Journal of Electrochemistry

Volume 17 | Issue 2

2011-05-28

DFT Study of CO2 Reduction to Hydrocarbons on Cu Surfaces

Li-hui OU

Sheng-li CHEN

Recommended Citation

Li-hui OU, Sheng-li CHEN. DFT Study of CO2 Reduction to Hydrocarbons on Cu Surfaces[J]. *Journal of Electrochemistry*, 2011, 17(2): Article 15. DOI: 10.61558/2993-074X.2830 Available at: https://jelectrochem.xmu.edu.cn/journal/vol17/iss2/15

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2011)02-0155-06

CO₂ 在 Cu 表面还原成碳氢化合物的 DFT 计算研究

欧利辉^{1,2},陈胜利^{1*}

(1. 武汉大学化学与分子科学学院,湖北 武汉 430072; 2. 湖南文理学院化学化工学院,湖南 常德 415000)

摘要: 应用密度泛函理论(DFT)反应能计算及最小能量路径分析研究了 CO₂ 在气相和电化学环境中于 Cu (111)单晶表面的还原过程. 气相 CO₂ 还原为碳氢化合物的反应路径可能为: CO₂(g) + H^{*} → COOH^{*} →(CO + OH) ^{*} → CHO^{*}; CHO + H^{*} → CH₂O^{*} →(CH₂ + O)^{*}; CH₂^{*} + 2H^{*} → CH₄ 或 2CH₂^{*} → C₂H₄. 整个反应由 CO₂(g) + H^{*} → COOH^{*} →(CO + OH)^{*}, (CO + H) ^{*} → CHO^{*} 和 CH₂O^{*} →(CH₂ + O)^{*} 等几个步骤联合控制. 在 - 0. 50 V (vs. RHE) 以正的电势下, CO₂ 在 Cu(111)表面电化学还原主要形成 HCOO⁻和 CO 吸附物; 随着电势逐渐负移, CO₂ 加氢解离形成 CO 的反应越来越容易, CO 成为主要产物; 随电势进一步变负, 形成碳氢化合物的趋势逐渐 变强. 与 CO₂ 的气相化学还原不同的是, 电化学环境下 CO 质子化形成的 CHO 中间体倾向于解离形成 CH, 而在 气相中 CHO 中间体则倾向于进一步质子化形成 CH, O 中间体.

关键词: 密度泛函理论计算; CO₂ 还原; 反应路径

中图分类号: 0646

CO₂ 是引发温室效应的主要气体.如何在不影 响经济发展的前提下有效地减少大气中 CO₂ 的含 量,是人类面临的重大环境问题.CO₂ 问题的解决 可能有两条途径.一是控制和降低其排放.目前国 际社会也在这方面进行积极努力,如已达成诸如 "京都协议"等具有法律约束力的国际协议.但排 放限制措施至今尚处在经济发展与人类环境的博 弈关系中,举步维艰.另一种途径是采取人工回收 和固定 CO₂ 的方法,特别是通过化学反应将其转 化为有用化学品或燃料.这样可以在不影响经济 发展的前提下解决与 CO₂ 相关的环境问题,同时 也为解决能源资源问题提供新途径.CO₂ 的还原正 是在这样的背景下成为数十年来的研究热点.当 前研究较多的是将 CO₂ 还原为 CH₄、C₂H₄、CH₃OH 等燃料分子.

与气相化学还原相比,CO₂ 的电化学还原可在 室温和常压下进行,并且可以借助改变电极电势 调控其反应速率和选择性,因而具有潜在的优 势^[1].CO₂ 的电化学还原大多以 Cu 作电极,主要 原因是 Cu 电极材料具有中等的氢过电位,与 CO 的相互作用相对较弱.研究表明,CO₂ 在 Cu 电极

文献标识码: A

表面还原生成烷烃、烯烃和醇等燃料分子的反应 具有相当高的法拉第产率.其中,在Cu(111)表面 主要形成 CH₄,而在 Cu(100)表面主要形成 C₂H₄^[2-3].尽管经过了大量的探索,迄今对 CO₂ 电 化学还原的机理的认识仍比较浅薄,这对反应的 调控及催化剂的设计极为不利.为此,本文应用密 度泛函理论(DFT)计算研究了气相和电化学环境 两种情况下 CO₂ 在 Cu(111)单晶表面的还原,以 确定 CO₂ 还原过程的最佳反应路径以及反应的难 易程度.

