Journal of Electrochemistry

Volume 30 | Issue 9

2024-09-28

Electronic Communication between Co and Ru Sites Decorated on
Nitrogen-doped Carbon Nanotubes Boost the Alkaline Hydrogen
Evolution Reaction

Meng-Ting Gao
Ying Wei
Xue-Meng Hu
Wenj-Jie Zhu
Qing-Qing Liu
Jin-Yuan Qiang

Wan-Wan Liu

See next page for additional authors

Recommended Citation

Meng-Ting Gao, Ying Wei, Xue-Meng Hu, Wenj-Jie Zhu, Qing-Qing Liu, Jin-Yuan Qiang, Wan-Wan Liu, Ying
Wang, Xu Li, Jian-Feng Huang, Yong-Qiang Feng. Electronic Communication between Co and Ru Sites
Decorated on Nitrogen-doped Carbon Nanotubes Boost the Alkaline Hydrogen Evolution Reaction[J].
Journal of Electrochemistry, 2024 , 30(9): 2403081.

DOI: 10.61558/2993-074X.3460

Available at: https://jelectrochem.xmu.edu.cn/journal/vol30/iss9/7

This Article is brought to you for free and open access by Journal of Electrochemistry. It has been accepted for
inclusion in Journal of Electrochemistry by an authorized editor of Journal of Electrochemistry.


https://jelectrochem.xmu.edu.cn/journal
https://jelectrochem.xmu.edu.cn/journal/vol30
https://jelectrochem.xmu.edu.cn/journal/vol30/iss9
https://jelectrochem.xmu.edu.cn/journal/vol30/iss9/7

Electronic Communication between Co and Ru Sites Decorated on Nitrogen-
doped Carbon Nanotubes Boost the Alkaline Hydrogen Evolution Reaction

Authors
Meng-Ting Gao, Ying Wei, Xue-Meng Hu, Wenj-Jie Zhu, Qing-Qing Liu, Jin-Yuan Qiang, Wan-Wan Liu, Ying
Wang, Xu Li, Jian-Feng Huang, and Yong-Qiang Feng

Corresponding Author(s)
Yong-Qiang Feng(fengyg@sust.edu.cn)

This article is available in Journal of Electrochemistry: https://jelectrochem.xmu.edu.cn/journal/vol30/iss9/7


https://jelectrochem.xmu.edu.cn/journal/vol30/iss9/7

ARTICLE

Electronic Communication Between Co and Ru Sites
Decorated on Nitrogen-Doped Carbon Nanotubes
Boosting the Alkaline Hydrogen Evolution Reaction

Meng-Ting Gao”, Ying Wei", Xue-Meng Hu, Wenj-Jie Zhu, Qing-Qing Liu, ]
Jin-Yuan Qiang, Wan-Wan Liu, Ying Wang, Xu Li, Jian-Feng Huang, Yong-Qiang Feng’

School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China

Abstract

Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction
(HER) remains a significant challenge. Here, a novel and efficient cobalt (Co), ruthenium (Ru) bimetallic electro-
catalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes (CoRu@N-CNTs), was prepared
by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis. Benefiting from the
electronic communication between Co and Ru sites, the as-obtained CoRu@N-CNTs catalyst exhibited superior
electrocatalytic HER activity. To deliver a current density of 10 mA-cm 2, it required an overpotential of merely 19 mV
along with a Tafel slope of 26.19 mV-dec ' in 1 mol-L ™" potassium hydroxide (KOH) solution, outperforming the
benchmark Pt/C catalyst. The present work would pave a new way towards the design and construction of an efficient
electrocatalyst for energy storage and conversion.

