radiusRs of Q 2

‘J 2 in 3-1 electrolyte solution

(30)

In Table 1w e show | calculatedw ith Eqs (11, 30) asa funcition of scaled radiusRs and

scaled surface potential & for 3-1 electrolytes of concentration n The agreanent betw een the

compared dlutions is excellent The relative error betw een our results and theL oeb’s is less
than 1% for Rs = Q 11 2, which is better than that of O shima'™”,
Butw e have to say that our results is affected by the position of the reference point Rs as

shown in Table 1 From our experiments the reference point should be 9 selected that the

scaled potential @ at Rc is less than Q 02 o as to ensure that exp (®) can bew ell approaxi-

mated by the (1+ ).

Tah 1 The accuracy comparision of numerical olution for surface charge density of a charged colloidal

particle
Scaled Radius [Scaled Potential ChargeDensity ChargeDensity ChargeDensity Reference Point
Rs g L 2oy {4 21002 J_9|(|:q Q) Re
1 11 291 11 383 11 291 03] 2
2 22 514 22 550 22 520 Q54 2
a1d 2 4 45 465 44 292(2 6) 45 470 053y 2
6 71 455 68 526(4 1) 71 452 053 2
1 6 262 6 292 6 274 a60V 2
024 2 2 12 472 12 479 12 487 Q754 2
4 25 762 25 391(1 4) 25 780 assy 2
6 43 656 42 925(1 7) 43 648 0 80d o

* |(LOW) isexact numerical valuesof Loeb et al(3), [(©sh 2) calculatedw ith second-order relation-

ship Eq (26) byOshima (10), and I( Eq (27) ) in thepresent paper, respectively The relativeerror, & (1-
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I/1(LOW ) x 100%, is indicated in paprentheses if more than 1%

CONCL USIONS

Even for snall scaled radius and large scaled surface potentials themethod proposed in this
paper can give an accureate numerical lution of the nonlinear PBE around a charged colloidal
particle in general electrolyte solution by meansof the nonlinear Poisson-Boltanann integral e
guation
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