Journal of Electrochemistry

Volume 3 | Issue 2

1997-05-28

Electroluminescence of Photoelectrochemically Etched n + Si

Guozheng Li

Chengqian Zhang

Xiumei Yang

Recommended Citation

Guozheng Li, Chengqian Zhang, Xiumei Yang. Electroluminescence of Photoelectrochemically Etched n + Si[J]. *Journal of Electrochemistry*, 1997, 3(2): Article 9. DOI: 10.61558/2993-074X.3112 Available at: https://jelectrochem.xmu.edu.cn/journal/vol3/iss2/9

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

光电化学刻蚀 n⁺-Si 的电致发光

李国铮* 张承乾 杨秀梅

(山东大学化学系 济南 250100)

摘要 n⁺-Si在HF 水溶液中经光电化学刻蚀形成的微米级多孔硅(PS)具有较好的电致发 光(EL)性能,其发光光谱的波长范围约在 500~ 800 nm 之间, 阴极 EL 的波长和强度均随调制电 位可逆变化;在酸性溶液中,发光强度较大,光淬灭过程也较中性溶液为慢 与 n⁻-Si 的结果类似, PS 的制备电位也决定性地影响着 EL 的强度 光淬灭前的伏安行为表明,除 SO³ 和 H⁺还原外, 可能还涉及 PS 表面化合物的转化 对能带图进行了讨论

关键词 n⁺-Si, 刻蚀, 多孔硅, 电致发光, 光淬灭

理解多孔硅(PS)的电致发光(EL)机制,阐明发光性能与化学结构和组成的关系等理论研 究,当前仍是一个热点 一般认为阳极 EL 是由吸附氢或中间体参加的电子注入所引起,而阴 极 EL 则涉及中间空穴注入的过程 前者光淬灭较快被解释为氧化层很快成长至一临界厚 度^[1];后者的光淬灭过程较慢是由于 PS 较慢地被少子所氧化^[3]. 人们注意到效率较高的 EL 多来自高孔率且具有纳米级孔的 PS,特别是低掺杂 p-Si 上的 PS^[3]. 相反,对高掺杂(n⁺-Si)刻 蚀 PS 的 EL 报导较少,甚至有人认为后者不具有发光性能 我们曾经表明, n⁺-Si 刻蚀形成的 PS,具有微米级孔的有序结构^[4]. 对低掺杂的 n⁺-Si 刻蚀形成的 PS, EL 以及光电子能谱 (XPS)和激光离子化微分析 (L M A)的研究结果^[5]揭示, PS 的制备电位决定性地影响着 EL 的强度 原因在于硅在不同电位下刻蚀形成的产物是由大小和数量不同的 Si ⁄O /H 团簇构成 的; EL 的强度与发光团簇的种类及数量有关. 陈立登^[6]和周咏东^[7]的实验也证实 PS 层确有 荧光物存在 本文报导 n⁺-Si 上 PS 的 EL 特征 这一研究,不仅由于高掺杂材料便宜,本身就 具有特殊意义;而且由于微米级低孔率 PS 的可见光发射不容置疑,更将促进对 EL 机制的深 入理解

1 实验

11 仪器

HDV-7 恒电位仪(福建三明市无线电二厂),DCD-3 信号发生器和LZ3-200 函数记录仪 组成的电化学测试系统 JG-1 型绝对功率计(长春光学仪器厂),850 荧光分光光度计(日Hitachi公司)和激光等离子体源飞行时间质谱计(厦门大学研制).

12 材料和试剂

单晶硅片: n⁺-Si, 磷重掺杂, 电阻率 0 003 ohm · cm, 晶面(111), 山东大学科学仪器厂提

本文 1996-09-20 收到, 1996-12-10 收到修改稿; 厦门大学固体表面物理化学国家重点实验室资助

的项目 **⑦** 供; n⁻-Si, 磷低掺杂, 电阻率 5 ohm cm, 晶面(100), 德国W ack-Chem itronic Gm bH 产品

试剂: 氢氟酸(HF,40%), 盐酸(HC1,36 5%), 硫酸(H2SO4,98%), 硝酸(HNO3,60%), 甲酸(HCOOH), 硫酸钠(Na2SO4), 过硫酸钾(K2S2O8)等均为分析纯, 未经进一步纯化