Keywords: CoRu alloy; Electrocatalyst; Water splitting; Hydrogen evolution reaction; Carbon nanotubes

1. Introduction Ruthenium (Ru), the most inexpensive noble
metal, has emerged as the preferred substitute for
Pt due to its medium-strength bond with hydrogen
(about 65 kcal-mol ') and its cost being only one-
third of Pt. The inherent activity of Ru for alkaline
HER is, however, greatly diminished by its
restricted capacity to adsorb and dissociate H,O
[14—17]. There are two primary factors that
contribute to the enhancement of catalytic activity
for Ru: (1) Increasing the number of attainable
active sites, which can be achieved by enlarging the
specific surface area of the catalyst materials
[18—22]. Generally, dispersing noble-metals
on supports with high surface areas is an attrac-
tive approach to increase the number of active

A viable approach to addressing both the direct
energy deficit and the greenhouse effect is elec-
trocatalytic water splitting, which is a significant
way to manufacture hydrogen (H;) on a big scale
and at a low cost [1—6]. In the overall water split-
ting process, the electrochemical hydrogen evolu-
tion reaction (HER) presents an alluring approach
to producing H, as one of the most promising
substitutes for traditional fossil fuels [7—9].
Currently, noble metal platinum (Pt) and/or Pt-
based catalysts are extensively utilized as electro-
catalysts for HER. Nevertheless, their exorbitant
expense and restricted accessibility have impeded : : ] o
their widespread practical application [10—13].  Sites and then improve the catalytic activity [23].

Therefore, a formidable task is to find effective Pt- (2) Improving the intrinsic activity, which is
free electrocatalysts for HER. commonly accomplished by complicated structure/
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composition hybridization and electronic property
tuning [13,24—26]. The chemical and electrical
characteristics of Ru can be readily changed by
heteroatom bond formation, improving its suit-
ability for electrocatalytic HER [27—29]. Recently, a
great deal of research has been done on diatomic
catalysts (DAC), which combine to increase
intrinsic activity by controlling the adsorption and
desorption capacities of various metals [30—33]. The
adsorption capability of the catalyst on active sites
can be greatly enhanced by the action of neigh-
boring metal atoms in DAC on the surrounding
electronic environment [34,35].

Herein, a novel and efficient cobalt (Co), Ru
bimetallic electrocatalyst composed of CoRu
nanoalloy decorated on the N-doped carbon
nanotubes (CoRu@N-CNTs), was derived from the
fullerenol (Cg(OH),) and melamine via hydro-
thermal treatment followed by pyrolysis. The
presence of Co catalyzed fullerenol and melamine
into N-CNTs, which could serve as the electron
collector. Benefiting from the strong electronic
communication between Co and Ru moiety, the as-
obtained CoRu@N-CNTs exhibited outperforming
electrocatalytic HER activity. To deliver a current
density of 10 mA-cm 2, it required an over-
potential of merely 19 mV along with a Tafel slope
of 26.19 mV-dec ' in 1 mol-L™! potassium hy-
droxide (KOH) solution. The present work would
provide a new clue for design and construction of
an efficient HER electrocatalyst.

2. Experimental section
2.1. Materials

Cobalt(Il) chloride (CoCl,), ethanol (EtOH,
CH;CH,0H) and isopropyl alcohol (IPA, C3HsO)
were purchased from Sinopharm Chemical

S @ 5 - Hydrothermal
e b '@ @» . . 150C/24h
,,!' . - 3 e '-,-:.
> . ,{
TR -
Melamine (o]

Reagent Co., Ltd. Ruthenium (III) chloride anhy-
drous (RuCl;), platinum on activated carbon (20 wt
% Pt/C), Nafion solution (5%) and potassium hy-
droxide (KOH, 1.0 mol-L 1) were purchased from
Sigma-Aldrich, while deionized (DI) water (re-
sistivity: >18.25 MQ-cm) was provided by an ul-
trapure water system (ULUPURE, UPDR-I-10 T).
All the chemicals are of analytical grade and were
used directly without further treatment.

