Journal of Electrochemistry

Volume 30 | Issue 7

2024-07-28

Series Reports (1/4): Advancements in Electrochemical Energy Conversions at Prof Wei's Group of Chongqing University: High-Performance Oxygen Reduction Catalysts for Fuel Cells

Fa-Dong Chen

Zhuo-Yang Xie

Meng-Ting Li

Si-Guo Chen

Wei Ding

Li Li

State Key Laboratory of Advanced Chemical Power Sources (Chongqing University); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China, liliracial@cqu.edu.cn

Jing Li

State Key Laboratory of Advanced Chemical Power Sources (Chongqing University); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China, lijing@cqu.edu.cn

See next page for additional authors

Recommended Citation

DOI: 10.61558/2993-074X.3459

Available at: https://jelectrochem.xmu.edu.cn/journal/vol30/iss7/1

This Review is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.
Series Reports (1/4): Advancements in Electrochemical Energy Conversions at Prof Wei's Group of Chongqing University: High-Performance Oxygen Reduction Catalysts for Fuel Cells

Authors
Fa-Dong Chen, Zhuo-Yang Xie, Meng-Ting Li, Si-Guo Chen, Wei Ding, Li Li, Jing Li, and Zi-Dong Wei

Corresponding Author(s)
Li Li(liliracial@cqu.edu.cn), Jing Li(lijing@cqu.edu.cn), Zi-Dong Wei(zdwei@cqu.edu.cn)

This review is available in Journal of Electrochemistry: https://jelectrochem.xmu.edu.cn/journal/vol30/iss7/1
Series Reports (1/4): Advancements in Electrochemical Energy Conversions at Prof Wei’s Group of Chongqing University: High-Performance Oxygen Reduction Catalysts for Fuel Cells

Author #1
Author #2
Author #3
Author #4
Author #5

See next page for additional authors
Series Reports (1/4): Advancements in Electrochemical Energy Conversions at Prof Wei’s Group of Chongqing University: High-Performance Oxygen Reduction Catalysts for Fuel Cells

Authors
Author #1, Author #2, Author #3, Author #4, Author #5, Author #6, Author #7, and Author #8

Corresponding Author(s)
Li Li(liliracial@cqu.edu.cn), Jing Li(lijing@cqu.edu.cn), Zi-Dong Wei(zdwei@cqu.edu.cn)
Invited Contribution from Award Winners of the 21st National Electrochemistry Congress in 2023

Fa-Dong Chen#, Zhuo-Yang Xie#, Meng-Ting Li, Si-Guo Chen, Wei Ding, Li Li*, Jing Li*, Zi-Dong Wei*

State Key Laboratory of Advanced Chemical Power Sources (Chongqing University), College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China

Abstract

Two major challenges, high cost and short lifespan, have been hindering the commercialization process of low-temperature fuel cells. Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability, and their research advances in this area over the past three decades are briefly reviewed herein. Regarding the Pt-based catalysts and the low Pt usage, they have firstly tried to clarify the degradation mechanism of Pt/C catalysts, and then demonstrated that the activity and stability could be improved by three strategies: regulating the nanostructures of the active sites, enhancing the effects of support materials, and optimizing structures of the three-phase boundary. For Pt-free catalysts, especially carbon-based ones, several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented. Then, an in-depth understanding of the degradation mechanism for carbon-based catalysts is discussed, and followed by the corresponding stability enhancement strategies. Also, the carbon-based electrode at the micrometer-scale, faces the challenges such as low active-site density, thick catalytic layer, and the effect of hydrogen peroxide, which require rational structure design for the integral cathodic electrode. This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts.

Keywords: Fuel cell; Oxygen reduction reaction; Pt-based catalyst; Carbon-based catalyst

1. Introduction

Low-temperature Fuel cells (FCs), as promising sources of power, can directly convert the chemical energy stored in hydrogen into electrical energy through electrochemical reactions. FCs have several benefits, such as zero emission, high power density, low operating temperature, and fast response time, and they are being considered for use in various fields, including vehicles, submarines, and drones, etc. However, the current technical status suggests that in order to make fuel...
cell electric vehicles commercially viable, two major challenges need to be addressed: the high cost of FCs and their short lifespan when operating under vehicle conditions.

According to the U.S. Department of Energy 2020 indicator, low-temperature FCs require a Pt dosage of 0.125 g·kW⁻¹. This means that each automobile power fuel cell needs around 6.25 g (50 kW) of Pt. In 2022, global automobile production reached about 85.02 million, which resulted in annual demand for Pt resources for onboard FCs of up to 531 tons. However, the current global annual production of Pt is only around 200 tons. The membrane electrode assembly (MEA) accounts for 84% of the fuel cell stack cost, with the cathodic and anodic electrodes containing Pt accounting for 54% of the MEA. Specifically, the slow oxygen reduction reaction (ORR) and the poor stability of electrocatalysts over time, particularly in corrosive environments, hinder the performance of the cathode in FCs. This is a significant obstacle to the widespread application of FCs on a large scale. In the field of electrocatalysts, it is essential to enhance the catalytic activity of ORR electrocatalysts to reduce the dependence on noble Pt or even to eliminate it completely. The crucial subject of electrocatalysts research is to find ways to decrease cathode Pt loadings without compromising on performance or durability, which can help in lowering the costs.

High-performance electrocatalysts for ORR require meeting certain fundamental requirements. These include high electrical conductivity, excellent catalytic activity, selectivity, and stability. The catalysts should possess high intrinsic electrical conductivity and efficient electron transfer capability. To ensure high reaction kinetics, it needs the promotion of adsorption and activation of reactive species, orientation transformation of intermediate species, and timely desorption of products. Additionally, the catalyst must possess antioxidant, corrosion-resistant, and anti-poisoning properties under high electric field and impurity-containing reaction atmospheres. These properties ensure that the electrocatalytic reaction can be sustained and stabilized. The catalytic activity and antioxidant properties of the catalysts are closely linked to the adsorption strength of the catalyst and the intermediate species (oxygen-containing species). The corrosion resistance and anti-poisoning properties are closely related to the nature of the selected catalytic material and the selectivity of the species’ adsorption. The catalytic performance of the catalyst is determined by both its geometrical and electronic structures. Therefore, ORR catalysts can be designed and optimized by adjusting their geometry and electronic structure.

To tackle the above issues, the Wei group from Chongqing University, China, has focused on screening the highly efficient ORR electrocatalysts that do not contain Pt (Pt-free) or contain only a tiny amount of this noble metal (low-Pt) without compromising activity and durability. By addressing the underlying issues and core technical bottlenecks, they have been trying to gain an in-depth understanding of the electrocatalytic theory and the catalytic performance regulation mechanism for enhancing the activity and stability, and have successfully developed a range of novel methods to prepare electrocatalysts with low cost, high activity, and superior stability.

2. Low-Pt catalysts for ORR with high activity and stability

Reducing the amount of Pt while improving the activity and stability of the electrocatalyst is the key while challenging task in commercializing advanced energy conversion devices [1,2]. In the past decades, extensive efforts have been contributed to promote the activity and stability of Pt-based nanoparticles (NPs, 2–5 nm) catalysts [3–6]. The current state-of-the-art Pt-based catalysts have achieved satisfied catalytic activities that far exceed those of commercial Pt/C catalysts at the level of rotating disc electrodes in the laboratory. However, further pushing these catalysts with high activity and stability to produce impressive performance in practical MEAs has been difficult [7,8]. In FC operation, carbon-supported Pt-based NPs still suffer from serious corrosion of the carbon support, Pt dissolution, and Ostwald ripening. Unexpected power density losses in the mass transport region are observed in FCs with ultralow Pt loading (<0.1 mg·cm⁻²). The development of highly dispersed catalysts with higher intrinsic activity and stability is extremely critical for achieving high current densities greater than 1.5 A·cm⁻² in FCs [9]. In order to promote the development of low-Pt FCs, the Wei group has deeply studied the degradation mechanism of Pt/C catalysts and proposed several efficient strategies to improve the catalytic activity and stability simultaneously, including regulating the Pt-based alloy structure, strengthening the metal-supported interaction, developing the new durable catalyst support, and optimizing the three-phase boundary in a catalytic layer.

