Journal of Electrochemistry

Volume 16 | Issue 2

2010-05-28

Nano-sized Au on Nickel Foam as Cathode of Alkaline Al-H_2O_2 Semi Fuel Cell

Shu-li CHEN

Bang-an LU

Yao LIU

Gui-ling WANG

Dian-xue CAO

Recommended Citation

Shu-li CHEN, Bang-an LU, Yao LIU, Gui-ling WANG, Dian-xue CAO. Nano-sized Au on Nickel Foam as Cathode of Alkaline Al-H_2O_2 Semi Fuel Cell[J]. *Journal of Electrochemistry*, 2010, 16(2): Article 20. DOI: 10.61558/2993-074X.3348

Available at: https://jelectrochem.xmu.edu.cn/journal/vol16/iss2/20

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.

文章编号:1006-3471(2010)02-0222-05

碱性 $AI-H_2O_2$ 半燃料电池 Au/Ni 阴极性能研究

陈书礼, 卢帮安, 刘 瑶, 王贵领, 曹殿学*

(哈尔滨工程大学材料科学与化学工程学院,黑龙江 哈尔滨 150001)

摘要: 以泡沫镍为基体 $AuCl_3$ 为沉积液 应用快速自沉积法制备了泡沫镍负载的纳米 Au/Ni 电极. 电化学方 法测定 $AuCl_3$ 溶液的浓度和沉积时间对 Au 粒子的尺寸和分布以及以该电极作为 $Al-H_2O_2$ 半燃料电池阴极对 H_2O_2 性能的影响. 实验表明 ,泡沫镍经 2 mmol·L⁻¹ $AuCl_3$ 溶液浸渍 60 s 后 ,其表面完全被粒径小于 100 nm 的 Au 粒子覆盖; 以其为阴极的 $Al-H_2O_2$ 半燃料电池 ,在 0.4 mol·L⁻¹ H_2O_2 溶液中峰值功率达 135 mW·cm⁻².

关键词: 纳米金; 过氧化氢电还原; 阴极; 金属半燃料电池

中图分类号: TM911

Al-H₂O₂ 半燃料电池是以 Al 或其合金为阳极 (燃料) H₂O₂ 作阴极氧化剂及强碱电解质构成的 一种化学电源. 其主要特征: 放电过程中 Al 阳极会 同时被消耗,而阴极的氧化剂(H₂O₂)则从外部连 续输入 ,阴极材料本身不被消耗. 因此 称之为"半 燃料电池"^[1-2]. Al-H₂O₂ 半燃料电池作为自治水下 机器人(Autonomous Underwater Vehicle, AUV) 电 源已经有 10 多年的使用历史. Hasvold 等^[3]研制的 无隔膜 Al-H₂O₂ 半燃料电池系统,总容量达 50 kWh ,最大功率 1.2 kW ,质量能量密度 100 Wh・ kg^{-1} ,可供排水量 2.4 m³,质量为 1.4 × 10³ kg 的 AUV 在 4 节的航速下续航 60 h. 这种电源系统的 特点是电池结构简单、机械充电方便快捷、运行平 稳、安全可靠,且无需抗压容器封装,可直接工作 在海水环境下. Al-H₂O₂ 半燃料电池存在的主要问 题是 Al 阳极的自腐蚀析氢和 H₂O₂ 化学分解释 氧,导致电池能量密度远低于理论值.

 H_2O_2 阴极电催化剂与电极结构的优劣直接关 系到电池的性能. 目前研究的电还原 H_2O_2 催化剂 主要是贵金属类 ,如 Pt,Pd,Ir,Ag 和 Au 等及其合 金^[4+2]. 贵金属催化剂的优点是催化活性高 ,稳定 性好 ,缺点是会把 H_2O_2 催化分解为氧和 H_2O . 电 极构造主要是以碳纤维或泡沫金属作为电极骨 架. 如 Bessette 等^[6]采用植绒技术 将 0.5 mm 长的 碳纤维用导碳环氧树脂胶垂直地植在碳纸或钛箔 文献标识码: A

上作为基体,然后再电化学沉积 Pd-Ir 作为催化 剂 获得具有较大体积表面积和良好液体传质性 能的 H_2O_2 阴极. 这种电极可降低 H_2O_2 的使用浓 度,减少 H_2O_2 的分解, H_2O_2 利用率达约 85%.孙 公权等^[9]利用电化学沉积法将 Ag 负载在泡沫镍 上 制备了泡沫镍负载的 Ag 电极,发现其电还原 H_2O_2 的催化性能显著高于 Ag 网电极, H_2O_2 利用 效率约 70%. Gu 等^[4]利用电化学沉积法和溅射法 制备了高比表面大孔隙率碳布负载的纳米 Au 电 极. 根据性能测试并结合 Pourbaix 图分析发现,纳 米 Au 电极在酸性电解液中对 H_2O_2 直接电还原有 着较高的催化活性,同时对 H_2O_2 分解反应又表现 出较低的催化性能,即纳米 Au 在活性和选择性之 间存在较好的平衡关系.

