•  
  •  
 

Corresponding Author

Xin-dong WANG

Abstract

Direct methanol fuel cell (DMFC) is considered to be a promising commercial energy conversion device for portable electronics due to its many advantages. In order to improve the performance of DMFC, many companies and research institutes have been launching the deep research and obtaining a lot of conspicuous achievements. In this paper, the electrocatalytic mechanism and porous electrode mass transfer process in membrane electrode assembly (MEA) are analyzed. In addition, combined with the preparation process of MEA, multilayer ordered structures and internal transfer process of the cell, recent progresses of MEA in DMFC are discussed.

Keywords

direct methanol fuel cell, membrane electrode assemble, electrocatalytic, mass transfer

Publication Date

2013-06-28

Online Available Date

2013-01-18

Revised Date

2013-01-11

Received Date

2012-10-23

References

[1] Liu G C(刘桂成), Zhang H(张浩), Wang Y T(王一拓), et al. Matching and optimization of working condition of liquid feed direct methanol fuel cell[J]. Battery Bimonthly(电池), 2012, 42(1): 7-10.

[2] Li J J, Ye F, Chen L, et al. A study on novel pulse preparation and electrocatalytic activities of Pt/C-Nafion electrodes for proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 186(2): 320-327.

[3] Liu G C, Xu J Y, Wang T T, et al. The performance and mechanism of multi-step activation of MEA for DMFC[J]. International Journal of Hydrogen Energy, 2010, 35 (22): 12341-12345.

[4] Fang Y, Wang T T, Miao R Y, et al. Modification of Nafion membranes with ternary composite materials for direct methanol fuel cells[J]. Electrochimica Acta, 2010, 55(7): 2404-2408.

[5] Matsui T, Fujiwara K, Okanishi T, et al. Electrochemical oxidation of CO over tin oxide supported platinum catalysts[J]. Journal of power sources, 2006, 155(2): 152-156.

[6] Waki K, Matsubara K, Ke K, et al. Self-organized Pt/SnO2 electrocatalysts on mutiwalled caborn nanotubes[J]. Electrochemistry Solid-State Letters, 2005, 10(8): A489-A491.

[7] Justin P, Rao G R. Enhanced activity of methanol electro-oxidation on Pt-V2O5/C catalysts[J]. Catalysis Today, 2009, 141(1/2): 138-143.

[8] Zhao T T(赵婷婷). Study on tin dioxide nanoparicles as co-catalysts of direct methanol fuel cell[D]. University of Science & Technology Beijing( 北京科技大学), 2011: 25-80.

[9] Shukla A K, Raman R K, Choudhury N A, et al. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry, 2004, 563(2): 181-190.

[10] Shukla A K, Neergat M, Bera P, et al. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry, 2001, 504(1): 111-119.

[11] Li J J(李晶晶). Study on electrodeposition of Pt based electrocatalysts for fuel cell[D]. University of Science & Technology Beijing(北京科技大学), 2008: 20-80.

[12] Wei Y S, Matar S, Shen L B, et al. A novel membrane for DMFC-Na2Ti3O7 Nanotubes/ Nafion® composite membrane: Performances studies [J]. International Journal of Hydrogen Energy, 2012, 37(2): 1857-1864.

[13] Shroti N, Barbora L, Verma A. Neodymium triflate modified nafion composite membrane for reduced alcohol permeability in direct alcohol fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14907-14913.

[14] Tang L(唐玲). Study on the nafion-based composite proton exchange membrane for DMFC[D]. University of Science & Technology Beijing ( 北京科技大学), 2010: 13-90.

[15] Lin H L, Wang S H, Chiu C K, et al. Preparation of Nafion/poly(vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells[J]. Journal of Membrane Science, 2010, 365(1/2): 114-122.

[16] Xiang Y, Yang M, Zhang J, et al. Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells[J]. Journal of Membrane Science, 2011, 368(1/2): 241-245.

[17] Wu J(吴珺). Study on the chitosan modified proton exchange membrane for DMFC[D]. University of Science & Technology Beijing(北京科技大学), 2011: 23-56.

[18] Xiong L, Manthiram A. High performance membraneelectrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2005, 50(16): 3200-3204.

[19] Wilson M S, Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 1992, 22(1): 1-7.

[20] Lin C S(林才顺). Study of direct methanol fuel cells for portable and mobile power system[D]. University of Science & Technology Beijing ( 北京科技大学), 2007: 94-117.