2.1. Degradation mechanism of Pt/C catalysts

For the past few decades, researchers have been working to study the degradation mechanism and improve the durability of Pt/C catalysts. The Pt/C
catalysts degrade due to several mechanisms, as shown in Fig. 1a. Corrosion of the carbon support can lead to the detachment and aggregation of Pt NPs. The presences of H$_2$O$_2$ and O species during ORR can lead to the oxidation of Pt NPs, while smaller Pt particles are more likely to be dissolved, then redeposited, and finally grown in size via Ostwald ripening and aggregation, causing significant loss of the Pt electrochemical surface area over time. All these factors contribute to the poor durability of the Pt/C catalysts [10].

Accelerated stress tests (AST) are widely used to assess the long-term durability of FCs and their components. These tests include thermal degradation, reduced humidity, open circuit cell operation, and electrochemical forced aging under simulated cell conditions. The electrochemical forced aging includes potential cycling tests and potential holding tests. Different potential cycling windows have been employed to evaluate the catalyst durability. The Wei group proposed a combination method, as shown in Fig. 1b, based on three different AST protocols to investigate the degradation mechanism of Pt/C catalysts [11]. They explored the degradation processes of the catalyst under different electrochemical conditions, and discovered that the formation of Pt oxide is a significant factor that affects the long-term stability of the catalyst. The loss of activity is categorized into two types: recoverable and unrecoverable. The former is caused by the reduction of Pt oxide or the removal of CO formed during carbon corrosion, while the latter is due to Pt dissolution/redeposition, agglomeration, detachment, and carbon corrosion. Using a more negative potential, the researchers are able to detect Pt dissolution/redeposition, while Pt agglomeration is found to be the main cause of Pt size growth. By monitoring the electrochemical impedance spectroscopic (EIS) response of the Pt catalyst under different potential windows, the researchers are able to identify the carbon corrosion mechanism. This test protocol is simple, efficient, and reliable, and can be used to screen both new and existing electrocatalysts for FCs.

2.2. Structure regulating strategies for carbon-supported Pt-based alloy catalysts

Carbon-supported Pt-based alloy catalysts with a lower Pt metal content exhibit not only the typical properties of phase pure Pt but also better performance compared to Pt/C catalysts. The modification of the surface electronic structure and the "anchor effect" of transition metal to Pt on the carbon surface are responsible for their increased activity and stability [12]. Generally, Pt-based alloys exhibit a down-shift d-band center, which weakens the adsorption strength of oxygen-containing species, thus allowing release of the active sites timely to increase the ORR activity. Furthermore, the "anchor effect" helps to alleviate the nanoparticles’ sintering during the accelerated durability test upon elevated temperature treatment. To develop high-performance low-Pt catalysts, the alloy structure should be designed to fulfill several conditions, including reduction of the Pt content, increase of Pt antioxidation ability, avoidance of the leaching of the transition metal, and optimization of the intrinsic activity. In Fig. 2, strategies such as the formation of hollow structures, preparation of ordered intermetallic compounds, and synthesis of sub-3 nanometer alloy particles can fulfill the above demands as much as possible.

2.2.1. Hollow structure

The Pt-based hollow structures featuring high activity have been extensively investigated. The hollow structure of the catalysts significantly increases the number of available Pt atoms in the catalysts and further improves the performance of the catalysts through geometrical and coordination effects. However, conventional preparation methods do not allow economical
commercialization of such hollow materials due to the barrier of high Gibbs formation energies. The Wei group has developed a catalyst synthesis method based on space confinement and the Kirkendall effect in which a highly controlled transformation from solid Pt to hollow PtFe alloys under existence of suitably adsorbed Fe precursor is achieved [13]. In Fig. 3, the hollow PtFe alloys featuring a Pt-skin can be directly transformed from solid Pt nanoparticles under space-confined conditions by H₂-assisted pyrolysis. Such spatially confined conditions include in-situ coating of commercial Pt/C surfaces with a layer of polydopamine, which has a very strong adsorption capacity for Fe³⁺, followed by encapsulation with a silica layer. The high-temperature environment can provide high Gibbs formation energy and net atomic diffusion rate for the formation of PtFe alloy catalysts. In the process of alloying, the PtFe alloy catalyst finally achieves a hollow structure due to the slower inward diffusion rate of the outer Fe atoms. Finally, after etching off the silica
skin using HF, the nitrogen-doped carbon-shelled hollow PtFe alloy catalyst (H-PtFe/C@NC) was obtained. The prepared H-PtFe/C@NC exhibited significantly improved ORR activity (0.993 A·mgPt⁻¹) compared to that of benchmark commercial Pt/C catalysts (0.193 A·mgPt⁻¹). In addition to its high activity, the H-PtFe/C@NC also exhibited high stability. After 20,000 cycles of cyclic potential scanning from 0.6 to 1.2 V in O₂-saturated 0.1 mol·L⁻¹ HClO₄, the ORR half-wave potential of H-PtFe/C@NC shifted negatively by only 7 mV, and the mass-specific activity decreased by only 27.3% relative to the initial value. The H-PtFe/C@NC, after the stability test, still retained its original hollow structure, and no obvious particle agglomeration and size growth were observed. In contrast, the ORR half-wave potential of commercial Pt/C catalysts subjected to the same stability test conditions showed a negative shift of 49 mV and a 63.2% reduction in mass-specific activity.

2.2.2. Structurally ordered Pt alloy

Compared to disordered solid solution alloys, well-crystallized ordered intermetallic compounds possess stronger interatomic interactions due to the ordered arrangement of metal atoms according to specific stoichiometric ratios. The formation of structurally ordered Pt-based alloys was demonstrated to be another effective strategy for mitigating the non-noble metal leaching and improving catalyst performance [14,15]. The Wei group reported hollow and structurally ordered intermetallic PtFe alloy catalysts with over 6-fold enhancement in mass activity and specific activity relative to the pristine Pt/C catalyst [16]. The structural transformation dominated by the deposition and chemical ordering energies in the designed catalysts can be well-tuned by precisely controlling the amount of adsorbed ions and the calcination temperature. In particular, the ordered PtFe alloy showed only 20.64% decrease in mass-specific activity after undergoing 3000 cycles of potential scanning between 0.6 and 1.1 V. The disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively, under the same disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively, under the same disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively, under the same disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively, under the same disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively, under the same disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively, under the same disordered PtFe alloy and Pt/C decayed up to 42.59% and 62.79%, respectively. The H-PtFe/C@NC, after the stability test, still retained its original hollow structure, and no obvious particle agglomeration and size growth were observed. In contrast, the ORR half-wave potential of commercial Pt/C catalysts subjected to the same stability test conditions showed a negative shift of 49 mV and a 63.2% reduction in mass-specific activity.

More importantly, the L1₀-PtAuFe showed a mass activity loss of only 30% after accelerated stress testing, which was significantly less than those of L1₀-PtFe (48%) and commercial Pt/C (63%).

2.2.3. Ultrafine intermetallic nanoparticles

Another way to reduce the use of expensive Pt in catalysis is to make the Pt-based alloy nanocrystals smaller, which increases the exposure of Pt atoms. However, obtaining sub-3 nm intermetallic Pt alloy nanocrystals for ORR without using confinement is difficult because the high temperature required for forming ordered intermetallic structures can cause the nanoparticles to clump together and grow in size. In Professor Wei’s early academic career, the Pt particles or Pt alloys he prepared could reach as large as 22 nm even at a relatively low calcination temperature of 750 °C [18]. Later on, he tried to electrochemically deposit Pt and PtRu alloy uniformly on the porous carbon electrode in consideration of the atom-by-atom feature of metallic electrodeposition process [19–24]. Unfortunately, the precious metal atoms are more likely to be deposited by themselves on the sites where the electric field is stronger rather than to be uniformly deposited on the whole carbon substrate regardless of what deposition modulation condition was employed. This resulted in 5–8 nm Pt nanoparticles with uneven distribution on the carbon substrate as shown in Fig. 4a.