本文建立了一种快速的 Au 在泡沫镍上自发 沉积的方法,制备出泡沫镍负载的纳米 Au 电极, 研究该制备条件对电极表面形貌及催化 H₂O₂ 电 还原性能的影响.

1 实验部分

1.1 Au/Ni 电极的制备及表征

应用 Au 自发沉积法. 将泡沫镍(110 PPI ,320 g·m⁻² ,1 mm 厚,长沙力元新材料有限公司) 基体 用丙酮除油后,置于 6.0 mol·L⁻¹ HCl 中刻蚀 15 min,然后用超纯水(Millipore Milli-Q,18 MΩ cm)

收稿日期: 2009-09-30,修订日期: 2009-11-19 * 通讯作者, Tel: (86-451) 82589036, E-mail: caodianxue@hrbeu.edu.cn 国家自然科学基金(20973048)和超轻材料与表面技术教育部重点实验室开放基金资助 充分洗涤. 将处理好的泡沫镍浸入一定浓度的 AuCl₃ 中,一定时间后取出,立即用大量超纯水反 复洗涤直至洗涤液检测不出氯离子. 然后将电极 放入含有 1.0 mol・L⁻¹ NaBH₄ 的 2.0 mol・L⁻¹ NaOH 溶液中浸泡 12 h 备用,测试之前再经 2.0 mol・L⁻¹ NaOH 反复洗涤. 扫描电子显微镜(SEM; JEOL JSM-6480) 观测泡沫镍基体及沉积 Au 的表 面形貌 SEM 配备的能谱仪分析沉积物的组成.

1.2 电化学测试

Autolab 电化学工作站(荷兰 PGSTAT302,Eco Chemie). 三电极体系,工作电极为 Au/Ni(几何面 积 1 cm²),参比电极为饱和 Ag/AgCl 电极,文中的 电位未特别注明时均是相对于此电极,辅助电极 为玻碳电极. 电解液为含有 0.4 mol·L⁻¹ H₂O₂ 的 2.0 mol·L⁻¹ NaOH 溶液. 电位扫描区间为开路电 位至 -0.5 V,扫描速率 10 mV·s⁻¹,室温下测试.

1.3 半燃料电池的组装与测试

Al-H₂O₂ 半燃料电池放电性能测试使用 Arbin 燃料电池测试系统,在自制有机玻璃电池 中进行. 阳极为 20 mm × 20 mm × 0.8 mm 的 LF6 铝合金 (91.9% Al, 6.5% Mg, 0.6% Mn, 0.3% Fe, 0.3% Si, 0.2% Zn, 0.1% Ti), 阴极为 20 mm × 20 mm × 1 mm 的 Au/Ni, 阴阳极两室由质 子膜(Nafion-115, DuPont) 隔开. 阳极电解液为 NaOH 溶液, 阴极电解液为含有 H₂O₂ 的 NaOH 溶液. 电解液用蠕动泵分别从阳极室和阴极室的 下端入口输入,向上流经电极后在上端出口处流 出.室温下测定.

2 结果与讨论

2.1 Au/Ni 电极表面形貌及催化性能

图 1 为泡沫镍基体及沉积 Au 粒子后的 SEM 照片.由图可见,泡沫镍基体表面光滑(b),但其骨 架具有三维立体网状结构和曲折的电解液流道 (a),有利于 H_2O_2 与电极表面的充分接触以及分 解产生的氧气从电极表面快速脱出,具备良好的 传质性能.经过 AuCl₃溶液浸渍后,表面出现细小 颗粒 覆盖了光滑的基体表面(c~f).能谱分析这 些颗粒为 Au ,表明 Au 自发沉积在泡沫镍上.自发 沉积反应的发生是由于 Ni²⁺/Ni 的标准还原电势 (-0.257 V,vs. RHE) 远负于 Au³⁺/Au 的标准还 原电势(1.498 V,vs. RHE),故 Au³⁺被 Ni 还原为 Au,并附着在 Ni 上. 如图, AuCl₃ 溶液浓度以及不同的沉积时间均能显著影响表面 Au 粒子的大小、数量和分布. 比较发现 在同一 AuCl₃ 溶液浓度下, Au 粒子数量随沉积时间延长而增加,粒子尺寸变化不大; 沉积时间相同时, Au 粒子的数量随 AuCl₃ 溶液浓度升高而增加、粒径变大. 沉积 60 s 后,泡沫镍表面被 Au 粒子完全覆盖,其粒径分布均匀, 约在 100 nm(2 mmol·L⁻¹ AuCl₃)和 250 nm(4 mmol·L⁻¹ AuCl₃)之间. 以上变化规律当与沉积过程 Au 的成核速率和生长速率有关,即 Au 核数量随沉积时间延长而增加,而生长速率又随 Au³⁺浓度增加而加快,故高浓度导致较大颗粒,长时间生成较多颗粒.

