Journal of Electrochemistry

Volume 17 Issue 3 Special Issue of Chemo/Biosensing Technology(Editor: Professor ZHANG Zongrang)

2011-08-28

Photogenerated Cathodic Protection of Stainless Steel

Cheng-Gang LIN

Ze-Quan LIN

Jing LI

Chang-Jian LIN

Recommended Citation

Cheng-Gang LIN, Ze-Quan LIN, Jing LI, Chang-Jian LIN. Photogenerated Cathodic Protection of Stainless Steel[J]. *Journal of Electrochemistry*, 2011, 17(3): Article 13. DOI: 10.61558/2993-074X.2846 Available at: https://jelectrochem.xmu.edu.cn/journal/vol17/iss3/13

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2011)03-0312-06

钴离子(Co²⁺)掺杂 TiO₂ 纳米管阵列的 光生阴极保护行为

林成钢,林泽泉,李 静,林昌健*

(厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建厦门361005)

摘要:应用电化学阳极氧化法在纯钛箔表面构筑 TiO₂ 纳米管阵列膜,借助离子交换法对纳米管阵列膜作钻 离子(Co²⁺)掺杂.扫描电子显微镜(SEM)、X-射线衍射(XRD)观察膜层的形貌和晶型,紫外-可见吸收光谱 (UV-Vis)、光电化学分别测试 Co²⁺掺杂 TiO₂ 纳米管阵列在不同波长范围内的光电响应特性和光生阴极保护行 为,考察 Co²⁺掺杂量对 TiO₂ 纳米管阵列几何尺寸、形貌和光电性能的影响.结果表明,掺杂适量 Co²⁺形成的杂 化能级可有效窄化 TiO₂ 带隙宽度,并使光响应扩展至可见光区.Co²⁺掺杂 TiO₂ 纳米管阵列膜在 400~650 nm 波 长范围有较强的光吸收,对 403 不锈钢光生阴极保护作用明显.

关键词: TiO₂ 纳米管阵列膜; 钴离子(Co²⁺)掺杂; 可见光; 阳极氧化; 光生阴极保护

中图分类号: 0646

TiO₂ 是一种重要的半导体材料,因其优异的 光学、光催化、光电转换特性及稳定的化学性质、 无毒等优点,在光催化剂、太阳能电池、气敏传感 器、光生阴极保护、生物等方面有着广阔的前 景^[1-7]. Yuan 和 Tsujikawa 首先提出光生阴极保护 的概念,并利用 TiO₂ 半导体的光生电子进行金属 的阴极防护^[8-10].但TiO₂带隙较宽(E_g=3.0~3.2 eV),只能吸收波长小于387 nm 的光,以致天然太 阳光之大部分可见光得不到有效利用(太阳能利 用率约4%);另一方面,TiO,光激发产生的光生电 子空穴对易复合,光量子产率不高;特别是,在暗 态下无法实现金属的阴极保护.因此,要使 TiO,能 在光生阴极保护技术方面得以实际应用,必须解 决的关键问题:1)降低 TiO, 禁带宽度,提高其可见 光吸收;2)减缓光生电子-空穴对复合速率;3)建 立有效的储存电子的方法以使 TiO2 在暗态下也能 起光生阴极保护作用. 迄今,国内外已开展大量相 关研究^[11-13],并报道了采用 Sn(IV)^[14]、CeO,^[15]、 WO₃^[16]、CdS^[17]复合TiO₂纳米膜或TiO₂纳米 管^[18]对铜^[19]、304不锈钢^[20]等的光生阴极保护作 用,或以金属(Fe、V、Mn、Co、Cr、Ni)^[21-25]及非金属

文献标识码: A

(N、S、C、P)^[26-28]掺杂 TiO₂ 实现可见光响应的阴极保护. 但有关钴掺杂 TiO₂ 纳米管阵列膜的制备 及其光生阴极保护效应的研究还较少报道. 本文 主要研究借助离子交换法^[29]将经过电化学阳极氧 化法制备的 TiO₂ 纳米管阵列膜作钴离子(Co²⁺) 掺杂改性,考察不同的掺杂量对 TiO₂ 纳米管阵列 膜光电性质及其光生阴极保护效应的影响.

