•  
  •  
 

Corresponding Author

Lipkowski Jacek(jlipkows@uoguelph.ca)

Abstract

In situ Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to study the structure of a DMPC + cholesterol + GM1 floating bilayer lipid membrane (fBLM) at a Au(111) surface. 1-thio-beta-D-glucose (beta-Tg) was self-assembled onto the Au electrode to increase the overall hydrophilicity of the surface. The fBLM was deposited on the beta-Tg self-assembled monolayer (SAM) using a combination of Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) techniques. The carbohydrate headgroups of the GM1 molecules were physically adsorbed to the beta-Tg SAM forming a water rich cushion between the fBLM and the modified gold substrate. The PM-IRRAS spectra indicate that the DMPC molecules within the fBLM are more hydrated than previous studies involving supported bilayer lipid membranes (sBLM) where the membrane is directly adsorbed onto the surface. The tilt angle of the DMPC acyl chains in the fBLM is smaller than that of the sBLM composed of similar components. The results from this work confirmed that the fBLM is stable over a wide range of electrode potentials and that a water rich region is present between the bilayer and gold electrode surface. The addition of this water region more closely mimics the natural environment of a biological membrane making the fBLM a desirable candidate for future in situ studies involving transmembrane proteins.

Graphical Abstract

Keywords

PM-IRRAS, floating bilayer lipid membrane, Au(111) electrode, water rich region

Publication Date

2012-10-28

Online Available Date

2012-10-24

Revised Date

2012-10-23

Received Date

2012-08-25

References

1. Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes[J]. Science, 1972, 175(4023): 720-731.
2. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell[M], 5th Edition, Garland Science: New York, 2007, pp 617-650.
3. Papahadjopoulos D, Watkins J C, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals[J]. Biochim. Biophys. Acta, 1967, 135(4): 624-638.
4. Hauser H, Phillips M C, Stubbs M. Ion permeability of phospholipid bilayers[J]. Nature, 1972, 239: 342-344.
5. Nagle J F, Tristram-Nagle S. Structure of lipid bilayers[J]. Biochim. Biophys. Acta, 2000, 1469(3): 159-195.
6. Sackmann E. Supported membranes: scientific and practical applications[J]. Science, 1996, 271(5245): 43-48.
7. Castellana E T, Cremer P S. Solid supported lipid bilayers: from biophysical studies to sensor design[J], Surf. Sci. Rep., 2006, 61(10): 429-444.
8. Mendelsohn R, Mao G, Flach C R. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films[J]. Biochim. Biophys. Acta, 2010, 1798(4): 788-800.
9. Lee C S, Bain C D. Raman spectra of planar supported lipid bilayers[J]. Biochim.Biophys. Acta, 2005, 1711(1): 59-71.
10. Lirtsman V, Ziblat R, Golosovsky M, et al. Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth[J]. J. Appl. Phys., 2005, 98(9): 093506.
11. Dabkowska A P, Fragneto G, Hughes A V, et al. Specular Neutron reflectivity studies of the interaction of cytochrome c with supported phosphatidylcholine bilayers doped with phosphotidylserine[J]. Langmuir, 2009, 25(7): 4203-4210.
12. Nomura K, Inaba T, Morigaki K, et al. Interaction of lipopolysaccharide and phospholipid in mixed membranes: solid-state 31P-NMR spectroscopic and microscopic investigations[J]. Biophys. J., 2008, 95(3): 1226-1238.
13. Miller C E, Majewski J, Watkins E B, et al. Probing the local order of single phospholipid membranes using grazing incidence x-ray diffraction[J]. Phys. Rev. Lett., 2008, 100(5): 058103.
14. Tamm L K, McConnell H M. Supported phospholipid bilayers[J]. Biophys. J., 1985, 47(1): 105-113.