Fortunately, Wei and his coworker, Professor Jing Li, teamed up to get out of the above dilemma. Recently, they reported a chemical bond weakening strategy for synthesizing carbon-supported sub-2 nm ordered intermetallic Pt alloy nanoclusters [25], as shown in Fig. 4b. In the interdiffusion process in which two metal phases, Pt clusters and transition metal single-atom (MNC) with a common interface are alloyed, introducing H₂ leads to spontaneous strong adsorption of H on Pt and N. The H₂ adsorption weakens and prolongs the bonds between Pt–Pt and M–N, respectively, thus increasing the mobility of atoms and reducing the kinetic barriers for forming Pt alloys with single M species. This results in the preparation of Pt alloys at a lower temperature, which inhibits the size growth and enables the formation of intermetallic nanocrystals like 1.55 nm Pt₃Fe and 1.25 nm Pt₃Ni. Both the experimental and calculational studies confirmed a specific range of H₂ content (12vol%–16vol% H₂ in N₂) is necessary to form the Pt₃Fe-alloy phase, and that too much or too little H₂ content does not allow formation of alloy, implying that the H₂ content plays a crucial role in this alloying process. By using an ultralow cathodic loading of
0.03 mg\textsubscript{Pt} \textcdot cm-2, an H\textsubscript{2}-O\textsubscript{2} fuel cell assembled with Pt\textsubscript{3}Ni cathode exhibited the exceptional activity (1.60 A\textcdot cm-2@0.67 V; 13.7 W\textcdot mg\textsubscript{Pt}-1 for the whole cell). After 100 hours of continuous operation under a potential of 0.6 V, a Pt\textsubscript{3}Ni-based single cell showed a current-density decay of less than 3.7%, which suggests superior durability. This durability is attributed to the strong anchor of the Pt\textsubscript{3}Ni nanoclusters on the graphene substrate.

High-entropy Pt alloy nanocrystals (HENs) with sub-3 nm size are attracting increasing research interest for their advantage in modulating intrinsic activity and reducing Pt usage. While the present routes for preparing HENs, such as carbon-thermal-shock synthesis and wet chemistry method, cannot obtain effective size tuning and even dispersion of the nanocrystals, as well as their strong bonding on the carbon support at the same time. Interestingly, the Wei group presented an anchoring-carbonization strategy for strongly bonding sub-3 nm HENs in ordered mesoporous carbon [26]. To the co-assembled system containing metallic species, carbon precursors, and the structure-directing agent F127, the first calcination in the mid-temperature region (< 400 °C) allows anchoring of the metal on the surface of partially carbonized phenolic resin skeleton as shown in Fig. 4c. Then, at a higher temperature (~700 °C), a stronger planar contact rather than single point contact of HENs with carbon support was formed, which not only significantly suppressed the dissolution, migration, and agglomeration growth of HENs at high temperatures, but also obtained a high-strength and stable anchoring of the HENs

Fig. 4. (a) Schematic illustration of the chemical bond-break-weakening strategy for preparation of sub-2 nm intermetallic Pt alloy nanocrystals and the TEM image of Pt\textsubscript{3}Fe/NC-500 [23]. Reproduced with permission of Ref. [23], copyright Beijing Daxue Chubanshe. (b) Porous carbon supported sub-3 nm high-entropy Pt alloy nanocrystals. Schematic illustration of the HENs-carbon interfaces made by physical mixing and anchoring-carbonization strategy [25]. Reproduced with permission of Ref. [25], copyright Elsevier. (c) TEM image of 6-HENs/PC (PtFeCoNiCuZn) [26]. Reproduced with permission of Ref. [26], copyright John Wiley and Sons.
particles on the surface of the carbon support. Then, they were able to successfully incorporate different types of Pt-based HENs into porous carbon. The HENs had average nanocrystal sizes ranging from 2.2 to 2.9 nm for senary, septenary, octonary, and denary Pt-based HENs. The ORR tests showed that the 6-HENs/PC (PtFeCoNiCuZn) catalyst had much better activity than low-entropy and medium-entropy alloy materials. This indicates that this approach has huge potential for producing efficient electrocatalysts. Additionally, the HENs were strongly anchored on the carbon support, which resulted in significantly higher electrochemical durability.

2.2.4. Multi-scale co-existing Pt catalysts

Since Professor Tao Zhang and his coworkers first developed single-atom (SA) materials [27], SA catalysis has quickly become a research hotspot in the catalytic field. Recently, the SA catalysts with potential performance have been screened through first-principles machine learning methods [28]. The high catalytic performance of SA catalysts is attributed to their synergistic interaction with ligand atoms and high atom utilization. Then, it is interesting to find out whether Pt, when prepared as single-atom catalysts, has the highest ORR activity and catalyst utilization. To answer this question, the Wei group conducted a comprehensive investigation to determine which is more effective for ORR - individual atoms, nanoclusters, or their coexistence. They investigated five catalysts: single-atomic PtSA/C, nanoclustered PtNC/C, and coexisted PtSA-NC6/C, PtSA-NC13/C, and PtSA-NC38/C [29]. Density functional theory (DFT) calculation results (Fig. 5 a-b) show that at \(U = 0.9/1.23 \) V, PtSA/C has the highest reaction energy barrier in the initial \(\text{O}_2 \) adsorption step, while for PtNC/C, \(\text{O}_2 \) adsorption is spontaneous. Conversely, PtNC/C exhibits the rate-decisive step in the \(\text{OH}^- \) desorption step, which is especially easy for PtSA/C. Particularly, for the three co-existed catalysts, the \(\Delta G \) values for all steps are greatly decreased, indicating more easily happened ORR process. The in-depth analysis of the Bader charge well explains this. In Fig. 5 c, SA has the largest Bader charge of 0.81, implying a significant electron loss of the Pt site, thus very weak adsorption to oxygen-containing species, by which the rate-decisive step is \(\text{O}_2 \) adsorption. In contrast, PtNC/C displays a Bader charge of \(-0.04\), signifying a substantial electron gain, and corresponding to too strong adsorption to oxygen intermediates, thus the desorption becomes the rate-decisive step. Interestingly, the three co-existed samples exhibit the moderate Bader charges of 0.73–0.78, well balancing the adsorption/desorption behavior for a more rapid 4e\(^-\) ORR kinetics. The experimental results well match with this DFT analysis. In \(\text{H}_2-\text{O}_2 \) MEA measurement, under an ultralow cathode Pt
loading of 0.02 mg Pt/cm2, the coexisted PtSA-NC delivered a peak power density of 0.98 W·cm$^{-2}$, being 2.3 times that of SA Pt, and 2.7 times that of Pt cluster-dominated catalyst.

The unsatisfactory physical and chemical stability of SA materials has heavily hindered practical applications in fuel cells. Recently, Shao and Wei reported a hybrid electrocatalyst consisting of highly dispersed Pt and Fe single atoms and PtFe alloy particles [30]. The prepared hybrid electrocatalyst had a size of 2−3 nm and showed a mass activity of 0.77 A·mg$^{-1}$ in the fuel cell, 3.7 times that of the commercial Pt/C catalysts. More impressively, due to the synergistic effect of the different active sites, the hybrid electrocatalyst showed negligible performance degradation at an ultra-low Pt loading of 0.015 mg Pt/cm2 in the cathode, even after 100,000 cycles harsh square-wave potential cycling or 200 h continuous operation at 0.6 V. DFT calculations reveal that the synergistic Pt sites can accelerate the reaction step of oxygen-containing intermediates to water and reduce the accumulation of H$_2$O$_2$ in the electrode, thus reducing the degradation of components in the MEA and improving the durability of the electrode.