1 3 光电化学刻蚀 PS 样品的制备

硅片依次用丙酮和乙醇擦试干净,置入混合酸溶液(HNO3 HCOOH HF= 16 3 1) 中,先行化学刻蚀 3 m in,再用蒸馏水,无水乙醇和丙酮冲洗 将吹干的硅片正面贴上中间已打 圆孔的透明胶薄膜,以控制硅基底的裸露面积,背面涂上 GA - In 合金作欧姆接触

样品制备:用三电极电解池 池壁有一个面积为 0 28 cm² 的圆孔,进行刻蚀的 n⁺-Si 电极 垫以打有圆孔的硅橡胶膜,通过金属螺旋杆紧压在电解池外壁圆孔处,与池相密合 照射光源 为 150 W 溴钨灯,光线通过盛水石英玻璃槽透过透明池壁照到电极上,该处强度为 90 mW / cm².以大面积铂片为对极,饱和甘汞电极(SCE)作参比电极,HF 水溶液为电解液,在室温和 电磁搅拌下,进行恒电位电解,通电量为 20 C.

14 PS的EL光谱测定

将制成的 PS 样品立即用经充氩气除去溶解氧后的蒸馏水浸泡 5 m in 再冲洗, 置入三电极 电解池中, 电解液分别为: (1)1.2 mol/dm³ H₂SO₄+0.1 mol/dm³ K₂S₂O₈; (2)1 mol/dm³ N a₂SO₄+0.1 mol/dm³ K₂S₂O₈; (3)1 mol/dm³ HCL..上述溶液均通氩气饱和

在不同的恒电位极化现场,用荧光分光光度计记录各样品的 EL 光谱 选取波长扫描速度为 450 nm /m in,扫描范围 400~850 nm,记录时间 1 m in,连续扫描间隔: 1 m in

15 PS的LMA

详见前一报导[7].

2 结果和讨论

图 1 是 n^+ -Si 在 5% HF 中于控电位 (恒电位 0 0V)下光刻蚀 10m in 形成的 PS 在溶液中的阴 极 EL 光谱 (不同电位下的光谱强度已归一化). 当调制电位为- 1.1V 时,电极表面发出红色光; 调制电位负移,在- 1.3,- 1.4和- 1.7V 时,则 分别发出橙红,橙色和绿色光,即其 EL 光谱波长 (λ) 兰移,且发光强度也顺序增大 在阴极极化接 通瞬间,可看到强的闪光,接着发光强度随时间增 长先快后慢地衰减终至光淬灭,在较负电位下调 制的光谱淬灭过程较快 对不同基底上的 PS,在 酸性溶液中阳极极化时,也可观察到 EL.

表 1 简要列出测到的一些光谱的特征 n⁺ 基 底的 PS 的 EL 谱峰位略偏向短波, 光淬灭也较快, 与文献所述相同, 阳极 EL 的淬灭过程都较阴极 调制的为快 所列样品刻蚀制备的条件是相同的

表 1 n-型 PS 的 EL 光谱的性能

Tab 1 The Characteristics of EL Spetra for etched n-Type Si in

solution containing S₂O₈2-(1) or $1 \mod \frac{1}{2} \operatorname{HC1}(3)$ under different bias

电极基底	溶液	极化电位∕V vs⋅SCE	光谱范围/nm	谱峰位置/nm	淬灭时间 /m in
n ⁺ -Si	1	- 1.7	450~ 700	530	6 2
n^+ -S i	1	- 1.5	550~ 750	650	12 5
n ⁺ -Si	1	- 1 3	550~ 850	620	11.4
n ⁺ -Si	3	+ 1.3	600~ 850	720	4.2
n ⁻ -Si	1	- 1.7	500~ 800	560	12 0
n ⁻ -Si	1	- 1.5	550~ 850	680	30 2
n ⁻ -Si	1	- 1.3	500~ 800	620	29. 3
n ⁻ -Si	3	+ 1.1	600~ 850	750	3 8