15. Tamm L K, Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers[J]. Biochemistry, 1988, 27(5): 1450-1457.
16. Groves J T, Ulman N, Cremer P S, et al. Substrate-membrane interactions: mechanisms for imposing patterns on a fluid bilayer membrane[J]. Langmuir, 1998, 14 (12): 3347-3350.
17. Kuhner M, Tampe R, Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates[J]. Biophys. J.,1994, 67(1): 217-226.
18. Guidelli R, Aloisi G, Becucci L, et al. Bioelectrochemistry at metal / water interfaces[J] J. Electroanal. Chem., 2001, 504(1): 1-28.
19. Lang H, Duschl C, Vogel H. A new class of thiolipids for the attachment of lipid bilayers on gold surfaces[J]. Langmuir, 1994, 10 (1): 197-210.
20. Rossi C, Chopineau J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies[J]. Eur Biophys. J., 2007, 36(8): 955-965.
21. Naumann R, Jonczyk A, Kopp R. et al. Incorporation of membrane proteins in solid-supported lipid layers[J]. Angew. Chem. Int. Ed., 1995, 34(18): 2056-2058.
22. Kycia A H, Wang J P, Merrill A R, et al. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer[J]. Langmuir, 2011, 27(17): 10867-10877.
23. Faguy P W, Richmond W N. Real-time polarization modulation infrared spectroscopy applied to the study of water and hydroxide ions at electrode surfaces[J]. J. Electroanal. Chem., 1996, 410(1): 109-113.
24. Barth A. Infrared spectroscopy of proteins[J]. Biochim. Biophys. Acta, 2007, 1767(9): 1073-1101.
25. Vie V, Legardinier S, Chieze L, et al. Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PM-IRRAS[J]. Biochim. Biophys. Acta, 2010, 1798(8): 1503-1511.
26. Brosseau C L, Leitch J, Bin X, et al. Electrochemical and PM-IRRAS a glycolipid-containing biomimetic membrane prepared using Langmuir- Blodgett/Langmuir-Schaefer deposition[J]. Langmuir, 2008, 24(22): 13058-13067.
27. Chen M, Li M, Brosseau C L, et al. AFM Studies of the Effect of Temperature and Electric Field on the Structure of a DMPC-Cholesterol Bilayer Supported on a Au(111) Electrode Surface[J]. Langmuir, 2009, 25(2): 1028-1037.
28. Ohta Y, Yokoyama S, Sakai H, et al. Membrane properties of mixed ganglioside GM1/phosphatidylcholine monolayers[J]. Colloids Surf. B, 2004, 33(3-4): 191-197.
29. Li N, Zamlynny V, Lipkowski J, et al. In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au (110) electrode surface[J]. J. Electroanal. Chem., 2002, 43(524-525): 43-53.
30. Green M J, Barner B J, Corn R M. Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers[J]. Rev. Sci. Instrum., 1991, 62(6): 1426-1430.
31. Buffeteau T, Desbat B, Turlet J M. Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: Experimental procedure and quantitative analysis[J]. Appl. Spectrosc., 1991, 45(3): 380-389.
32. Buffeteau T, Desbat B, Blaudez D, et al. Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra[J]. Appl. Spectrosc., 2000, 54(11): 1646-1650.
33. Zamlynny V, Lipkowski J. Diffraction and Spectroscopic Methods in Electrochemistry[M], Alkire R, Kolb D M, Lipkowski J, et al. Ed., Wiley-VCH: Weinheim, 2006, Vol. 9, pp. 315-376.
34. Zamlynny V. PhD thesis [D], University of Guelph, 2002.
35. Palik E. Ed. Handbook of Optical Constants of Solids II[M], Academic Press: San Diego, 1998.
36. Bertie J E, Ahmed M K, Eysel H H. Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of H2O and D2O at 22℃[J]. J. Phys. Chem., 1989, 93(6): 2210-2218.
37. Lipert R J, Lamp B D, Porter M D. Modern Techniques in Applied Molecular Spectroscopy[M], Mirabella F M. Ed., John Wiley & Sons, Inc.: New York, 1998, pp 83-126.
38. Leonard A, Escrive C, Laguerre M, et al. Location of cholesterol in DMPC membranes. A comparative study by neutron diffraction and molecular mechanics simulation[J]. Langmuir, 2001, 17(6): 2019-2030.
39. Li M, Chen M, Sheepwash E, et al. AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques[J]. Langmuir, 2008, 24(18): 10313-10323.