2.3. Supports enhancement mechanism for Pt-based catalysts

Having a good support is crucial as it not only prevents corrosion of the support itself, but also helps in enhancing the Pt-support interaction strength and regulating the electronic structure of Pt-based alloys. It improves anti-oxidation ability of Pt NPs, inhibits the dissolution, migration, and aggregation of Pt NPs, and even enhances the intrinsic activity of catalysts. The most effective approaches to enhance the catalytic performance by tuning support include: forming functional coating on original support, modifying the supports, and replacing carbon black support with other more stable nanomaterials, such as carbon nanotubes (CNTs) and graphene, or non-carbon catalyst supports like transition metal oxides/nitrides, and MXene. As shown in Fig. 6, all these methods increase the overlapping of orbitals between the support and Pt NPs, and downshift the d-band center, leading to improved activity and stability.

The Wei group developed a method to coat carbon surfaces with a protector that can prevent direct exposure of the unstable carbon support to corrosive environments. In Fig. 7, by polymerizing a thin layer of polyaniline (PANI) on the carbon surface of a Pt/C catalyst, a core-shell catalyst, Pt/C@PANI, was designed and synthesized [31]. The stable PANI shell offers excellent environmental stability, high electrical and proton conductivity, unique redox properties, and acts as a protector for Pt/C catalyst, preventing direct contact of carbon support to corrosive environments. Moreover, the interaction between Pt NPs and the support is strengthened, which inhibits the agglomeration of Pt NPs. The charge transfer between PANI and Pt/C catalysts increases the conductivity of PANI and downshifts the d-band center of Pt, facilitating the desorption of oxygenate species, and enhancing the interaction between Pt NPs and the support [32]. The output performance of a fuel cell with Pt/C@PANI as the cathode catalyst only decreased by about 12% after 5000 cycles in stability tests at 0~1.2 V. In contrast, the output performance of the Pt/C fuel cell decreased by more than 85%. Furthermore, subjecting Pt/C@PANI to a high-temperature heat treatment could enhance the ORR activity. On the surface of Pt/C, the PANI undergoes in-situ conversion into highly graphitized GNC. The confinement effect of the PANI leads to the formation of Pt NPs with an anti-sinter capability. The size of Pt nanoparticles in Pt/C@NGC catalyst became only 4.7 nm even after a 900 °C heat treatment, as shown in Fig. 7 e.

CNTs and graphene show potential as support materials for catalysts owing to their large surface area, high electrical conductivity, and excellent

![Fig. 6. Schematic Illustration of strategies and mechanisms for supports-enhanced performance of platinum-based catalysts.](image-url)
electrochemical durability. However, the surfaces of pristine CNTs and graphene are chemically inert, leading to relatively fewer binding sites for anchoring the Pt precursors or Pt NPs. This results in CNTs and graphene-supported catalysts having poor Pt dispersion and larger Pt NPs. The Wei research group identified an organic functional group that could stabilize supported Pt NPs on CNTs. This functional group acts as a deposition and anchoring site for Pt NPs while simultaneously preserving the original structure of CNTs. Specifically, in Fig. 8a and b, thiolate (–SH) groups are preferred as anchoring centers for Pt NPs compared to conventional hydroxylated and carboxylated groups. This is because the unoccupied d orbitals of the S atom are involved in hybridization and bonding, leading to an enhanced interaction between the Pt NPs and the CNT, restricting the migration of Pt on the CNT, and achieving a higher Pt dispersion [26,33]. The single-atom doped graphene can also exhibit a certain charge and increase catalyst activity by a coordination interaction such as electron transfer with other atoms. The merits of single-atom doped graphene support and Pt nanoparticles were combined by the Wei group to prepare cross-linked multi-atom Pt catalysts for ORR (MAC-Pt/ZnFe-N-C, as shown in Fig. 8c [34]. The novel catalyst exposed 100% of the surface Pt atoms, yielding an impressive peak power density of 1.02 W cm⁻² in a real fuel cell at a low Pt loading of 35 μg cm⁻², almost twice that of a commercial Pt/C cell. In addition, the catalysts demonstrated excellent stability in both acidic and alkaline media, retaining the electrochemically active specific surface area (ECSA) values of 99.13% and 98.40%, respectively, after measuring 2000 cycles of cyclic voltammograms.

Apart from the direct modulation of carbon-based supports, getting novel supports is also important for promoting the ORR performance of the catalysts. The Wei group firstly adopted two-dimensional (2D) Ti₃C₂X₂ (X = OH, F) material as a novel alternative to conventional carbon support [35]. The Ti₃C₂X₂ possesses outstanding functionalized surface properties, excellent conductivity, remarkable corrosion resistance, and robust anchorage to Pt NPs, rendering it a highly suitable catalyst support for FCs. Besides, as shown in Fig. 8d–e, the strong electron transfer caused by d orbits overlap for Pt and Ti₃C₂X₂ not only facilitates strongly anchoring of Pt nanoparticles on Ti₃C₂X₂ surface but also enhances the ORR activity [36]. The accelerated durability test confirmed that the Ti₃C₂X₂-supported Pt catalyst shows better stability than that of the commercial Pt/C catalyst, with no significant degradation observed in the Pt particle size and ORR half-wave potentials.

2.4. Optimizing strategies of three-phase boundary for Pt/C electrode

Apart from the electrocatalyst material, the catalyst layer in the cathode of MEA should also contain ionomer, electronic conductor (usually carbon), and gas and water transport channels, which can be summarized as "one reaction, two types of conductors, three-phase interface, and four kinds of channels" as shown in Fig. 9. It means only the active sites which directly contact with both electron and ion conductors and locate just at the intersection of gas, liquid, electron, and proton transport channels, could participate in ORR. Thus the more such sites in the catalytic layer of the cathode, the better the MEA performance. The conventional catalytic layer is about 30–50 nm thick, in which randomly distributed catalyst particles and ionomers form many narrow channels and dead ends, which increase the gas-liquid diffusion resistance and even cause flooding by sacrificing gas transportation. Additionally, part of the Pt NPs embedded by carbon or ionomers cannot participate in the electrode reaction. Therefore, an improved electrode with proper gas transport, rapid water diffusion, and high electron and proton conductivity is urgently desired. The
Wei group developed an innovative method for preparing catalyst layers in FCs, known as alternative ion-exchange/electrodeposition (AIEE) [37]. This method involves creating electronic and proton channels between Pt particles in the electrode and between the current collector and electrolyte polymer, respectively. By constructing high Pt utilization electrodes in a solution that is free of Pt cations, the AIEE method significantly increases the utilization of Pt catalysts in the catalyst layer. The resulting MEA with a 0.014 mgPt/cm² AIEE electrode demonstrates a power output that is...
approximately 2.2 times larger than the one with a conventional Naion-bonded electrode. This method ensures maximum exposure of the Pt particles to the three-phase zone, resulting in a more efficient fuel cell. Learned from the sophisticated brain neural system with the most efficient linkage, as shown in Fig. 10, the Wei group developed a bionic PtCo NPs network connected with carbon nanotube support to improve the overall Pt utilization in catalyst layer [38]. The bionic catalytic network is a highly effective system that enables the efficient transport of various species to active sites, resulting in a significant improvement in mass transfer efficiency compared to traditional Pt/C catalytic layers. This technology allows for a remarkable utilization efficiency of 58 mgPt·kW⁻¹ in cathodes and 98 mgPt·kW⁻¹ in both anodes and cathodes, almost three times higher than traditional catalytic layers. Additionally, the bionic catalytic network-based fuel cell showed no decay during continuous operation at 1 A·cm⁻² for 130 hours.

During the operation of FCs, the gas transport channel may be flooded with water due to the compressibility of the gas, a well-known "flooding"
problem for the porous electrode. The main cause of the flooding is that the solubility of the non-polar O₂ molecule in the polar water molecules solvent is too low, and at the FCs operating temperature (60 °C), the solubility of O₂ in the water will be further reduced due to the increase in vapor pressure of the water and the decrease in O₂ partial pressure. As a result, water gradually accumulates in the pores, especially with diameters ranging from 20 to 70 nm, due to capillary condensation that would not occur in the macro-pores. This makes it difficult to remove the water, thus exacerbating the flooding problem. Successfully solving the issue of water accumulation in these pores will be key to addressing the long-standing challenge of water management in FCs.