图 1 泡沫镍基体(a,b)及 Au/Ni 电极(c~f)的 SEM 照 片

Fig. 1 SEM images of the nickel foam substrate(a ,b) and Au/Ni electrodes(c ~ f) deposition time of Au/s: c. 30 ,d. 60 (in 2 mmol · L⁻¹ AuCl₃) e. 30 f. 60 (in 4 mmol · L⁻¹ AuCl₃)

图 2 示出不同沉积时间下制备的 Au/Ni 电极 电还原 H_2O_2 的催化性能变化. 图中各 Au/Ni 电极 的起始还原电位均正于泡沫镍基体,还原电流均 显著大于泡沫镍基体. 随着沉积时间的延长,Au/ Ni 电极电还原 H_2O_2 的起始还原电位正移并稳定 在约 – 0.14 V,还原电流先增后降. 这是因为沉积 时间较短时(< 60 s),形成的 Au 粒子的数量少, 催化活性位少,故电流也小.又因为此时电极表面 部分泡沫镍基体未被覆盖,故其开路电位相当于 $H_2O_2 在 Au 和 Ni 上的混合电位,较负. 沉积时间较$ 长时(> 60 s),泡沫镍基体被完全覆盖(图 1d), $开路电位即对应于 <math>H_2O_2 在 Au 上的电位,而且不$ 再随沉积时间延长而正移. 但因 Au 粒径随沉积时间延长而增大,导致 Au 表面积减小,电流密度随之下降.在 2 mmol·L⁻¹ AuCl₃ 溶液中,最佳的沉积时间为 60 s.

图 2 机积的间对 Au/M 电微催化 H₂O₂ 电**还原性能**的 影响

Fig. 2 Effects of deposition time on the performance of Au/ Ni electrode for H_2O_2 electroreduction C_{AuCl_3} : 2 mmol · L⁻¹

图 3 示出 AuCl₃ 浓度对 Au/Ni 电极催化 H₂O₂ 电还原性能的影响. 可见,在同样的沉积时间下 (60 s) 随着 AuCl₃ 沉积液浓度增加,起始还原电 位正移,还原电流先升后降. 其影响原因与时间的 影响类似. 低浓度时,形成的 Au 粒子的数量少,未 完全覆盖基体; 高浓度导致 Au 粒径变大(图1f), 催化表面积减少. 因此,利用改变 AuCl₃ 溶液浓度 和沉积时间可调节 Au 粒子的大小和分布.

2.2 $Al-H_2O_2$ 半燃料电池放电性能

将 20 mm × 20 mm × 1 mm 的泡沫镍在 2 mmol $\cdot L^{-1}$ AuCl₃ 溶液中浸渍 60 s 制成的 Au/Ni 阴极与Al合金阳极组成Al-H₂O₂半燃料电池.图 4 和图 5 分别示出电解液 NaOH 和 H₂O₂ 浓度对 电池放电性能的影响.由图4可见,室温下电池的 开路电压约达1.4V.随着NaOH增加,电池放电

图 3 AuCl₃ 浓度对 Au/Ni 电极催化 H₂O₂ 电还原性能 的影响

Fig. 3 Effects of $AuCl_3$ concentration on the performance of Au/Ni electrode for H_2O_2 electroreduction (depositions time: 60 s)

图 4 NaOH 浓度对 Al-H₂O₂ 半燃料电池放电性能的影 响

Fig. 4 Effects of NaOH concentration on the discharge performance of Al-H₂O₂ semi fuel cell $C_{\rm H_2O_2}$: 0.4 mol·L⁻¹

性能提高,这可归因于电解质电导率增加而导致 电池内阻下降的缘故. 但当 NaOH 浓度大于 3.0 mol·L⁻¹时,反而导致电池性能的下降,这是因为 在高浓度 NaOH 溶液中加剧了 Al 合金阳极的自腐 蚀析氢反应和 H₂O₂ 的分解释氧反应. 实验中观测 到随 NaOH 增加,阳极和阴极上气泡生成速率明显 增加. 图 5 表明,增加 H₂O₂ 浓度可显著提高电池 的放电性能. 当 H₂O₂ 浓度从 0.2 mol·L⁻¹增加到 0.5 mol·L⁻¹时,电池的峰值功率由 78 mW·cm⁻² 提高到148 mW·cm⁻²,峰值功率下的电压由0.8 V增加到 1.0V. 但 H₂O₂ 浓度的增加也加快了