2.2. Synthesis of CoORu@N-CNTs

The preparation procedure of CoRu@N-CNTs is
schematically illustrated in Scheme 1. Briefly, 1.2 g
of melamine, 150 mg of Cg(OH), 0.5 mmol of
CoCl, and 0.5 mmol of RuCl; were dissolved into
70 mL of deionized water. The mixture solution was
then transferred to a stainless-steel capped Teflon
autoclave. After hydrothermal treatment at 150 °C
for 24 h, the solid precursor of CoORu@N-CNTs was
obtained by extraction filtration. Then the obtained
powder was carbonized in a tube furnace under Ar/
H, (5%) flow for 3 h at 600 °C with a raising rate of
5 °C-min"'. After cooling naturally to the room
temperature, the CoORu@N-CNTs was successfully
prepared. For comparison, CoRu@NC, Co@N-
CNTs and Ru@NC were also prepared following a
similar procedure to CoORu@N-CNTs except in the
absences of Cg(OH),, RuCl; and CoCl,, respec-
tively. For detail, please see in the Supporting
Information.

2.3. Material characterization

X-ray diffraction (XRD) spectra were recorded on
a Rigaku D/max-2200PC diffractometer (Japan)
using Cu Ko radiation. Raman spectroscopic
measurements were conducted on a Renishaw-

CoRu@N-CNTs

N Co?* Ru®* CoRu alloy

Scheme 1. Schematic illustration for the synthesis process of CoORu@N-CNTs.
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invia microscopic confocal laser Raman spec-
trometer with 532 nm as the excitation laser. The
morphology was tested using a field-emission
scanning electron microscope (SEM, Hitachi S-
4800). The microstructure and elemental mapping
analysis were investigated by transmission elec-
tron microscope (TEM) exerted on a FEI Tecnai G2
F20 S-TWIN instrument. X-ray photoelectron
spectroscopic (XPS) data were recorded on the
Thermo Scientific ESCA Lab 250Xi with 200 W
monochromated Al Ka radiation.

2.4. Electrochemical measurement

The HER test was performed on the electro-
chemical workstation (CHI 660E, Chenhua,
Shanghai) using a three-electrode system in Ar-
saturated 1 mol-L™' KOH. The glassy carbon
electrode (GCE), graphite rod and Hg/HgO were
selected as the working, counter and reference
electrodes, respectively. All the potentials collected
in this work were calibrated against reversible
hydrogen electrode (RHE), using Pt foil as the
working electrode and Pt wire as the counter
electrode [36]. Therefore, the potentials with
respect to RHE can be converted by the equation of
E (V vs. RHE) = E (Hg/HgO) + 0.932. The elec-
trochemical impedance spectroscopic (EIS)

measurement was performed within the frequency
range from 100 kHz to 0.1 Hz at a potential corre-
sponding to the current density of 10 mA-cm >
[37]. The cyclic voltammogram (CV) curves were
tested in 1 mol-L " KOH in the non-Faradic region
with scanning rates of 2, 4, 6, 8, 10 and 12 mV-s L
Double layer capacity (Cq) could be obtained by
plotting the current difference of the CV curves.
Therefore, the electrochemical active surface area
(ECSA) can be determined by the equation of
ECSA = Caq/(Cs x S), where Cg is the specific
capacitance (herein 0.04 mF-cm ?), and S is the
surface geometric area of the electrode [38].

3. Results and discussion
3.1. Structural characterization of CoORu@N-CNTs

The synthesis route of CoORu@N-CNTs is sche-
matically illustrated in Scheme 1. During the hy-
drothermal process, the as-formed CoRu
nanoparticles were grafted on the surface of full-
erenol, which was subsequently cracked into
pieces of bowl-like carbon fragments and emerged
to N-doped CNTs in the presence of melamine in
the following annealing step [39]. From the SEM
and TEM images shown in Fig. 1a and b, it can be
found a plenty of CNTs decorated with metal