The Wei group developed an "anti-flooding" strategy to modify the membrane electrode microchannels by preparing an anti-flooding electrode (AFE) [39–41]. The strategy is based on the "principle of similar solubility" and involves adding a water-repellent and oxygen-rich oleophilic dimethylsiloxane (DMS) to the microchannels. The solubility of oxygen in the oxygen-rich oil phase is about 10 times higher than that in aqueous solution at room temperature. Moreover, the vapor pressure remains almost constant from 0 to 200 °C, indicating that no solubility of oxygen is changed with temperature. When the fuel cell is operating at 80 °C, the solubility of oxygen at that temperature is nearly zero due to the increase in water vapor pressure. However, the solubility of oxygen in DMS will be 61 times that in water, and considering the difference in diffusion coefficients of oxygen between the two, the transport of oxygen in DMS will be 28 times that in water. As shown in Fig. 11, the waterproof oil occupies and modifies the pores of the microchannels, creating fixed transport channels for gases that are not flooded by water. This ensures the smooth and ordered fluid transport of "fish have fish channels; shrimp have shrimp channels." AFE prepared by adding DMS into a conventional porous electrode (CPE) showed an increase in the cell power from 1.01 W·cm⁻² to 1.33 W·cm⁻² under no humidification conditions, compared to that containing a CPE cathode. Additionally, the power output increased from 0.6 W·cm⁻² to 1.2 W·cm⁻² under over humidification conditions (156% RH). Furthermore, after over-humidification, CPE could only last for 3 hours of normal discharge, while AFE could last for 12 or 17 hours of normal discharge. The pore volume distribution analysis revealed that DMS mainly occupied the mesopores having diameters ranging from 20 to 70 nm. Particularly, the filled DMS would not be replaced by water due to the hydrophobic nature, which results in abundant transport channels being reserved for oxygen.

The Wei group further proposed that the anti-flooding capability of the catalyst layer can be

Fig. 11 (a) Schematic of the water flooding in the CPE and AFE. (b) Cell voltage vs. time curves of a MEA with an AFE or CPE as the cathode, and cell voltage and power density vs. current density plots of a single cell with a CPE anod and an AFE cathode in the case of no O₂ humidification (△) and O₂ over-humidification at 156% RH (△), and a single cell with two CPEs in the case of no O₂ humidification (△) and O₂ over-humidification at 156% RH (△) [40]. Reproduced with permission of Ref. [40], copyright American Chemical Society.
greatly improved by constructing hierarchically porous network without pores with diameters of 20–70 nm [42]. Using a combined hard-soft template approach, the ordered macro-mesoporous carbon-supported Pt nanocrystal catalyst was prepared which owns orderly arranged 500 nm macropores and 13 nm mesopores with 3 nm Pt nanoparticles uniformly distributed on the carbon surface. In Fig. 12, the pore volume and the specific surface area of this porous catalyst are 3.4 and 4.5 times higher than those of the commercial Pt/C, respectively. With a quantitative evaluation using their self-designed "rattle-drum" like working electrode, the anti-flooding capability of the porous catalyst layer is almost 4 times higher than that constructed by commercial Pt/C. In the electrochemical test of the three-electrode system, the Pt/C electrode was instantly flooded, while the dual-porous electrode well remained continuous and stable running. The MEA test result shows that the peak power densities delivered by the porous electrode are 41% and 45% higher than those of Pt/C under typical and over-humidification test conditions, respectively. These results demonstrate that well-designed porous channels can significantly improve the mass transfer efficiency and anti-flooding capability of the catalyst layer for accelerated ORR kinetics.

Perfluorinated sulfonic-acid ionomer is one of the most important components in FCs to provide proton transport channels. However, an increasing number of studies have shown that in conventional Pt catalyst layers, a thin layer of ionomers tightly covered the surface of Pt particles, which led to the difficulty of oxygen diffusion toward the Pt sites. Also the specific adsorption of the sulfonate groups of the ionomers on the Pt surface suppressed its catalytic activity. It is important to note that highly active catalysts at the rotating disk electrode level frequently failed to exhibit excellent power density and stability in real FCs. Previous studies have revealed the importance of building effective Pt-ionomer interface in practical FCs. The Wei group innovatively constructed a non-contact Pt/ionomer interface in the fuel cell catalyst layer by a blocking strategy [43]. They found that the hydroxyl group of cyclohexanol could be strongly coordinated to the sulfonate group of the ionomer, thus preventing the specific adsorption of the sulfonate group on the Pt surface, and mitigating the detrimental effects of the ionomer (Fig. 13). The introduction of cyclohexanol resulted in a significant reduction in the coverage of sulfonate group on the Pt surface to ~7%, as compared to up to 21% coverage of sulfonate group in the conventional catalyst layer containing only Nafion ionomers. In the catalyst layer containing cyclohexanol, the coverage of the suppressed sulfonate group resulted in a 25% increase in the kinetic activity of the Pt at 0.85 V. Incorporation of cyclohexanol into the catalyst layer also increased the accessibility of oxygen and protons to the Pt surface, achieving a 24% enhancement of the peak power density in the mass transfer region of the H2-air fuel cell.

Catalyst poisoning is one of the most serious problems leading to catalyst performance degradation. The poisoning of the kinetic activity of Pt catalysts by SOx, CO and NOx in air has been well known in practical low-temperature fuel cells. The Wei group investigated the effect of Mo atom doping on the SOx resistance of Pt catalysts using DFT [44]. The results showed that Mo atoms weakened the S–Pt bond strength and mitigated the adsorption capacity of SOx on the catalyst surface, which resulted in the electronic structure of PtMo (111) remaining unchanged after SOx adsorption. In addition, they explored the CO tolerance of the Pt/WOx@NC electrode [45]. The prepared electrodes showed excellent CO tolerance in liquid-phase tests with a CO electro-oxidation potential of 0.24 V vs. RHE. More importantly, the Pt/WOx@NC electrodes still...
showed a cell performance of about 133 mW cm⁻² even with a fuel containing 1000 ppm of CO, whereas the comparative Pt/C electrode with 100 ppm of CO completely lost its catalytic activity.

3. Carbon-based catalysts for ORR with high activity and stability

Carbon-based materials have gained widespread usage in the field of electrochemical energy due to their excellent physical properties, chemical stability, and electrical conductivity, along with being economical and easy to obtain. In particular, the gap between the initial performance of membrane electrodes assembled with carbon-based catalysts and that of Pt/C electrodes is decreasing, indicating the broad application prospect of such catalysts in FCs. Nonetheless, doped carbon-based catalysts still have many challenges under fuel cell operating conditions, such as low intrinsic activity, low activity density, and poor stability, which lead to too thick catalytic layer and fast degradation of initial battery performance. Over the past decade, the Wei group [46–55] have extensively investigated the key scientific issues and core technical bottlenecks in carbon-based FCs. They have gained an in-depth understanding of the electrocatalytic theory and the catalytic performance regulation mechanism, which can significantly improve the performance and durability of non-precious metal carbon-based catalysts.

3.1. Strategies to increase the activity of nitrogen-doped carbon catalysts

Nitrogen-doped graphene (NG) carbon materials have been widely researched as potential catalysts due to their excellent ORR activity. NG carbon materials typically have three main nitrogen doping configurations — pyridine nitrogen, pyrrole nitrogen, and quaternary nitrogen configurations, as shown in Fig. 14. However, there has been a debate on which doping configuration has the higher ORR catalytic activity. The Wei group [56,57] discovered that quaternary nitrogen is more favorable than in-plane NC (pyridine and pyrrole nitrogen) in terms of catalyzing the rate-determining step (RDS) of ORR, which is the protonation step of oxygen molecules. However, when the N-doped concentration is greater than 2.8 at%, the band gap of quaternary NC is significantly increased compared to planar NC, and the electron transport resistance becomes the determining step. Then, planar NC exhibits higher catalytic activity.
The planar sp²-hybridized N maintains the π-π conjugated structure of NC, which has more delocalized electrons and better electrical conductivity. On the contrary, the tetrahedral sp³-hybridized N creates a steric structure for the NC, which has localized electrons and is not conducive to electron transfer. Literature analysis shows that all claims of high activity of quaternary NC have an N-doping concentration of less than 2.8 at%, and all claims of high activity of pyridine NC or pyrrole NC have an N-doping concentration of more than 2.8 at%, with few exceptions. This study convincingly identifies "which doping configuration has the highest ORR catalytic activity."