图 5 H₂O₂ 浓度对 Al-H₂O₂ 半燃料电池放电性能的影响

Fig. 5 Effects of H₂O₂ concentration on the discharge performance of Al-H₂O₂ semi fuel cell C_{NaOH}: 0. 4 mol · L⁻¹

 H_2O_2 分解为氧气的速率,致使 H_2O_2 利用率以及 电池的能量密度下降.因此,从获得高能量密度的 角度出发,应使用较低浓度的 H_2O_2 .而在短时间内 需要大功率输出时,可借助提高 H_2O_2 的浓度来实 现.

3 结 论

利用简单快速的自发沉积法可将纳米 Au 负载在泡沫镍上,制成 Al-H₂O₂ 半燃料电池的阴极. 控制沉积液 AuCl₃ 的浓度和沉积时间,可改变 Au 粒子的粒径和分布,获得粒径小于 100 nm,均匀覆 盖泡沫镍基体的纳米 Au 电极. 该电极对 H₂O₂ 电 还原具有良好的催化性能,并有利于 H₂O₂ 快速传 递到催化剂表面并使产生的氧气快速脱离催化剂 表面.

参考文献(References):

- [1] Hasvold Ø, Stakersen N J, Forseth S, et al. Power sources for autonomous underwater vehicles [J]. Journal of Power Sources 2006, 162: 935-942.
- [2] Sun Li-mei(孙丽美), Cao Dian-xue(曹殿学), Wang Gui-ling(王贵领). Metal semi-fuel cells for underwater power source [J]. Chinese Journal of Power Sources (电源技术) 2008 32: 339-342.

- [3] Hasvold Ø Johansen K H Mollestad O et al. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle [J]. Journal of Power Sources 1999 80: 254-260.
- [4] Gu L Luo N Miley G H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell [J]. Journal of Power Sources 2007, 173:77-85.
- [5] Miley G H ,Luo N ,Mather J ,et al. Direct NaBH₄ /H₂O₂ fuel cells [J]. Journal of Power Sources ,2007 ,165: 509–516.
- [6] Patrissi C J ,Bessette R R ,Kim Y K ,et al. Fabrication and rate performance of a microfiber cathode in a Mg– H₂O₂ flowing electrolyte semi-fuel cell [J]. Journal of the Electrochemical Society 2008 ,155: B558–B562.
- [7] Bessette R R ,Cichon J M ,Dischert D W et al. A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell [J]. Journal of Power Sources ,1999 , 80: 248-253.
- [8] Medeiros M G ,Bessette R R ,Deschenes C M ,et al. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles [J]. Journal of Power Sources 2004 , 136: 226-231.
- [9] Yang W , Yang S , Sun W , et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell [J]. Journal of Power Sources , 2006 ,160: 1420–1424.
- [10] Yang W , Yang S , Sun W , et al. Nanostructured palladium-silver coated nickel foam cathode for magnesiumhydrogen peroxide fuel cells [J]. Electrochimica Acta , 2006 52:9-14.
- [11] Cao D ,Chen D ,Lan J ,et al. An alkaline direct Na-BH₄-H₂O₂ fuel cell with high power density [J]. Journal of Power Sources 2009 ,190: 346-350.
- [12] Cao D Sun L ,Wang G et al. Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium [J]. Journal of Electroanalytical Chemistry , 2008 621: 31-37.

Nano-sized Au on Nickel Foam as Cathode of Alkaline Al-H₂O₂ Semi Fuel Cell

CHEN Shu-li , LU Bang-an , LIU Yao , WANG Gui-ling , CAO Dian-xue*

(College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin 150001 , Heilongjiang , China)

Abstract: Nano-sized Au particles were deposited on a nickel foam substrate by a fast spontaneous deposition method using AuCl₃ as the source of Au. The effects of AuCl₃ concentration and deposition time on the size and distribution of Au particles , and the performance of the obtained Au/Ni electrode as the cathode of Al-H₂O₂ semi fuel cell were investigated. It was found that after the nickel foam was immersed in a 2 mmol \cdot L⁻¹ AuCl₃ solution for 60 s ,Au particles with diameters smaller than 100 nm were deposited on its surfaces and cover the surface completely. The Al-H₂O₂ semi fuel cell with Au/Ni cathode shows a peak power density of 135 mW \cdot cm⁻² when operating in 0.4 mol \cdot L⁻¹ H₂O₂ solution at room temperature.

Key words: Au nanoparticles; hydrogen peroxide electroreduction; cathode; metal semi fuel cell