Fig. 1. Structure characterization of CORu@N-CNTs. (a) SEM, (b) TEM, (c), (d) and (e) HRTEM images and (f) the corresponding elemental
mapping images of Co, Ru, O, C and N for CoORu@N-CNTs. Scale bars in (a) 1 um, (b) 200 nm, (c) 10 nm, (d) 2 nm, (e) 2 nm and (f) 100 nm.
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nanoparticles. To further clarify the microstructure
of CoORu@N-CNTs, high-resolution TEM (HRTEM)
images were collected as displayed in Fig. 1c.
Clearly, the CoRu nanoparticles were distributed
both on the surface and inner wall of CNTs. The
crystal lattice fringe of 0.223 nm (Fig. 1d) and
0.207 nm (Fig. 1e) could be assigned to the (100)
and (111) facets of CoRu alloy, respectively [40].
While in the absence of Cg(OH),, the CoRu
nanoparticles were embedded on the planar N-
doped carbon matrix in CoRu@NC (Fig. S1). As for
Co@N-CNTs, the Co nanoparticles were mainly
enwrapped inside the CNTs (Fig. S2). Whereas in
the absence of Co precursor, Cgo(OH), and mel-
amine were difficult to be transformed to CNTs
[23], resulting in a N-dopped carbon substrate
decorated with Ru nanoparticles in Ru@NC
(Fig. S3). Therefore, it was Co that catalytically
promote the Cgo(OH), together with melamine to
generate N-doped CNTs in CoORu@N-CNTs. In this
case, Co nanoparticles were in a large proportion
encapsulated inside the CNTs while Ru was
decorated on the surface of CNTs, as demonstrated
by the energy dispersive X-ray spectroscopic (EDS)
mapping of CoRu@N-CNTs (Fig. 1f). As a result,
CNTs served as the electron collector that accel-
erated the charge communication between the
inner Co and outer Ru to boost the HER activity.
The crystal phase structure of CoRu@N-CNTs
was then investigated by XRD. As can be seen from
Fig. 2a, the diffraction peaks at 44.2°, 51.5° and 75.8°
for the Co@N-CNTs can be well indexed to the
(111), (200) and (220) facets of Co with a face-
centered cubic crystal structure (PDF #15-0806)
[40], respectively. And the peaks at 38.4°, 42.2° and
44.0° in the Ru@NC were attributed to the (100),
(002) and (101) crystal lattices of hexagonal Ru
(PDF#06-0663) [36], respectively. Fascinatingly,
only a broadened peak around 44.0° assigned to
the CoRu alloy (PDF#65-8975) with a slight upshift

a
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relative to Co@N-CNTs and Ru@NC was observed
for the CoRu@N-CNTs, probably owing to the
strong electronic communication between Co and
Ru within the catalyst. Similar situation was also
observed with the CoRu@NC. Besides, the broad
signal around 26° could be assigned to the
graphitic carbon. Raman spectroscopy was also
used to further explore the microstructure of
CoRu@N-CNTs. As displayed in Fig. 2b, the D
band (1345 cm ') and G band (1586 cm ™ }) can be
observed apparently [41], indicating the coexis-
tence of disordered and graphitic carbon in the
substrate. The values of integrated intensity ratio
(Ip/Ig) were determined to be 1.08, 0.85, 0.98, 0.87
for the CoRu@N-CNTs, CoRu@NC, Co@N-CNTs
and Ru@NC, respectively, which is indicative of a
higher degree of defects in the CoRu@N-CNTs.
XPS was employed to examine the chemical
states and surface element distribution of the
samples. In line with the EDS results, the survey
spectra demonstrated the existences of C, N, O,
Co, and Ru elements in the CoRu@N-CNTs
(Fig. S4 and Table S1). The lack of Cl element
excluded the contribution to electrochemical
process (Fig. S5). The high-resolution XPS spectra
of Co 2p is displayed in Fig. 3a. Two peaks, cor-
responding to Co 2p3/2 and Co 2p1/2 of metallic
Co (C0Y), respectively, at 778.67 eV and 793.79 eV
were observed in the CoORu@N-CNTs. While the
Co”" is responsible for the peaks at 781.21 eV (Co
2p3/2) and 796.73 eV (Co 2p1/2), and the set of
peaks at 802.6 eV and 785.55 eV are satellite peaks
[42,43]. Fig. 3b displayed the high-resolution
spectrum of Ru 3p. Two distinct peak groups were
visible for the CoRu@N-CNTs. The peaks located
at 461.87 eV and 484.27 eV could be assigned to
the 3p3/2 and 3p1/2 of Ru, corresponding to
metallic Ru (Ru®). While another set of peaks at
464.81 eV and 487.21 eV were responsible for
oxidized Ru species [44,45]. It is worth noting that

b M@N-CNTS

; ——CoRu@NC

L

o —Ru@NC

£ W%

c

- ——Co@N-CNTs
| N
1000 1250 1750 2000

Raman shift/(cm™)