Based on the relationship among the nitrogen-doped configuration, the electric conductivity, and the ORR catalytic activity, the Wei group [58] proposed the idea of spatial confinement-induced synthesis of planar nitrogen-doped carbons by selectively synthesizing planar pyridinic N and pyrrolic-Nitrogen-doped carbon materials with sp² hybrid orbitals, as shown in Fig. 15. Layered montmorillonite (MMT) was used as a low-cost flat nanoreactor to selectively prepare planar NG nanosheets. The highest yield (90.3%) of planar NG was obtained using H-MMT with an interspace width of 0.46 nm. The quaternary and oxidized nitrogen content was restricted to less than 9.7% due to steric hindrance. The NG@MMT without metal exhibited excellent electronic conductivity and catalytic activity towards the ORR, making it a promising material for various applications. The single cell with the NG@MMT had a maximum power output of 320 mW·cm⁻², which was among the highest levels for similar materials achieved in 2013.

In order to enhance the performance of NC catalysts, it is crucial to increase the density of active sites and improve oxygen transport in the catalytic layer. However, the current density of exposed active sites, which are activated by planar pyridinic N and pyrrolic N, is insufficient since they only appear at the edge of a large graphene sheet. To overcome this limitation, the Wei group [59] developed a novel method called "shape fixing via salt recrystallization." This approach, shown in Fig. 16, enables the efficient large-scale synthesis of N-doped carbon material with high ORR activity. The technique, which envelops the nitrogen-containing polymer inside inorganic salt crystals via evaporative recrystallization of their mixed solutions, results in four positive effects. Firstly, during the pyrolysis process that follows inorganic salt recrystallization, unpolymerized monomers and solvent molecules become pore formers, causing the graphene to form inner pores, which results in a large number of inner edge pyridine and pyrrolic nitrogen-doped carbon. Secondly, the recrystallized inorganic salts stabilize the nanomorphology of nitrogen-containing polymers, maximizing the retention of the polymer's morphology at low temperatures in the final product after high-
temperature carbonization. A favorable catalyst structure facilitates the availability of efficient mass-transport pathways and high utilization of active sites. Thirdly, the salt sealing effect of inorganic salt crystallization effectively resolves the problem of burn-off, high quaternary ammonia nitrogen doping, and structural collapse of the traditional direct carbonization method. Finally, this method overcomes the challenge of separating the template from the target catalyst, and it can be achieved solely by dissolving the cooled inorganic salt with water. The prepared N-doped catalysts exhibited the outstanding ORR activity with a half-wave potential of only 58 mV behind that of Pt/C in

Fig. 15. (a) Schematic representation showing the selectivity inside and outside of MMT during NG synthesis. (b) Bode spectra obtained through the application of a sine wave with an amplitude of 5.0 mV from 10 mHz to 10 kHz for different catalysts. (c) Polarization curves and the corresponding power densities of membrane electrode assemblies fabricated with the NG@MMT cathode catalyst [58]. Reproduced with permission of Ref. [58], copyright John Wiley and Sons.

Fig. 16. (a) A sketch showing Shape Fixing via Salt Recrystallization method. (b) Schematic of active sites on edges and in pores. (c) TEM images of as-prepared materials and their carbonized products. (d) Polarization curves and the corresponding power densities of membrane electrode assemblies fabricated with the CPANI-Fe-NaCl, CPANI-NaCl, and CPANI cathode catalysts [59]. Reproduced with permission of Ref. [59], copyright American Chemical Society.
an acidic medium. The PEMFC with the CPANI-Fe-NaCl-catalyzed cathode had a peak power output of 600 mW cm\(^{-2}\), which is among the best for non-precious metal catalysts reported at the same period.

3.2. Regulation mechanism of activity for heteroatom-doped carbon catalysts

Besides N, a plethora of other heteroatoms (e.g., N, B, O, P, S, Cl, Se, Br, and I) doped in graphene matrix has been reported as enhancing the catalytic activity of carbon-based catalysts. It led to ridicule from Professor Pumera's "Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect?" [60]. They demonstrated that bird dropping also can improve the electrocatalytic activity of graphene. This is indeed the case because the bird dropping contains nitrogen, uric acid, phosphoric acid, oxalic acid, and carbonate, which is rich in various heteroatoms such as N, P, S, and Cl. Bird-dropping-doped graphene coincided with heteroatoms-doped graphene. Despite this, it is still unclear which doping atom/group has the best effect on the ORR activity of graphene. It has been observed that positive charge doping caused by N and O being more electronegative than C, negative charge doping caused by B and P being less electronegative than C, or the co-doping of S and Se that have similar electronegativity to C without charge change, all enhance the activity of graphene. It is puzzling that it does not seem to matter whether the doping atom/group that enhances the activity is electron-donating or electron-withdrawing. Nonetheless, the catalytic regulation mechanism for heteroatom-doped carbon catalysts remains an area of active research and discovery.

In order to solve the problems mentioned above, the Wei group [61,62] conducted a deep study on various heteroatom-doped carbon-based catalysts. They found that the intrinsic catalytic activity and ORR mechanism of doped-graphene catalysts were influenced by a triple effect, namely the charge, the spin density, and the coordinate state (ligand effect) of the carbon sites. In Fig. 17, the effects that contribute to increasing the binding energies of *OOH or *OH can be ranked as follows: negative charge effect < positive charge effect < low spin effect < ligand effect < high spin effect. To improve the activity of graphene-based materials, a two-step strategy has been used in experiments by modifying the intrinsic electronic structure and increasing the defects. By combining these multiple effects, double active sites of carbon can be generated that catalyze ORR following the 4e\(^{-}\) dissociative mechanism. This strategy overcomes the activity limitation of the associative mechanism and further enhances the catalytic activity for the ORR. Increasing the defects results in the output power of the nitrogen-doped carbon-based catalyst PEMFC increasing from 320 mW cm\(^{-2}\) to 600 mW cm\(^{-2}\). When S was additionally introduced into nitrogen-doped carbon to increase the spin density, the combination of spin and charge effects further increased the output power of PEMFC to 1100 mW cm\(^{-2}\).

The synthesis of phosphorus-doped and nitrogen-phosphorus co-doped graphene has been achieved by utilizing the negative charge effect introduced by phosphorus doping, and the positive and negative charge effect, as well as the ligand effect introduced by nitrogen and phosphorus co-doping [63,64]. These catalysts have been found to exhibit better activity for ORR in alkaline media compared to commercial Pt/C and RuO\(_2\). In addition, the phosphorus-nitrogen co-doping enhances the anti-poisoning performance of carbon-based catalysts, which is particularly
important for FCs operating in an atmospheric environment [65]. Catalysts on the cathode and anode of FCs are susceptible to degradation due to exposures to NOx and SOx in the atmosphere, as well as POx from high-temperature FCs membranes. The Wei group [66] found that only proper P doping induces and promotes the incorporation of N atoms into the adjacent carbocycles, resulting in a P-C-N co-doped structure with an N/P ratio of 1:1, as shown in Fig. 18. An excess of P can lead to the conversion of doped N from six-membered ring to five-membered ring, and P atoms are more inclined to combine with O to destroy the P-C-N co-doped structure. The P-C-N co-doped structure with an N/P ratio of 1:1 has been found to effectively eliminate the aggregation of toxic small molecules on the catalyst surface, making the concentrations of NOx, SOx, and POx on the surface of PNC significantly lower than those of other catalysts, and showing excellent anti-poisoning performance.