1 实验部分

1.1 TiO₂ 纳米管制备

选用纯钛箔(99%)制成1 cm ×2 cm 薄片,依次用去离子水、无水乙醇、丙酮超声清洗10 min.室 温下,以钛箔为阳极,铂片为对电极,在0.5% (by mass) HF 电解液中,施加20 V 电压,于磁力搅拌 下阳极氧化30 min 之后取出钛箔,立即用大量去 离子水冲洗,自然晾干备用.

1.2 钴掺杂

将以上制备的 TiO₂ 纳米管阵列浸渍在不同浓度的醋酸钴溶液(0.01~0.05 mol/L)中,超声 30 min 后,再静止浸渍 20 h.取出后立即用去离子水冲洗,自然晾干,后于空气氛围下 450 ℃煅烧 2 h.

收稿日期:2011-02-24,修订日期:2011-05-24 * 通讯作者,Tel:(86-592)2189354,E-mail:cjlin@xmu.edu.cn 国家自然科学基金项目(51072170,50731004,21021002),国家 863 计划项目(2009AA03Z327)资助

对比样的制备:将上述浸渍溶液改成去离子 水,其它处理条件均同.

1.3 TiO₂ 纳米管阵列膜的结构表征

使用 LEO-1530 型场发射扫描电子显微镜 (SEM)(德国 LEO 公司,加速电压 10 kV)表征钴 掺杂 TiO₂ 纳米管形貌; Panalytical X'pert PRO 粉末 X 射线衍射仪(Philips 公司, CuKa 靶, 管电压 40 kV,管电流 30 mA)测定纳米管薄膜晶体结构; QUANTUM 2000X 射线光电子能谱仪(美国 Phsical Electronics 公司)作 XPS 测试.测试参数:单色化 AlKa,能量 1486.6 eV,电压 15 kV;功率 25 W;束斑 直径 100 μ m,光电子出射角 45°,结合能以 C1s = 284.5 eV 为基准.

1.4 纳米管阵列膜光电性能表征

由 Cary5000 型紫外-可见-近红外分光光度计(UV-Vis-NIR spectrophotometer,美国 Varian 公司) 表征纳米膜层的光吸收特性.

用自行组装的光电化学联用系统测定纳米管 阵列膜在零偏压下随入射光波长变化的光电流响 应,光电化学联用系统由光源(LPX150 氙灯和 SBP300 光栅光谱仪,北京卓立汉光仪器公司)、斩 波器、5031 型双通道锁相放大仪、263 型恒电位仪 等组成.以TiO₂纳米管阵列膜为光阳极,铂丝电极 为对电极,饱和甘汞电极(SCE)为参比电极,电解 液为0.1 mol/L Na₂SO₄ 溶液,入射光波长选择 250 ~600 nm.

1.5 纳米管阵列膜光生阴极保护效应

取403 不锈钢片(1 cm×2 cm)分别用水磨砂 纸和 Al₂O₃ 抛光粉机械打磨成镜面,然后依次用丙 酮、无水乙醇、三次蒸馏水超声清洗、干燥.

以自行研制组装的光电联用系统测定光生阴极保护效应,主要部件含光生电解池-腐蚀电解池 偶联体系.光生电解池电解液为0.1 mol/L Na₂SO₄,Co²⁺掺杂TiO₂纳米管膜电极(1 cm × 2 cm)作光阳极;腐蚀电解池电解液为0.5 mol/L NaCl溶液,403不锈钢片(1 cm × 2 cm)为研究电极;参比电极为饱和甘汞电极(SCE).经导线将光 阳极与403不锈钢工作电极连接,选择150 W 高 压氙灯作为光源,测量403不锈钢电极电位随光照 的变化关系.

2 结果与讨论

2.1 Co²⁺掺杂 TiO₂ 纳米管阵列膜形貌

图1为电化学阳极氧化制备的纯 TiO₂(a,b) 和掺 Co²⁺(c,d) TiO₂ 纳米管阵列膜正面和侧面 SEM 照片.可看出,该纳米管阵列膜具有明显的管 状特征,排列整齐有序,尺寸均匀,孔径约90~100 nm,壁厚约18~23 nm,管长约380~450 nm. 阵列 膜呈3层结构:最上层为上端开口、底部乃封闭结 构的纳米管,中间一层为致密的TiO₂ 阻挡层,连接 纳米管与金属钛基底.经过 Co²⁺掺杂的纳米管阵 列膜形貌没有发生明显变化,仍保持高度有序、规 整的独特阵列结构.TiO₂ 纳米管阵列膜的结构具 有如下优点:1)比表面大;2)极度有序的纳米管阵 列,使光生电子能够迅速地定向传输至基底.显示 出优良的光电性能.