1 计算方法和模型

采用考虑自旋极化效应的密度泛函理论方法 进行计算. 计算中交换关联能部分使用了由 Perdew, Burke 和 Ernzerhof 提出的广义梯度近似下的 PBE 泛函(GGA-PBE)^[4]. 电子和核之间的相互作 用由超软赝势(Ultrasoft Pseudopotentials, USPP) 描 述^[5]. 平面波基组的截断动能和截断电荷密度分 别取为 26Ry 和 260Ry. 费米面由 Methfessel-Paxton 的 smearing 技术处理,其中使用了一个 0.02Ry 的 smearing 参数^[6]. 全部计算由 Quantum-ESPRESSO 软件包的 PWSCF 程序执行^[7].

收稿日期:2010-10-08,修订日期:2010-12-15 * 通讯作者,Tel:(86-27) 68754693,E-mail:slchen@whu.edu.cn 国家自然科学基金(21073137, 50632050)资助

图 1 Cu(111)表面气相 CO₂ 还原的反应能图

Fig. 1 Reaction energy profiles of the CO_2 reduction on Cu(111) surface in the gas phase

采取4层厚度的周期性(3×3)超晶胞平板 (slab)模型模拟Cu(111)表面进行几何结构的优 化以及反应能的计算,使用3层(2×3)的超晶胞 表面作反应路径搜索的CI-NEB计算.总能量计算 和电荷密度在Brillouin 区的积分使用 special-point 方案选择 k 空间网格点.对于(2×3)和(3×3)的 平板表面,分别使用了(4×3)和(3×3)的k 空间 网格.计算中设置真空层的厚度为1.6 nm.在表面 构型优化过程中,对4层(3×3)的平板表面,顶部 两层Cu原子以及吸附物允许弛豫,其余两层Cu 原子固定不动.总能量的收敛标准不超出10⁻⁵Ry, 作用在每一个原子上的笛卡尔力的收敛标准低于 10⁻³Ry/Bohr.

使用 CI-NEB (Climbing Image Nudged Elastic Band)方法^[8-9]作最小能量路径(Minimum Energy Path)计算,并对最小能量路径获得的每一个中间体作几何构型的优化,其中过渡态使用 Quasi-Newton 算法优化,优化中底部两层金属原子固定不动,顶层金属原子及表面吸附质原子则允许弛豫.

2 结果与讨论

2.1 CO₂ 在 Cu(111) 表面的气相还原

图1给出Cu(111)表面CO2还原过程各种可

能反应路径的能量变化. 计算表明, CO₂ 的第1步 加氢还原可生成甲酸根 HCOO⁻或 CO. 从热力学角 度看, 生成 HCOO⁻更为容易. 而 CO 的生成须经历 一个羧基中间体(COOH). 由图可知, CO 乃是 CO₂ 还原为 CH₄ 等燃料分子的必经中间体. 它的进一 步氢化分别形成 CHO 和 CH₂O 中间体, 随后 CH₂O 解离形成 CH₂, 这是形成碳氢化合物 CH₄ 和 C₂H₄ 等的关键中间体.

根据图 1 各反应的反应能,基本上可以得出 CO₂ 在 Cu(111)表面由氢气还原的最佳反应路径 为:CO₂(g) + H^{*} → COOH → (CO + OH)^{*}; (CO + H)^{*} → CHO^{*}; CHO + H → CH₂O^{*} → (CH₂ + O)^{*}; CH₂^{*} + 2H^{*} → CH₄ 或 2CH₂^{*} → C,H₄.

表1给出应用最小能量路径计算得到的以上 各反应步骤的活化能数据,由此可判断各反应路 径的难易程度.

如表可见,最慢的步骤为 $CH_2O^* \rightarrow (CH_2 + O)^*$,其次是 $CO_2(g) + H^* \rightarrow COOH \rightarrow (CO + OH)^* 和(CO + H)^* \rightarrow CHO^*$. 总反应过程即由以上几个反应步骤联合控制.