[21] Liu G C, Wang M, Wang Y T, et al. Anode catalyst layer with novel microstructure for a direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8659-8663.

[22] Zhang J, Yin G P, Wang Z B, et al. Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells[J]. Journal of power sources, 2007, 165(1): 73-81.

[23] Uchida M, Fukuoka Y, Sugawara Y, et al. Improved Preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1998, 145(11): 3708-3713.

[24] Wei Z B, Wang S L, Yi B L, et al. Influence of electrode structure on the performance of a direct methanol fuel cell[J]. Journal of Power Sources, 2002, 106(1/2): 364-369.

[25] Volfkovich Y M, Sosenkin V E, Bagotsky V S. Structural and wetting properties of fuel cell components[J]. Journal of Power Sources, 2010, 195(17): 5429-5441.

[26] Fischer A, Jindra J, Wendt H. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells[J]. Journal of Applied Electrochemistry, 1998, 28(3): 277-282.

[27] Prabhuram J, Krishnan N N, Choi B, et al. Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane[J]. International Journal of Hydrogen Energy, 2010, 35(13): 6924-6933.

[28] Matar S, Liu H. Effect of cathode catalyst layer thickness on methanol cross-over in a DMFC[J]. Electrochimica Acta, 2010, 56(1): 600-606.

[29] Wang T T, Lin C S, Ye F, et al. MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC[J]. Electrochemistry Communications, 2008, 10(9): 1261-1263.

[30] Nordlund J, Roessler A, Lindbergh G. The influence of electrode morphology on the performance of a DMFC anode[J]. Journal of Applied Electrochemistry, 2002, 32(3): 259-265.

[31] Shaffer C E, Wang C Y. High concentration methanol fuel cells: Design and theory[J]. Journal of Power Sources, 2010, 195(13): 4185-4195.

[32] Liang J S, Liu C, Chen L, et al. In situ visual investigation of CO2 bubbles clogging phenomena in mDMFC anode micro flow field[C]//Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, Zhuhai, China, 2006: 1374-1378.

[33] Wang G X, Sun G Q, Wang Q, et al. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11245-11253.

[34] Cao J Y, Chen M, Chen J, et al. Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4622-4629.

[35] Xu C, Faghri A. Water transport characteristics in a passive liquid-feed DMFC[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10): 1951-1966.

[36] Xiao B, Bahrami H, Faghri A. Analysis of heat and mass transport in a miniature passive and semi passive liquid-feed direct methanol fuel cell[J]. Journal of Power Sources, 2010, 195(8): 2248-2259.
[1] Liu G C(刘桂成), Zhang H(张浩), Wang Y T(王一拓), et al. Matching and optimization of working condition of liquid feed direct methanol fuel cell[J]. Battery Bimonthly(电池), 2012, 42(1): 7-10.

[2] Li J J, Ye F, Chen L, et al. A study on novel pulse preparation and electrocatalytic activities of Pt/C-Nafion electrodes for proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 186(2): 320-327.

[3] Liu G C, Xu J Y, Wang T T, et al. The performance and mechanism of multi-step activation of MEA for DMFC[J]. International Journal of Hydrogen Energy, 2010, 35 (22): 12341-12345.

[4] Fang Y, Wang T T, Miao R Y, et al. Modification of Nafion membranes with ternary composite materials for direct methanol fuel cells[J]. Electrochimica Acta, 2010, 55(7): 2404-2408.

[5] Matsui T, Fujiwara K, Okanishi T, et al. Electrochemical oxidation of CO over tin oxide supported platinum catalysts[J]. Journal of power sources, 2006, 155(2): 152-156.

[6] Waki K, Matsubara K, Ke K, et al. Self-organized Pt/SnO2 electrocatalysts on mutiwalled caborn nanotubes[J]. Electrochemistry Solid-State Letters, 2005, 10(8): A489-A491.

[7] Justin P, Rao G R. Enhanced activity of methanol electro-oxidation on Pt-V2O5/C catalysts[J]. Catalysis Today, 2009, 141(1/2): 138-143.

[8] Zhao T T(赵婷婷). Study on tin dioxide nanoparicles as co-catalysts of direct methanol fuel cell[D]. University of Science & Technology Beijing( 北京科技大学), 2011: 25-80.

[9] Shukla A K, Raman R K, Choudhury N A, et al. Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry, 2004, 563(2): 181-190.

