Asymmetric Electrode-Electrolyte Interfaces for High-Performance Rechargeable Lithium-Sulfur Batteries

Jia Chou, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Ya-Hui Wang, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Wen-Peng Wang, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
Sen Xin, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Yu-Guo Guo, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Abstract

With a high cell-level specific energy and a low cost, lithium-sulfur battery has been intensively studied as one of the most promising candidates for competing the next-generation energy storage campaign. Currently, the practical use of Li-S battery is hindered by rapidly declined storage performance during battery operation, as is due to irreversible loss of electroactive sulfide species at the cathode, dendrite formation at the anode and parasitic reactions at the electrode-electrolyte interface due to unfavorable cathode-anode crosstalk. In this Perspective, we proposed to stabilize the Li-S electrochemistry, and improve the storage performance of battery by designing asymmetric electrode-electrolyte interfaces that helps to simultaneously address the differentiated issues at both electrodes and facilitate charge transfer in the electrode/electrolyte and across the interfaces. The strategies we discuss could shed lights on reasonable design of battery interfaces towards realization of high-performance Li-S batteries.