2.2 CO₂ 在 Cu(111) 表面的电化学还原

电化学还原和气相化学还原的区别在于吸附

表 1 $Cu(111)/CO_2$ 位	本系最佳反应路	径的活化能垒
\mathcal{L}^{1} \mathcal{L}^{0} \mathcal{L}^{0}	中不取住风型饵	任时间化肥至

Tab. 1 Activation energy barriers (E_{act}) of the optimum reaction path in Cu(111)/CO₂ system

Reaction path	$E_{\rm act}/{\rm eV}$
$CO_2 + H \rightarrow CO + OH$	1.18
СО + Н→СНО	1.06
$\rm CHO + H {\rightarrow} \rm CH_2O$	0.72
$CH_2O \rightarrow CH_2 + O$	1.30
$CH_2 + H \rightarrow CH_3$	0.63
$\mathrm{CH}_3 + \mathrm{H} {\rightarrow} \mathrm{CH}_4$	1.03
$\mathrm{CH}_2 + \mathrm{CH}_2 {\rightarrow} \mathrm{C}_2 \mathrm{H}_4$	0.21

H 的来源不同. 气相还原吸附 H 主要来自 H₂ 的解 离,而电化学还原则主要来源于 H⁺离子的放电, 其反应的热力学和动力学均与电极电势密切相 关. 以下初步考察电极电势对 CO₂ 在 Cu(111)表 面还原各步反应能的影响.

图 2~4 分别给出 - 0.50 V, - 0.67 V和 - 0.90 V(vs. RHE)电势下 CO₂ 电化学还原 各步的反应能.有文献指出^[10],电势为 - 0.50 V

时,主要形成甲酸根产物; -0.67 V时,主要产物 为CO; -0.90 V时,主要形成碳氢化合物. 另据热 力学分析, CO₂ 电化学还原形成 CH₄ 的总反应 (CO₂ + 8H⁺ + 8e⁻→CH₄ + 2H₂O)吉布斯自由能为 $\Delta G = -233.61 - 8EF$ (kJ/mol). 依据本文计算, 电势为 -0.50 V, -0.67 V, -0.90 V时,该总 反应的反应能分别为 -619.61, -750.89 和 -928.41 kJ/mol(见图 2~图4),是高度放热的反 应,明显高于气相的反应能.因此,电化学环境更 有利于该反应的进行.

据图 2,当电势为 -0.50 V时,CO₂ 质子化形成 HCOO⁻和 CO的反应能相互很接近,但 CO的进一步还原则是一个耗能过程.因此,在 -0.50 V以正的电势下,Cu (111)表面主要形成的应该是HCOO⁻和 CO 吸附物.随着电势逐渐变负,CO₂ 质子化形成 HCOO⁻和 CO 的反应能之差逐渐变大,表现出越来越容易形成 CO,并且 CO 的进一步还原也逐渐变为放能反应.又从图 3 可见, -0.67 V电势下,在 Cu (111)表面发生的主要是 CO₂ 质子化形成 CO 的反应.随着电势进一步变负, -0.90 V时(图 4),CO 的后续加氢反应逐渐变为强放能反应,因而形成碳氢化合物的趋势变强.与气相还原

图 2 -0.50 V(vs. RHE) 电势下, CO2 在 Cu(111) 表面电化学还原反应能图

Fig. 2 Reaction energy profiles of the CO_2 electrochemical reduction on Cu(111) surface at -0.50 V(vs. RHE)

图 3 -0.67 V(vs. RHE) 电势下, CO₂ 在 Cu(111)表面电化学还原反应能图 Fig. 3 Reaction energy profiles of the CO₂ electrochemical reduction on Cu(111) surface at -0.67 V(vs. RHE)

图 4 -0.90 V(vs. RHE) 电势下, CO2 在 Cu(111)表面电化学还原反应能图

Fig. 4 Reaction energy profiles for CO₂ electrochemical reduction on Cu(111) surface at -0.90 V(vs. RHE)

不同的是,电化学环境下,CO质子化形成的CHO 中间体倾向于解离形成CH,而在气相中,CHO中 间体则倾向于进一步质子化形成 CH₂O 中间体.同时,较负的电势更有利于形成 CH₄ 产物.

3 结 论

由密度泛函理论计算得出,对气相和电化学 环境两种情况下 CO₂ 在 Cu(111)单晶表面的还 原:

1) CO₂ 的第 1 步加氢还原可生成甲酸根 HCOO⁻或 CO,其中 CO 的生成要经过一个羧基中 间体(COOH).相比之下,HCOO⁻的生成要更为容 易.CO 是 CO₂ 还原为 CH₄ 等燃料分子的必经中间 体.它的进一步氢化分别形成 CHO 和 CH₂O,随后 CH₂O 解离形成 CH₂,它是形成碳氢化合物 CH₄ 等 的关键中间体.气相 CO₂ 还原的可能反应路径为: CO₂(g) + H^{*} → COOH → (CO + OH)^{*};(CO + H)^{*} → CHO^{*};CHO + H → CH₂O^{*} → (CH₂ + O)^{*};CH₂^{*} + 2H^{*} → CH₄ 或 2CH₂^{*} → C₂H₄.整个反应过程由 CH₂O^{*} → (CH₂ + O)^{*},CO₂(g) + H^{*} → COOH → (CO + OH)^{*}和(CO + H)^{*} → CHO^{*}这几个反应步 骤联合控制.