[10] Shukla A K, Neergat M, Bera P, et al. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry, 2001, 504(1): 111-119.

[11] Li J J(李晶晶). Study on electrodeposition of Pt based electrocatalysts for fuel cell[D]. University of Science & Technology Beijing(北京科技大学), 2008: 20-80.

[12] Wei Y S, Matar S, Shen L B, et al. A novel membrane for DMFC-Na2Ti3O7 Nanotubes/ Nafion® composite membrane: Performances studies [J]. International Journal of Hydrogen Energy, 2012, 37(2): 1857-1864.

[13] Shroti N, Barbora L, Verma A. Neodymium triflate modified nafion composite membrane for reduced alcohol permeability in direct alcohol fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14907-14913.

[14] Tang L(唐玲). Study on the nafion-based composite proton exchange membrane for DMFC[D]. University of Science & Technology Beijing ( 北京科技大学), 2010: 13-90.

[15] Lin H L, Wang S H, Chiu C K, et al. Preparation of Nafion/poly(vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells[J]. Journal of Membrane Science, 2010, 365(1/2): 114-122.

[16] Xiang Y, Yang M, Zhang J, et al. Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells[J]. Journal of Membrane Science, 2011, 368(1/2): 241-245.

[17] Wu J(吴珺). Study on the chitosan modified proton exchange membrane for DMFC[D]. University of Science & Technology Beijing(北京科技大学), 2011: 23-56.

[18] Xiong L, Manthiram A. High performance membraneelectrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2005, 50(16): 3200-3204.

[19] Wilson M S, Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 1992, 22(1): 1-7.

[20] Lin C S(林才顺). Study of direct methanol fuel cells for portable and mobile power system[D]. University of Science & Technology Beijing ( 北京科技大学), 2007: 94-117.

[21] Liu G C, Wang M, Wang Y T, et al. Anode catalyst layer with novel microstructure for a direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8659-8663.

[22] Zhang J, Yin G P, Wang Z B, et al. Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells[J]. Journal of power sources, 2007, 165(1): 73-81.

[23] Uchida M, Fukuoka Y, Sugawara Y, et al. Improved Preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1998, 145(11): 3708-3713.

[24] Wei Z B, Wang S L, Yi B L, et al. Influence of electrode structure on the performance of a direct methanol fuel cell[J]. Journal of Power Sources, 2002, 106(1/2): 364-369.

[25] Volfkovich Y M, Sosenkin V E, Bagotsky V S. Structural and wetting properties of fuel cell components[J]. Journal of Power Sources, 2010, 195(17): 5429-5441.

[26] Fischer A, Jindra J, Wendt H. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells[J]. Journal of Applied Electrochemistry, 1998, 28(3): 277-282.

[27] Prabhuram J, Krishnan N N, Choi B, et al. Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane[J]. International Journal of Hydrogen Energy, 2010, 35(13): 6924-6933.

[28] Matar S, Liu H. Effect of cathode catalyst layer thickness on methanol cross-over in a DMFC[J]. Electrochimica Acta, 2010, 56(1): 600-606.

[29] Wang T T, Lin C S, Ye F, et al. MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC[J]. Electrochemistry Communications, 2008, 10(9): 1261-1263.

[30] Nordlund J, Roessler A, Lindbergh G. The influence of electrode morphology on the performance of a DMFC anode[J]. Journal of Applied Electrochemistry, 2002, 32(3): 259-265.

[31] Shaffer C E, Wang C Y. High concentration methanol fuel cells: Design and theory[J]. Journal of Power Sources, 2010, 195(13): 4185-4195.

[32] Liang J S, Liu C, Chen L, et al. In situ visual investigation of CO2 bubbles clogging phenomena in mDMFC anode micro flow field[C]//Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, Zhuhai, China, 2006: 1374-1378.

[33] Wang G X, Sun G Q, Wang Q, et al. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11245-11253.

[34] Cao J Y, Chen M, Chen J, et al. Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4622-4629.

[35] Xu C, Faghri A. Water transport characteristics in a passive liquid-feed DMFC[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10): 1951-1966.

[36] Xiao B, Bahrami H, Faghri A. Analysis of heat and mass transport in a miniature passive and semi passive liquid-feed direct methanol fuel cell[J]. Journal of Power Sources, 2010, 195(8): 2248-2259.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.