3.3. Degradation mechanism and stability enhancement for carbon-based catalysts

Carbon-based catalysts have become increasingly popular as alternatives to platinum-based catalysts in FCs due to their comparable activity levels. However, they still face significant challenges in terms of stability and durability under operating conditions, which have hindered their widespread application. One major issue is their rapid initial performance loss during stability testing, which greatly affects their performance. Various degradation mechanisms have been proposed for carbon-based catalysts during long-term fuel cell operation under dynamic load conditions, including nitrogen species protonation, carbon/metal oxidation, demetalation of metal atoms or active moieties, and water flooding. Moreover, abnormal operating conditions, such as insufficient air/fuel purging during the shut-down/start-up process, can increase the cathodic potential to a higher level (1.5 V vs. RHE), adding to the complexity of the degradation process. During stability or durability testing, more than one of these degradation mechanisms may occur in parallel, making it challenging to identify the dominant one. Efforts are needed to develop strategies to enhance the stability and durability of carbon-based catalysts for their successful application in FCs.

During the process of ORR, it is relatively easier for nonmetallic atom doped-carbon-based catalysts to form surface oxidation intermediates (partial oxidation) on carbon sites rather than losing the carbon sites completely (complete...
oxidation) [67]. The interaction between carbon sites and oxygen species plays a crucial role in the formation of oxidation intermediates, while the loss of carbon sites is influenced by various factors such as oxidation intermediates, ORR mechanism, stability of the doped structure, and electrode potential. In situations where the associative or 2e^- ORR mechanism is involved, unstable doped structure, and high electrode potential, the partial or complete oxidation process can be expedited, as observed in P-G and Np-G cases. In P-G, the large atomic radius of P can lead to the loss of carbon sites and the formation of stable oxidation intermediates, which destroy the graphene structure. In Np-G, the relatively weak C=O binding energy can instigate the associative mechanism, which exacerbates the oxidation of carbon through the formation of *OOH. The ORR activity of doped graphene can be inhibited by both partial and complete oxidations of the carbon site.

The Wei group [68] further investigated the potential deactivation mechanisms of metal-doped carbon-based catalysts by using the FeN4 moiety of FeNC catalysts as the active site model. They explored the critical factors for reversible and irreversible inactivation of the active sites of transitional metal-nitrogen-carbon (TMNC) catalysts (Fig. 19). The N protonation of bare FeNC is difficult, while Fe/C oxidation by ORR intermediates is inevitable. The occupation and recovery of Fe sites depend on the competition between adsorption and desorption of the intermediate species OH. When the adsorption and desorption are not in balance, the OH occupying the active site will hinder the progress of subsequent reactions, leading to reversible deactivation. Additionally, the rearrangement of OOH can cause asymmetric oxidation of the Fe site, weakening the Fe–N bond, triggering the protonation of N, and shedding and leaching of the active center in the form of Fe(OH)2, resulting in irreversible inactivation. Meanwhile, based on the competition relationship between ORR and Fe oxidation, a trade-off potential was defined to evaluate the stability of the catalyst. The trade-off potential of FeNC (0.61 V vs. RHE) is much lower than the equilibrium (1.23 V) and half-wave (about 0.9 V) potentials of ORR. Therefore, it is challenging for Fe sites to maintain the catalytic function of ORR in the working potential range, resulting in rapid activity attenuation. The more positive the value of the trade-off potential, the more difficult it is for the active site to be occupied by oxygen species, and thus, the less likely it is to be deactivated.

To overcome the intrinsic asymmetric oxidation of the FeNC catalyst, the Wei group [69] successfully developed an ultrahigh-loading zinc single-atom catalyst. By controlling the doping and gasification process by decreasing the annealing rate to 1°C•min^-1, the Zn atoms can be embedded...
into the lattice of N-doped carbon substrate. The Zn atoms were dispersed in the carbon substrate with an extremely high loading of 9.33 wt%, as shown in the HAADF-STEM image in Fig. 20a. The Zn-N-C catalyst was observed to be more stable than the Fe-N-C. After AST of 1000 CV cycles between 0.6 and 1.1 V in O₂-saturated 0.1 mol·L⁻¹ HClO₄, the Zn-N-C exhibited excellent stability of merely 19.88 mV decay of half-wave potential. The larger 31.03 mV decay of half-wave potential was observed for the Fe-N-C. The high stability of Zn-N-C has been ascertained by theoretical calculation. The free energy required to form the asymmetric oxidation specie *Zn(OH)₂ is 11.91 eV, which induces a trade-off potential (1.24 V) of Zn-N-C to be higher than the equilibrium potential of ORR. This helps to avoid the protonation of nitrogen and imbalance of active site structure.

3.4. Rational construction of the carbon-based cathodic electrode

It is important to note that carbon-based catalysts in FCs still face many challenges, such as low activity and low active site density. To acquire enough active-site number in the MEA, such cheap catalysts normally require high loadings, which then results in thick catalytic layers of gas-porous electrodes. Additionally, there is a nonlinear coupling of heterogeneous transfer and electrochemical reaction within the thick catalytic layer. As a result, the efficiency of the porous electrode process decreases, leading to issues such as water flooding, uneven conductivity, and water vapor distribution. These issues can cause rapid battery performance decay. Moreover, the production of hydrogen peroxide caused by incomplete oxygen reduction can corrode carbon, membrane electrodes, and other materials of the battery system, which can lead to battery decay. Therefore, research on non-precious metal fuel cell catalysts should focus on improving the mass activity of carbon catalysts, fundamentally eliminating the generation of hydrogen peroxide, improving the global mass transfer efficiency in the catalytic layer, and enhancing the corrosion resistance and stability of the catalyst [70–82].

Three dimensional (3D) porous structures have been found to offer significant advantages in improving the ORR activity of carbon materials by exposing more active sites and enhancing mass transport through forming mesopores and macropores [83,84]. The Wei group rationally designed and controllably fabricated a porous nitrogen-
doped carbon nanotube catalyst with open-ended channels for ORR (Fig. 21a) [85]. They achieved this by transforming MnO₂ nanotubes twice, which produced a highly defined structure with increased number of active sites for better performance. This catalyst facilitated both mass and electron transports, therefore leading to a significant increase in ORR activity. In comparison to the commonly used Pt/C catalysts, the O-NCNT catalysts showed superior ORR performance. The Wei group [86] also employed SiO₂ microspheres as templates and fabricated several nitrogen-doped carbon catalysts with 3D hollow structures and controlled wall thickness. Thinner pore-walled catalysts outperform Pt/C catalysts in ORR due to their 3D hollow structure with a thin wall, leading to lower diffusion resistance and better mass diffusion. In order to fully utilize the active sites induced by nitrogen, a conductive backbone (CNT) has been adopted to eliminate the electron transport barrier of graphitic N in nitrogen-doped carbon. CNT@NC catalysts with a well-wrapped NC shell around a CNT core were prepared through a MnO₂ sacrificial-template method [87]. The CNT@NC showed better charge transfer properties compared to physically mixed NC + CNT and bulk NC, as evidenced by EIS. The increased conductivity of CNT@NC led to the enhanced ORR activity, demonstrating the feasibility of the conductive backbone construction method for more effective active site utilization.

Combining carbon-based catalysts with transition metal compound catalysts can complement each other’s strengths and weaknesses. This leads to enhanced intrinsic activity, density, and conductivity of the active sites. It also helps in reducing the formation of hydrogen peroxide, thereby improving the performance of cathodic porous electrodes [88–90]. The ORR activity of spinel can be significantly improved by changing its crystalline structure from the normal to the inverse [91]. In Fig. 21b, the inverse [FeCo]O₄ spinel exhibits the highest ORR activity among all spinel structures and exceeds that of the commercially available Pt/C by 42 mV in an alkaline medium. The dissimilarity effect of Fe and Co atoms at the octahedral sites modulates the activation energy and elongates O-O bonds compared to the normal spinel, resulting in enhanced intrinsic ORR activity on [FeCo]O₄. The combination of an ABO₃ catalyst with a NC catalyst eliminates the problem of mass transfer caused by insufficient active site density of carbon-based catalysts. This combination also promotes the decomposition of hydrogen peroxide intermediates generated by the ORR 2e⁻ mechanism on carbon-based catalysts. As a result, the active site density is increased, which further improves the catalytic activity of porous electrodes. In summary, porous electrodes assembled by the composite catalysts have presently achieved
the highest power density (1.1 W·cm⁻²) of H₂-air PEMFC and a superior performance of 360 mA·cm⁻²@800 mV, exceeding the DOE 2025 target of 300 mA·cm⁻²@800 mV.