- 图 1 纯 TiO₂ 纳米管阵列膜正面(a)和侧面(b)以及 Co²⁺掺杂 TiO₂ 纳米管正面(c)和侧面(d)的 SEM 照片
- Fig. 1 SEM images of the TiO_2 nanotube arrays (a,b) and the Co^{2+} doped TiO_2 nanotube arrays (c,d) a,c, top view; b,d, cross-sectional image

2.2 Co²⁺掺杂 TiO₂ 纳米管阵列膜结构及 表面组分

图 2 为经不同掺杂溶液处理后的 Co²⁺掺杂 TiO₂ 纳米管阵列膜的 XRD 图谱.由图可见,掺 Co²⁺处理后的 TiO₂ 纳米管各谱峰均与未掺杂 Co²⁺的 TiO₂ 纳米管一致,都显示出锐钛矿结构的 特征吸收峰(101),说明 Co²⁺的掺杂没有改变 TiO₂ 纳米管的晶型.但随着掺钴溶液浓度的升高,其特 征吸收峰(101)和(004)的强度降低.因为 Co²⁺的 离子半径 0.065 nm,而 Ti⁴⁺的离子半径 0.061 nm, 两者非常接近,制备时在超声和静置处理过程中, Co²⁺与TiO₂ 晶格中的部分Ti⁴⁺发生交换,进入晶 格中,从而弱化了该谱峰强度^[30].图中未观测到 Co的特征峰,表明Co的实际掺杂量极低.

图 3 为 Co²⁺ 掺杂 TiO₂ 纳米管阵列的 XPS 图 谱. 图中出现在 780.9 eV 和 796.7 eV 附近的谱峰 归属于 Co 2p_{3/2}和 Co 2p_{1/2},证明离子交换法可有效 对 TiO₂ 纳米管阵列进行 Co²⁺ 掺杂,且 Co²⁺ 主要以 CoO 形式存在于 TiO₂ 纳米管阵列膜表面层^[30-31].

图 2 不同 Co²⁺离子掺杂量的 TiO₂ 纳米管的 XRD 图谱

Fig. 2 XRD patterns of the pure TiO_2 nanotube arrays and Co^{2+} doped TiO_2 nanotube layers $C_{\text{Co}^{2+}}$ (a ~ d) in fabrication process/mol \cdot L⁻¹:0; 0.01; 0.02; 0.03

图 3 Co-TiO₂ 纳米管阵列膜的 X 射线光电子能谱图

Fig. 3 $$\rm XPS$ spectra of the <math display="inline">{\rm Co}^{2+}$ doped ${\rm TiO}_2$ nanotube arrays

2.3 纳米管阵列膜的紫外可见吸收光谱

图 4 为不同 Co²⁺离子浓度掺杂的 TiO₂ 纳米 管阵列膜层紫外-可见吸收光谱. 如图可见,未掺杂 的 TiO₂ 纳米管阵列膜主要吸收波长小于 380 nm 的紫外光,对应于锐钛矿的本征吸收. 而掺 Co²⁺ 后 的阵列膜层的吸收边发生红移,且在 400~650 nm 波长范围内出现明显的强吸收.显然,Co²⁺的掺杂 可使 TiO₂ 纳米管形成了杂化能级,降低了禁带宽 度,将吸收谱带拓展到可见光区^[29-30].

图4 未掺杂和掺钴的 Co-TiO₂ 纳米管阵列膜的紫外-可 见吸收光谱

Fig. 4 UV-Vis absorption spectra of the pure TiO₂ nanotube arrays and Co²⁺ doped TiO₂ nanotube layers $C_{Co^{2+}}$ (a ~ d) in fabrication process/mol·L⁻¹:0; 0.01; 0.02; 0.03