40. Kycia A H, Sek S, Su Z F, et al. Electrochemical and STM Studies of 1-thio-β-d-glucose self-assembled on a Au(111) electrode surface[J]. Langmuir, 2011, 27(21): 13383-13389.
41. Raguse B, Braach-Maksvytis V, Cornell B A, et al. Tethered lipid bilayer membranes: formation and ionic reservoir characterization[J]. Langmuir, 1998, 14(3): 648-659.
42. Burgess I, Szymanski G, L, M, et al. Electric field-driven transformations of a supported model biological membrane-an electrochemical and neutron reflectivity study[J]. Biophys. J., 2004, 86(3): 1763-1776.
43. Gennis R B. Biomembranes, Molecular Structure and Function[M], 1989, Springer-Verlag, New York.
44. Liang C Y, Lytton M R. Infrared spectra of crystalline and stereoregular polymers[J]. J. Polymer Sci., 1962, 61(172): S45-S48.
45. Lee D C, Durrani, A A, Chapman D. A difference infrared spectroscopic study of gramicidin A, alamethicin and bacteriorhodopsin in perdeuterated dimyristoylphosphatidylcholine[J]. Biochim. Biophys. Acta, 1984, 769(1): 49-65.
46. Brosseau C L, Bin X, Roscoe S G, et al. Electrochemical and PM-IRRAS characterization of DMPC + cholesterol bilayers prepared using Langmuir-Blodgett/Langmuir-Schaefer deposition[J] J. Electroanal. Chem., 2008, 621(2): 222-228.
47. Nabet A, Auger M, Pezolet M. Investigation of the temperature behavior of the bands due to the methylene stretching vibrations of phospholipid acyl chains by two-dimensional infrared correlation spectroscopy[J]. Appl. Spectrosc., 2000, 54(7): 948-955.
48. Allara D L, Swalen J D. An infrared reflection spectroscopy study of oriented cadmium arachidate monolayer films on evaporated silver[J]. J. Phys. Chem., 1982, 86(14): 2700-2704.
49. Allara D L, Nuzzo R G. Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface[J]. Langmuir, 1985, 1(1): 45-52.
50. Bin X, Zawisza I, Lipkowski J. Electrochemical and PM-IRRAS studies of the effect of the static electric field on the structure of the DMPC bilayer supported at a Au(111) electrode surface[J]. Langmuir, 2005, 21(1): 330-347.
51. Zawisza I, Bin X, Lipkowski J. Potential-Driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS[J]. Langmuir, 2007, 23(9): 5180-5194.
52. Umemura J, Kamata T, Takenaka T. Quantitative evaluation of molecular orientation in thin Langmuir-Blodgett films by FT-IR transmission and reflection-absorption spectroscopy[J]. J. Phys. Chem., 1990, 94(1): 62-67.
53. Hauser H, Pascher I, Pearson R H, et al. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine[J]. Biochim. Biophys. Acta, 1981, 650(1): 21-51.
54. Aussenac F, Laguerre M, Schmitter J M, et al. Detailed structure and dynamics of bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H NMR and molecular mechanics study[J]. Langmuir, 2003, 19(25): 10468-10479.
55. Lewis R N A H, McElhaney R N. Components of the carbonyl stretching band in the infrared spectra of hydrated 1, 2-diacylglycerolipid bilayers: a reevaluation[J]. Biophys. J., 1994, 67(6): 2367-2375.
56. Fringeli U P. The structure of lipids and proteins studied by attenuated total reflection (ATR) infrared spectroscopy. II. Oriented layers of a homologous series: phosphatidylethanolamine to phosphatidylcholine[J]. Naturforsch., 1977, 32(1-2): 20-45.
57. Fringeli U P, Gunthard H H. Molecular Biology, Biochemistry and Biophysics[M], Grell E., Ed., Springer Verlag: Berlin, 1981, pp 270-332.
58. Fringeli U P. A new crystalline phase of L-alpha-dipalmitoyl phosphatidylcholine monohydrate[J]. Biophys. J., 1981, 34(2): 173-1887.
59. Hubner W, Blume A. Interactions at the lipid–water interface[J]. Chem. Phys. Lipids, 1998, 96(1-2): 99-123.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.