Fig. 2. (a) XRD patterns and (b) Raman spectra of the CoORu@N-CNTs, CoRu@NC, Ru@NC and Co@N-CNTs.
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Fig. 3. High-resolution XPS spectra for (a) Co 2p of the CoRu@N-CNTs, CoRu@NC and Co@N-CNTs; (b) Ru 3p of the CoRu@N-CNTs,
CoRu@NC and Ru@NC; (c) N 1s of the CORu@N-CNTs, CoRu@NC, Ru@NC and Co@N-CNTs.

the Co 2p peaks in the CoRu@N-CNTs upshifted
to the high binding energy, meanwhile the Ru 3p
downshifted compared with those of the Co@N-
CNTs and Ru@NC counterparts, indicating a
charge transfer occurred between Co and Ru in
CoRu@N-CNTs, which was beneficial for the
electrochemical reactions. The high-resolution N
1s spectrum of the CoRu@N-CNTs could be
deconvoluted into five parts (Fig. 3c), including
the pyridinic N (398.56 eV), metallic N (399.3 eV),
pyrrolic N (400.00 eV), graphitic N (401.14 eV) and
oxidized N (402.5 eV) [38,46]. The presence of M-N
(M = Co, Ru) species suggested that N doped
in the carbon nanotubes could anchor metal
atoms, favoring the formation of diatomic sites.
Notably, the pyridinic N can serve as active sites
to promote the electrocatalytic HER process
[47,48].

3.2. Electrocatalytic performance for CoORu@N-CNTs

To evaluate the electrocatalytic performance of
CoRu@N-CNTs, HER measurements were con-
ducted in Ar-saturated 1 mol-L™' KOH with a
typical three-electrode system. For comparison, the
CoRu@NC, Co@N-CNTs, Ru@NC and commercial
Pt/C were selected as references. To be accurate,
the reference electrode was calibrated against RHE
in Hy-saturated 1 mol-L™' KOH media before all
the tests (Fig. S6). Firstly, the HER activity was
assessed using linear sweep voltammetry (LSV)
with 85% iR-corrections. As shown in Fig. 4a,
the CoRu@N-CNTs exhibited an outstanding elec-
trocatalytic activity among all the samples. To
achieve a current density of 10 mA-cm ?, the
CoRu@N-CNTs merely required an overpotential
(mo) of 19 mV, much superior to CoRu@NC