n'-Si样品在 EL 的最初瞬间发出极 强的光,光淬灭也极慢, n⁺-Si 则次 之 正如我们所表明的那样,对不同 的硅基底,除形成的 PS 形貌有差异 外,更重要的是 PS 的化学结构不同, 即如激光离子化微分析所示出的, PS 被激光激发出的负离子团簇不同 但 对 n^+ -Si 样品, 未检出如 n^- -Si 样品 所发出的与强光相关联的m/e= 302,318 的团簇的强信号 实验还定 性地表明, 淬灭时间与 PS 层厚度有 关, 即与 PS 的数量有关; 在酸性溶液 中,发光强度和光淬灭时间较中性溶 液中的为高 值得注意的是将发光 PS 在具有还原性的氩气中经 300 热处理后即失去发光性能 由此看

7

Fig 2 Maximum wavelength as a function of cathodic bias for the n-Si PS EL

来, 淬灭与在发光过程中可能经历的, 有 H⁺ 参加的 PS 化学结构的还原转变有关

图 2 是不同基度 n-Si的 PS EL 光谱的峰波长与阴极调制电位间的关系 在较低的极化 时,波长随电位是线性变化的,这表明辐射跃迁与电位控制有关;但在比-1.7 V 更负电位下 极化时,峰波长逐渐趋向不变,复合跃迁不再受其影响

在不同极化下 n⁺ -Si 刻蚀形成的 PS 的激光离子化微分析 (L M A) 见图 3 与 n-Si 的结果 © 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r 类似, 低极化样品, 只检出 m /e< 60 的 28 (Si), 56 (Si²), 其它信号较弱; 高极化样品谱中则有较大 的 负 离 子: 168 (Si₂O₃H₄), 181(Si₂O₃H), 197(Si₂O₇H), 219(Si₄O₃H₃), 259(Si₂O₇H₇)和 318 (Si₂O₁H₂), 后者信号很弱 同时也观察到较高电位 下制样的光强度较大, 即 EL 的强度也决定性地取 决于制备电位

图 4 给出了刻蚀 n⁺-Si 的阴极伏安曲线 在初 次的电位扫描中,自-05V开始阴极电流猛增,在 - 1. 25 V 时出现电流峰, 如文献^[1,8~9]所述, 此与 S₂O² 还原有关, 且导致游离基 SO₄·形成; 后者进 一步在价带边还原,造成空穴注入,完成了辐射复 合、因此,电极先发射红光,继而变为绿光 - 1.7 V 左右电流回落.-1.8V 时电流再度升起.观察到电 极上析氢: 另外, 在正向扫描至-1.9V 和当反向扫 至-1.4V时,我们注意到都有一个曲线的转折,即 如图 4 曲线 1 所示 反复扫描多次, 电流峰逐次减 小、发光逐渐减弱光淬灭后的伏安图见曲线2.在 - 0 5~ 2 0 V 之间, 无电化学反应, 仅在高电位下 发生比发光时慢得多的析氢反应 仔细观察发现, 电极在光淬灭前自溶液中取出时表面层为黑色,具 有一定憎水性,但淬灭后的电极表面呈灰色,有润 湿性 说明光淬灭前后, 电极的表面组成和性能已 发生变化 上述实验结果暗示, 在 PS 的 EL 发光过 程中,作为PS组份的电极表面Si/O/H 诸团簇化合 物也很有可能还原形成某些中间物或产物、这些的 团簇产物不完全遮盖电极表面,形成非辐射复合中 心而导致光的淬灭 同时电极表面组成的改变,也 会提高析氢过电位 如上所述, 阳极极化调制的 EL 淬灭快,也可用原团簇化合物容易被氧化为 SO_2 来 解释 这些细节期待由光淬灭前后的表面结构的追 踪研究,或由光淬灭后LMA 的补充结果进一步阐 眖

我们在刻蚀研究报导中已表明在 n⁺-Si 上的 PS 为微米级的孔结构, 难以具有尺寸效应 即使在 其上层可能还有未检测到的纳米级多孔层, 按照量 子限制效应也很难解释发光强度的不同和淬灭过