2.4 纳米管阵列膜光电流响应

图 5 为未掺杂 TiO₂ 纳米管和 Co²⁺掺杂 TiO₂ 纳米管阵列膜的光电流响应图谱.可看出,未掺杂 TiO₂ 纳米管仅在波长小于 400 nm 的光照才有光 电流响应,在 325 nm 处光电流达到 2707 nA. 而 Co²⁺掺杂的 TiO₂ 纳米管阵列膜,最高吸收波长红 移至 335 nm,光响应范围拓展至 520 nm 左右,且 在可见光区 395 nm 和 465 nm 处出现两个明显的 吸收峰.制备过程掺杂溶液浓度为 0.01 mol/L 时, 光电流响应已经明显增强;且在 Co²⁺溶液浓度为 0.02 mol/L 时效果最佳,最高吸收峰电流值达到 4209 nA,比未掺杂的样品增强了近 35%;但当 Co²⁺浓度增至 0.03 mol/L 时,光电流响应反而有 所减弱,最高吸收峰降为 3000 nA.

以上结果可解析为:1)掺杂 Co²⁺的 TiO₂ 形成 杂化能级,降低了禁带宽度,最高吸收波长由 325 nm 红移至 335 nm,且在光电流图谱中观测到 395 nm 和465 nm 处两个明显的吸收峰都归结为该阵 列膜形成的新窄带隙;2)低价 Co²⁺取代 Ti⁴⁺进入 TiO₂ 晶格,成为受主杂质,使得被取代的部分成为 p 型微区并与 TiO₂ 结合成 p-n 异质结,加速光生电 子空穴对的分离速率,使膜层光电效率得到增强; 3)吸附在 TiO₂ 表面的醋酸钴分解形成 p 型半导体, CoO 复合在 TiO₂ 表面, 制备过程掺杂溶液Co²⁺浓度较小时, 复合的 CoO 与 TiO₂ 形成 p-n 异质结, 加速了光生载流子的分离; 但如掺杂溶液的Co²⁺浓度过高,则因复合的 CoO 增加聚集, 从而导致光生电子空穴对复合中心即缺陷也随之增多, 反而加速光生电子空穴对的复合, 降低膜层的光电效率^[32].

图 5 未掺杂和掺钴的 Co-TiO₂ 纳米管阵列膜的光电流 谱

Fig. 5 Photocurrent spectra of the pure TiO₂ nanotube arrays and Co²⁺ doped TiO₂ nanotube layers $C_{\text{Co2+}}$ (a ~ d) in fabrication process/mol · L⁻¹: 0; 0.01; 0.02; 0.03

2.5 纳米管阵列膜的光生阴极保护应用

由以上结果可知,在掺 Co²⁺ TiO₂ 纳米管阵列 膜制备过程中,Co²⁺掺杂溶液浓度为 0.02 mol/L 时,所得样品表现出最优的光电特性. 据此选用这 一样品作为光阳极研究该纳米管阵列膜的光生阴 极保护性能.

图 6 为在光照和暗态下,403 不锈钢分别与 TiO₂ 纳米管光阳极和 Co²⁺ 掺杂的 TiO₂ 纳米管光 阳极耦联时,其开路电位随时间变化比较.如图可 见,在150 W 的氙灯照射下,耦联光阳极的 403 不 锈钢电位即从自然腐蚀电位(50 mV 左右)迅速下 降;关闭光源,电位缓慢回升至自然腐蚀电位附 近.对比图中曲线 a 和 b,前者(a)电位下降幅度为 100 mV 左右,而后者(b)电位下降幅度则达到 180 mV 左右.在光照条件下光生阴极保护电位稳定, 说明 TiO₂ 纳米管光阳极可提供稳定的光电流,对 403 不锈钢可起到有效的阴极保护作用.而且以 Co²⁺掺杂的 TiO₂ 纳米管作光阳极的阴极保护作用 更为明显.然而在暗态下,这一耦联光阳极的 403 不锈钢电位缓慢回升直至自然腐蚀电位附近,意 味着此时光生阴极保护作用难以维持.这是由于 暗态下,TiO₂纳米管光阳极中的光激励电子-空穴 形成过程终止.况且,因内部电子-空穴电荷的存贮 能力有限,难以长时间保持稳定的阴极保护作用. 这是至今面临的一大难题,相关研究尚在进行之 中.