(45 mV), Ru@NC (39 mV), Co@N-CNTs (219 mV)
and even the commercial benchmark 20% Pt/C
(55 mV). The HER kinetics was then assessed
by Tafel plots shown in Fig. 4b. Particularly,
the CoRu@N-CNTs displayed a Tafel slope
of 2619 mV-dec !, much smaller than those
of the CoRu@NC (65.84 mV-dec '), Ru@NC
(62.41 mV-dec "), CO@N-CNTs (174.08 mV-dec ),
and the commercial benchmark 20% Pt/C
(9416 mV-dec ™}, indicating a favorable electro-
chemical reaction kinetics of CoRu@N-CNTs
[40,46]. The small Tafel slope of CoRu@N-CNTs
suggested that the rate-limiting step is the recom-
bination of chemical adsorbed hydrogen and the
HER over the catalysts following the Volmer-Tafel
mechanism [49,50]. The histograms depicted in
Fig. 4c demonstrate the superior catalytic activity of
CoRu@N-CNTs and its faster reaction kinetics for
the HER. In addition, the charge transfer kinetics of
CoRu@N-CNTs, CoRu@NC, Ru@NC, Co@N-CNTs
and the commercial benchmark 20% Pt/C were
investigated by EIS measurement (Fig. 4d). The
charge transfer resistance (R ;) obtained from the
semicircle in the low-frequency region of the
Nyquist plot is related to the electrocatalytic ki-
netics at the interface between the electrocatalyst
and electrolyte, and a smaller value corresponds to
a faster electron transfer. Compared to the
CoRu@NC (R = 1251 Q), Co@N-CNTs
(Rt = 2822 Q), Ru@NC (R, = 11.15) and Pt/C
(Rt = 25.18), the CoRu@N-CNTs possessed the
smallest R, value of 7.24 Q, indicative of the fastest
reaction rate. To unravel the intrinsic activity of
CoRu@N-CNTs, the Cg4 values were obtained by
scanning CV curves in the non-Faradic region
(Fig. S7), which is positively proportional to ECSA
[21,27]. As shown in Fig. 4e, the CoRu@N-CNTs
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Fig. 4. Electrochemical HER performance in 1.0 mol-L ™" KOH. (a) LSV curves, (b) Tafel plots, (c) histograms of overpotential and Tafel slope, (d)
Nyquist plots and (e) current density difference plots against scan rate of the CoRu@N-CNTs, CoRu@NC, Ru@NC, Co@N-CNTs and the
commercial benchmark 20% Pt/C. (f) Long-term chronoamperometric test of the CoRu@N-CNTs, the inset showing the LSV curves of the
CoRu@N-CNTs before (solid) and after (dashed) 2000 CV cycles. (g) Performance comparison of the CoORu@N-CNTs with the recently-reported

Co/Ru-based HER electrocatalysts in 1.0 mol-L~* KOH.

delivered a significantly larger Cg value
(1039 mF-cm ?) than those of CoRu@NC
(49.8 mF-cm ), Ru@NC (94.2 mF-cm?), Co@N-
CNTs (75.1 mF-cm ?) and Pt/C (10.2 mF-cm ).
Moreover, the ECSA-normalized LSV further
confirmed the excellent intrinsic activity of
CoRu@N-CNTs (Fig. S8). To further evaluate the
long-term stability of the CoRu@N-CNTs, the
chronopotentiograms were also measured as shown
in Fig. 4f. It can be seen that the current density
remained almost unchanged after 50 h at the current
density of 15 mA-cm ™2 In addition, the LSV curves
after continuously scanning by CV for 2000 cycles
displayed negligible decay (the inset of Fig. 4f). Be-
sides, the HER performance of CoRu@N-CNTs
surpassed most of the recently reported Co/Ru-
based HER electrocatalysts (Fig. 4g and Table S2).

4. Conclusions

In this work, a Co and Ru bimetallic electro-
catalyst consisting of CoRu nanoalloy uniformly
distributed on N-CNTs (CoRu@N-CNTs) was

successfull 3y prepared through hydrothermal reac-
tion of Ru’", C¢(OH), and melamine in the pres-
ence of Co”. The as-obtained CoRu@N-CNTs
exhibited superior electrocatalytic HER activity in
an alkaline condition, i.e., it only needed an over-
potential 19 mV to reach a current density of
10 mA-cm 2, with a Tafel slope of 26.19 mV-dec ™!
in 1 mol-L™' KOH, and good long-term durability.
The enhanced electrocatalytic HER performance of
CoRu@N-CNTs could be attributed to the following
aspects: (1) The electronic communication between
Ru and Co sites induced a synergistically electro-
catalytic effect, and thus improving the charge dis-
tribution of CoRu@N-CNTs, which in turn
facilitates the electrocatalytic HER process; (2) The
N-CNTs not only served as the electron collector,
accelerating the charge transfer between the cata-
lyst and electrolyte, but also provided a tubular
channel, which is beneficial to the mass and charge
transportations; (3) The synergistic electronic metal-
support interaction (EMSI) between the pyridinic N
and CoRu bimetallic sites that improved the elec-
tronic structure of CoRu@N-CNTs, thus boosting
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the electrocatalyst HER performance. This work
provides a new idea for the design and construction
of novel and efficient electrocatalysts in the field of
energy storage and conversion.
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