7

图 3 不同电位下刻蚀的 n⁺-Si的质谱图 1)未极化, 2)-0 1V, 3)0 1V, 4)0 2V

Fig 3 Mass spectra of etched n⁺ -Si prepared under various polarized conditions

图 4 在含 0 1 mol/L K₂S₂O₈ 酸性溶液中刻蚀 n⁺-Si的阴极伏安曲线

扫速: 100 mV /s; 1) 发光时, 2) 光淬灭后

Fig 4 Voltammetric curves of etched n⁺ -Si in an acidic solution containing 0 1 mol/L K2S2O 8

© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

1997 年

程 Searson 的能带模型^[1]是 以 PS 表面价带低于本体硅价 带 0.7 eV 为基础的,即假定纳 米级尺寸效应造成半导体表 面处有一个比价带深 0.7 eV 的势阱,从而提供了辐射复合 的可能性 实际上,硅基底和 PS 层之间构成了半导体异结, n⁺-Si 片在形成很薄的 PS 层 后,在空气中测出吸光性能增 强就是一个证据 该异结前者 是 n-Si, 带隙为 1.1 eV, 后者 已是另一间接带隙半导体 PS. 即 Si/O /H 诸团簇化合物半导 体,其平均带隙为1.8 eV.异 结相差 0.7 eV 的带配置将有 利于与 EL 相关联的电子注入

electro lumm inescence condition

过程 据此,我们将能带图和发光涉及的具体过程以图 5 表示

我们认为,发光的原因是由于具有 Si ⁄O ∕H 诸团簇化合物在 n⁺-Si 上的形成,并与 n⁺构成 异结,促进了辐射复合过程 而光淬灭则可解释为还原态的团簇构成了复合中心后,辐射过程 遭到阻断

Electrolum in escence of Photoelectrochem ically Etched n^+ -Si

L i Guozheng^{*} Zhang Chengqian Yang Xium ei (Dept of Chem. Shandong Univ., Jinan 250100)

Abstract Porous silicon with micrometer-size pores, which is made on n^+ -Si by photoelectrochemically etched, has electrolum inescent property. Each monochromic intensity and wavelength range of lum inescent spectra depend on polarized potential The intersity and the stability of cathodic electrolum inescence is high than those of anodic one Voltammetric behavior before quenching indicated that the electrochemical reactions of some surface species are involved in except the reduction of $S_2O_8^{2^\circ}$, which leads to radiative recombination

The energy band diagram based on n^+ -Si (E_g= 1 1 eV)/PS (E_g= 1 8 eV) junction is proposed

Keywords n⁺ -Si, Etching, Porous Silicon, Electrolum inescence, Quenching © 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

References

- 1 Searson P C, Prokes SM, GlembockiO J. Lumienescence at the porous silicon/electrolyte interface J. Electrochem. soc, 1993, 140: 3 327~ 3 331
- 2 Canham L T, Leong W Y, Beale IJ, Cox T I Taylor L. Efficient visible electrolum inescence from highly porous silicon under cathodic bias Appl Phys Lett , 1992, 61: 2 563
- 3 Billat S Electrolum inescence of heaveily doper p-type porous silicon under electrochem ical oxidation in galvano static regime J. Electrochem. Soc., 1996, 143: 1 055~ 1 060
- 4 贾瑞宝,王士勋,李国锋 n⁺-Si在 HF 溶液中的阳极极化行为和阻抗谱 化学学报, 1995, 53: 417~ 424
- 5 李国铮, 张承乾, 张强 n 型多孔硅的电发光性能及其 XPS 和L MA 表征 电化学, 1996, 2: 140~ 143
- 6 陈立登, 季振国, 马向阳, 姚鸿年, 厥端麟 多孔硅发光膜的研究 科学通报, 1992, 37: 1 944~ 1 948
- 7 周咏东, 金亿鑫, 宁永强, 元金山 多孔硅发光机理的研究 科学通报, 1994, 39: 699~ 702
- 8 Bsiesy A, Vial J, Gaspard F, Herino R, Ligeon M, Mihalcesce I, Muller F, Romestain R. Light emission from porous silicon under photo-and electroexitation J. Electrochem. Soc., 1994, 141: 3 971~ 3 976
- 9 Ogasawara K, Momma T, Osaka T. Enhancement of electrolum inescence from n-type prous silicon and its photoelectrochemical behavior J. Electrochem. Soc., 1995, 142: 1 874~ 1 880