2) 电化学环境中,在-0.50 V 以正的电势下 Cu(111)表面主要形成 HCOO⁻和 CO 吸附物. 随着 电势逐渐变负,CO₂ 质子化形成 CO 的反应越加容 易. 电势为-0.67 V 时,主要形成 CO. 若电势负于 -0.90 V,CO 的后续加氢反应逐渐变为强放能反 应,因而形成碳氢化合物的趋势变强. 与气相还原 相比,电化学环境下 CO 质子化形成的 CHO 中间 体倾向于解离形成 CH,而在气相中,CHO 中间体 则倾向于进一步氢化形成 CH₂O 中间体.

参考文献(References):

[1] Hori Y. Environmental aspects of electrochemistry and photoelectrochemistry[C]//Tomkiewicz M, Haynes R, Yoneyama H, Hori Y, Eds. Pennington, NJ: The Electrochemical Society, 1993, p1.

- [2] Hori Y, Wakebe H, Tsukamoto T, et al. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO₂ to hydrocarbons [J]. Surf Sci, 1995, 335(20):258-263.
- [3] Hori Y, Takahashi I, Koga O, et al. Selective formation of C2 compounds from electrochemical reduction of CO₂ at a series of copper single crystal electrodes [J]. J Phys Chem B,2002,106(1):15-17.
- Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77 (18):3865-3868.
- [5] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys Rev B, 1990,41(11):7892-7895.
- [6] Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals [J]. Phys Rev B, 1989,40(6):3616-3621.
- [7] Baroni S, Dal Corso A, de Gironcoli S, et al. PWSCF and PHONON: Plane-wave Pseudo-potential codes [EB/ OL]. http://www.pwscf. org,2001.
- [8] Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Chem Phys, 2000, 113(22):9978-9985.
- [9] Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. J Chem Phys, 2000,113:9901-9904.
- [10] Noda H, Ikeda S, Oda Y, et al. Potential dependencies of the products on electrochemical reduction of carbon dioxide at a copper electrode [J]. Chem Lett, 1989, 18 (27):289-292.

DFT Study of CO₂ Reduction to Hydrocarbons on Cu Surfaces

OU Li-hui^{1,2}, CHEN Sheng-li^{1*}

(1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

2. College of Chemistry and Chemical Engineering, Hunan University of Arts and Science,

Changde 415000, Hunan, China)

Abstract: The CO₂ reduction on Cu(111) single crystal surfaces was studied using DFT calculations on the reaction energies and the minimum energy paths. The results indicated that the possible reaction paths for CO₂ reduction on Cu(111) surface are CO₂(g) + H^{*} \rightarrow COOH^{*} \rightarrow (CO + OH)^{*}, (CO + H)^{*} \rightarrow CHO^{*}, CHO + H \rightarrow CH₂O^{*} \rightarrow (CH₂ + O)^{*}, CH₂^{*} + 2H^{*} \rightarrow CH₄ or 2CH₂^{*} \rightarrow C₂H₄. On Cu(111) surface, the reaction rate is controlled by steps of CH₂O^{*} \rightarrow (CH₂ + O)^{*}, CO₂(g) + H^{*} \rightarrow COOH \rightarrow (CO + OH)^{*} and (CO + H)^{*} \rightarrow CHO^{*}. In addition, the reaction energies for various steps in the electrochemical reduction of CO₂ were calculated under different electrode potentials. The results indicated that HCOO⁻ and CO are mainly formed when the potential is more positive than -0.50 V (vs. RHE). The hydrogenated dissociation of CO₂ to form CO and the subsequent hydrogenation of CO become increasingly exothermic as the potential goes negative, so that hydrocarbons gradually become the favored products in the electrochemical reduction. Under electrochemical conditions, the CHO intermediate prefers to dissociate to form CH, rather than to form CH₂O intermediate via protonation as does in gas phase reduction.

Key words: density functional theory calculations; carbon dioxide reduction; the minimum energy paths