4. Conclusions and outlooks

Platinum-based electrocatalysts are known for their high and stable catalytic activity for ORR. However, the primary obstacle in the large-scale development of fuel cells (FCs) is the high cost of Pt, which has to be reduced without losing or even improving the activity and stability of Pt-based electrocatalysts during FC operating conditions. Low-cost carbon-based electrocatalysts can be used in FCs in large amounts, there is still a need to enhance their intrinsic activity, increase the active site density, and improve their stability to increase their durability under FC operating conditions. Aiming at the key scientific and technical issues behind FCs, the Wei group have carried out a series of basic scientific research in an effort to improve the performance and durability of low-Pt and non-precious metal catalysts, and they have gained a deep understanding on the theoretical basis of electrocatalysis and catalyst regulation mechanisms. Accordingly, the mechanism and regulation strategy affecting the intrinsic performance of catalysts, together with the activity attenuation mechanism and stability enhancement mechanism of oxygen reduction catalysts, have been clearly detected. In addition, they have put forward the important idea of reasonably preparing efficient gas porous electrodes and have successfully prepared a series of highly active and highly stable fuel cell cathode catalysts.

Developing new catalyst layers for ORR is closely linked to the creations of novel Pt-Based and carbon-based catalyst systems that have improved intrinsic catalytic activity and achieved better three-phase boundaries in MEA. Recent advances in catalyst exploration have led to some exciting developments in the understanding of the nature of catalysis, which allows for a more rational tuning of catalytic properties through a controlled synthesis. By manipulating the surface chemisorption properties, and altering the microscopic morphology and composition, highly active and stable Pt-based and carbon-based catalysts have been prepared. Loading these high-activity catalysts at the connections of electron, proton, gas, and water mass transport channels, and modulating the three-phase microenvironment can ensure the coupling of the reaction and mass transfer, prevent water flooding, and enhance the intrinsic activity and stability of catalysts. This can ensure the operational efficiency and stability of practical FCs. Although significant progress has been made in developing catalysts and interfacial structures for FCs, there are still major challenges to be overcome in clean energy technologies. To improve the performance of ORR catalysts, it is important to focus on their intrinsic features such as shape, composition, and structure, as well as their interfacial/surface engineering. Additionally, understanding the arrangement of these catalysts, including the catalysts/ionomer interfacial structure and electrode/electrolyte/gas interface within a real cell, is crucial for a deeper understanding of the relationship between catalytic performance and catalyst structure.

In practical fuel cells, the cost, performance, and lifetime of the MEA are closely related to the nature of the catalyst. For Pt-based catalysts, challenges remain in further improving the intrinsic catalytic activity of the catalyst and optimizing the structure of the cathode catalyst layer. It needs to be recognized that carbon support is important for the performance of catalyst activity, even though the carbon support structure is difficult to be tuned due to its severely inhomogeneous properties. Further tuning of carbon support in terms of corrosion resistance, porosity, optimization of the Pt distribution position, as well as the use of functional group modification strategies are required to unlock the Pt catalyst performance further and improve stability. In practical catalytic layers, the importance of mass transport on electrode performance needs to be recognized. Structural strategies to design efficient mass transfer channels are necessary for electrode effectiveness, cost, and stability. The ionomer in the electrode is an important carrier for proton transport, but how to adjust its position, interactions, and dispersion to minimize the resistance to oxygen transport and inhibition of catalyst activity remains a focus of future research. In addition, machine learning methods provide opportunities and directions for finding next-generation catalysts as well as catalyst layers. For carbon-based electrocatalysts, there are still numerous challenges pertaining to understanding the catalytic mechanism, regulating active sites, and developing highly efficient catalysts for practical applications in FCs. The active sites of carbon-based catalysts depend on the density of defect sites and the doped atoms, resulting in a large specific surface area needed and low active site density. In the catalytic layer, the number of active sites cannot be increased by increasing the amount of catalyst used, as this would result in a significantly elongated reactants and product mass transfer path. Therefore, the thickness of the
carbon-based catalyst layer should be minimized as much as possible while providing sufficient activity. Furthermore, in addition to exploring methods to increase the stability of the catalyst itself, other methods, such as the addition of free radical quenching or trapping reagents, should be further developed.

Conflict of interest

The authors decline no competing interest.

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB1506002, 2019YFB1504503, 2016YFB0101202); National 973 Program of China (No. 2012CB215501); National Natural Science Foundation of China (No. 52021004, 22022502(2021), 21822803(2019), 21576297(2013), 20936008(2010), 20676156(2007), 20376088(2004), 20176066(2002), 29976047(2000)).

References

[88] Naja T, Shah S SA, Ding W, Ling Z, Li L, Wei Z D. Electron penetration from metal core to metal species

系列综述（1/4）：重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展：燃料电池高性能氧还原催化剂

陈发东*, 谢卓洋#, 李孟婷, 陈四国, 丁 炜, 李 莉*, 李 静*, 魏子栋*
特种化学电源全国重点实验室（重庆大学）, 重庆大学化学化工学院400044

摘要

燃料电池的规模化应用，尚需解决燃料电池成本高、工况下寿命短，以及核心材料电催化依赖进口等瓶颈和卡脖子问题。重庆大学魏子栋研究团队针对燃料电池面临的科学问题与技术问题，致力于提升燃料电池空气电极性能及低成本化。本综述总结了该课题组过去十年来围绕低铂和非贵碳基材料，提升空气电极活性与耐久性的研究进展。首先阐述了Pt/C 阴极催化剂的失活机制；总结了通过调节铂颗粒的纳米结构、修饰催化剂荷价、开发新型载体材料和精确调控三相界面微环境等，降低铂用量、提升电极性能和利用率的调控机制和制备策略。在非贵碳基催化剂方面，阐述了掺杂碳基催化剂氧还原活性的调节机制和失活机理；总结了多级活性位碳基催化剂结构调控、稳定性增强策略与绿色宏量可控制备策略。综述最后对低成本、长寿命燃料电池催化层结构优化与设计原理论述，以及面临的挑战进行了总结和展望。

关键字：燃料电池；氧还原；铂基催化剂；碳基催化剂
系列综述（1/4）:重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展：燃料电池高性能氧还原催化剂

陈发东*, 谢卓洋*, 李孟婷, 陈四国, 丁炜, 李莉*, 李静*, 魏子栋*
特种化学电源全国重点实验室（重庆大学），重庆大学化学化工学院，重庆 400044

摘要

燃料电池的规模化应用，尚需解决燃料电池成本高、工况下寿命短，以及核心材料电催化剂依赖进口等瓶颈和卡脖子问题。重庆大学魏子栋研究团队针对燃料电池面临的关健科学与技术问题，致力于开展提升燃料电池空气电极性能及低成本化的基础科学问题研究。本综述总结了该课题组过去三十年来围绕低铂和非贵碳基材料，提升空气电极活性与耐久性的研究进展。在铂基催化剂方面，首先阐述了 Pt/C 阴极催化剂的失活机制；总结了通过调节铂颗粒的纳米结构、修饰催化助剂、开发新型载体材料和精确调控三相界面微环境等，降低铂用量、提升电极性能和利用率的调控机制和制备策略。在非贵碳基催化剂方面，阐述了掺杂碳基催化剂氧还原活性的调节机制和失活机理；总结了致密活性位碳基催化剂结构调控、稳定性增强策略与绿色宏量可控制备策略。综述最后对低成本、长寿命燃料电池催化层结构优化与设计原则，以及面临的挑战进行了总结和展望。

关键字：燃料电池；氧还原；铂基催化剂；碳基催化剂