图 6 光照和暗态下, 耦联纳米管光阳极的 403 不锈钢 的开路电位(OCP)随时间的变化

Fig. 6 Open-circuit potential (OCP) of the 403 stainless steel as a function of time response under light and dark condition

a. coupled with ${\rm TiO}_2$ nanotube arrays, b. coupled with ${\rm Co}^{2\, *}$ doped ${\rm TiO}_2$ nanotube arrays

3 结 论

应用离子交换法制备的 Co²⁺ 掺杂的 TiO₂ 纳 米管阵列膜具有良好的光电性能,对403 不锈钢 的光生阴极保护效果明显优于未掺杂的 TiO,纳 米管. 以 0.02 mol/L Co²⁺溶液作掺杂处理的样 品表现出最优的光电特性. Co2+ 的掺杂不改变纳 米管表面形貌,仍可保持纳米管阵列有序、规整、 高表面的锐钛矿晶型结构. Co²⁺的掺杂可有效窄 化 TiO, 纳米管阵列膜的禁带宽度,其光响应范 围拓展至可见光区域.在TiO2晶格中,Co主要 以 Co^{2+} 存在, 与氧结合形成窄禁带半导体(E_a = 2.6 eV)CoO,从而有利于形成较窄禁带宽度的 中间能级,增强 TiO,纳米管对可见光的响应. CoO 为p型半导体,与n型的TiO,可形成p-n异 质结,有利于提高光电子-空穴分离.但掺钴的 TiO, 纳米管阵列膜储存电荷功能较弱, 以其为 光阳极在暗态下不能提供持续的光生阴极电流, 对430不锈钢难以维持有效的光生阴极保护作 用.

参考文献(References):

- [1] Fujishima A, Honda K. Photolysis-decomposition of water at surface of an irradiated semiconduction [J]. Nature, 1972, 37(1):238-245.
- [2] Choi W, Hong S J, Chang Y S, et al. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO₂ film under UV or solar light irradiation [J]. Environmental Science & Technology, 2000, 34 (22):4810-4815.
- [3] Wang T, Wang H, Xu P, et al. The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water [J]. Thin Solid Films, 1998, 334(1/2):103-108.
- [4] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X₂bis(2,2'-bipyridyl-4, 4'-di-carboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl⁻, Br⁻, I⁻, CN⁻, and SCN⁻) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993, 115(14):6382-6390.
- [5] Hager H E, Belko J A. Co detection by the photoimpedance response of semiconductor film sensors [J]. Sensors and Actuators, 1985, 8(2):161-176.
- [6] Takeuchi T. Oxygen sensors [J]. Sensors and Actuators, 1988,14(2):109-124.
- [7] Kajihara K, Yao T. Oxygen detection in sol-gel derived titania thin films doped with tantalum [J]. Phys Chem Chem Phys, 1999, 1(8):1979-1983.
- [8] Yuan J, Fujisawa R, Tsujikawa S. Photopotentials of copper coated with TiO₂ by sol-gel method [J]. Zairyo to Kankyo, 1994, 43:433-440.
- [9] Yuan J, Tsujikawa S. Characterization of sol-gel derived TiO₂ coatings and their photoeffects on copper substrates
 [J]. Journal of the Electrochemical Society, 1995, 142: 3444.
- Yuan J, Tsujikawa S. Photo-effects of sol-gel derived TiO₂ coating on carbon steel in alkaline solution [J]. Corrosion Engineering, 1995:627.
- [11] Shen G, Chen Y, Lin C. Corrosion protection of 316L stainless steel by a TiO₂ nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films, 2005, 489(1/ 2):130-136.
- [12] Shen G, Chen Y, Lin L, et al. Study on a hydrophobic nano-TiO₂ coating and its properties for corrosion protection of metals[J]. Electrochim Acta, 2005, 50 (25/ 26) :5083-5089.
- [13] Li J, Yun H, Lin C J, A photoelectrochemical study of *n*-doped TiO₂ nanotube arrays as the photoanodes for

cathodic protection of SS[J]. Journal of the Electrochemical Society,2007,154:C631.

- [14] Subasri R, Shinohara T, Mori K. Modified TiO₂ coatings for cathodic protection applications [J]. Science and Technology of Advanced Materials, 2005, 6(5): 501-507.
- [15] Subasri R, Deshpande S, Seal S, et al. Evaluation of the performance of TiO₂ CeO bilayer coatings as photoanodes for corrosion protection of copper [J]. Electrochemical and Solid-State Letters, 2006, 9:B1.
- Tatsuma T, Saitoh S, Ohko Y, et al. TiO₂-WO₃ photoelectrochemical anticorrosion system with an energy storage ability [J]. Chemistry of Materials, 2001, 13 (9): 2838-2842.
- [17] Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@ TiO₂ photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim Acta, 2010.
- [18] Li J, Lin C J, Lin C G. A photoelectrochemical study of highly ordered TiO nanotube arrays as the photoanodes for cathodic protection of 304 stainless steel[J]. Journal of the Electrochemical Society, 2011, 158: C55.
- Li H, Bai X, Ling Y, et al. Fabrication of titania nanotubes as cathode protection for stainless steel[J].
 Electrochemical and Solid-State Letters, 2006, 9: B28.
- [20] Jiang H, Gao L. Enhancing the UV inducing hydrophilicity of TiO₂ thin film by doping Fe ions [J]. Materials Chemistry and Physics, 2003, 77(3):878-881.
- [21] Wang X, Li J G, Kamiyama H, et al. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO₂ nanopowders under UV and visible light irradiation[J]. The Journal of Physical Chemistry B, 2006, 110 (13): 6804-6809.
- Klosek S, Raftery D. Visible light driven V-doped TiO₂ photocatalyst and its photooxidation of ethanol [J]. The Journal of Physical Chemistry B,2001,105(14): 2815-2819.
- [23] Xue M, Huang L, Wang J Q, et al. The direct synthesis of mesoporous structured MnO₂/TiO₂ nanocomposite: a novel visible-light active photocatalyst with large pore size[J]. Nanotechnology, 2008, 19:185604.
- [24] Iwasaki M, Hara M, Kawada H, et al. Cobalt ion-doped TiO₂ photocatalyst response to visible light [J]. Journal of Colloid and Interface Science, 2000, 224(1): 202-204.
- [25] Pan C C, Wu J. Visible-light response Cr-doped TiO₂-

XNX photocatalysts [J]. Materials Chemistry and Physics,2006,100(1):102-107.

- [26] Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at Ndoped TiO₂ film electrodes [J]. The Journal of Physical Chemistry B,2004,108(30):10617-10620.
- [27] Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO₂ powders as a visible-light sensitive photocatalyst[J]. Chemistry Letters, 2003, 32(8):772-773.
- [28] Preparation of S-doped TiO₂ photocatalysts and their photocatalytic activities under visible light [J]. Applied Catalysis A: General, 2004, 265(1):115-121.
- [29] Khan M A, Yang O. Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube [J]. Catalysis Today, 2009,

146(1/2):177-182.

- [30] Lin Y, Yang Y, Zhuang B, et al. Ferromagnetism of Codoped TiO₂ films prepared by plasma enhanced chemical vapour deposition (PECVD) method [J]. Journal of Physics D: Applied Physics ,2008 ,41 :195007.
- [31] Barreca D, Massignan C, Daolio S, et al. Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition[J]. Chemistry of Materials, 2001, 13(2): 588-593.
- [32] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO₂: correlation between photoreactivity and charge carrier recombination dynamics [J]. The Journal of Physical Chemistry, 1994,98(51):13669-13679.

A Study on Co-Doped TiO₂ Nanotube Arrays for Photogenerated Cathodic Protection of Stainless Steel

LIN Cheng-gang, LIN Ze-quan, LI Jing, LIN Chang-jian*

(State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China)

Abstract: A highly ordered Co^{2+} doped TiO₂ nanotube layer was fabricated by potentiostatic anodization of pure titanium in fluorinated electrolyte solutions followed by ion-exchange method. The structure and composition of the as-prepared Co^{2+} doped TiO₂ nanotube layer were characterized by SEM, XRD, UV-Vis, and XPS. The effects of dopant content on the morphologies, structural and photochemical properties of the TiO₂ nanotube arrays were investigated. The performances of photogenerated cathodic protection and the photoelectrochemical response for the Co-doped TiO₂ nanotube arrays under illumination and dark conditions were evaluated through the electrochemical measurements. The Co-doped TiO₂ nanotubes showed a stronger absorption in the visible light range, due to a low recombination of photogenerated hole-electron. The open-circuit potentials of 403 SS (stainless steel) coupled with the Co-doped TiO₂ nanotube arrays were able to provide an effective photogenerated cathodic protection for metals under regular sunlight conditions.

Key words: anodic oxidation; TiO₂ nanotube; Co-doped; photocathodic protection; visible-light