•  
  •  
 

Corresponding Author

Ming-kui Wang(mingkui.wang@mail.hust.edu.cn)

Abstract

Porphyrins and their metalloderivatives are a class of compounds exhibiting a wide variety of interesting and highly useful properties, such as chlorophyll. Porphyrins are particularly interesting in photoelectrochemical applications due to their structural similarity to chlorophylls in natural photosynthetic systems, as well as their strong and tunable absorption properties. Recently, various porphyrins have been extensively studied for their applications in solar cells, photocatalytic hydrogen production, optical information storage and others. This review will focus on the unique physical and chemical properties of D-π-A structured porphyrins, and their photovoltaic performances in dye-sensitized solar cells. A brief discussion in the future development of porphyrins is presented.

Graphical Abstract

Keywords

porphyrin, solar cell, water splitting, photochemistry

Publication Date

2016-08-29

Online Available Date

2016-03-17

Revised Date

2016-03-09

Received Date

2016-02-23

References

[1] Li L L, Diau E W G. Porphyrin-sensitized solar cells[J]. Chemical Society Reviews, 2013, 42(1): 291-304.[2] Yang W J (阳卫军) , Guo C C (郭灿城), Mao Y L (毛彦利) , et al. Catalysis and Substituent Effects of Monom anganese porphyrins and Monoiron porphyrins for Pinene Oxidation with Air [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2005, 26(9): 1690-1694.[3] Wang B, Zuo X, Wu Y Q, et al. Preparation, characterization and gas sensing properties of lead tetra-(tert-butyl)-5, 10, 15, 20-tetraazaporphyrin spin-coating films[J]. Sensors and Actuators B: Chemical, 2007, 125(1): 268-273.[4] Li F Y (李富友), Yu J H (余军华), Zhang B W (张宝文), et al. Study on Photocurrent Generation of Three Porphyrin Monolayer Modified Electrodes with Various Side Chain Lengths [J]. Acta Chimica Sinica(化学学报), 2006, 64(4): 301-305.[5] Gregg B A, Fox M A, Bard A J. Porphyrin octaesters: new discotic liquid crystals[J]. Journal of the Chemical Society, Chemical Communications, 1987 (15): 1134-1135.[6] Jin Z P (金志平), Peng X J (彭孝军), Sun L C (孙立成). Application of porphyrin supramolecular compounds in molecular devices [J]. Chemistry(化学通报), 2003, 66(7): 464-473.[7] Lu J, Xu X, Li Z, et al. Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells[J]. Chem Asian J, 2013, 8(956): 962.[8] Tétreault N, Gr?tzel M. Novel nanostructures for next generation dye-sensitized solar cells[J]. Energy & Environmental Science, 2012, 5(9): 8506-8516.[9] Listorti A, O’Regan B, Durrant J R. Electron transfer dynamics in dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23(15): 3381-3399.[10] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993, 115(14): 6382-6390.[11] Mishra A, Fischer M K R, B?uerle P. Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules[J]. Angewandte Chemie International Edition, 2009, 48(14): 2474-2499. [12] Gon?alves L M, de Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells: A safe bet for the future[J]. Energy & Environmental Science, 2008, 1(6): 655-667. [13] Parisi M L, Maranghi S, Basosi R. The evolution of the dye sensitized solar cells from Gr?tzel prototype to up-scaled solar applications: A life cycle assessment approach[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 124-138.[14] Li Q, Jiang Z, Qin J, et al. Heterocyclic-Functionalized Organic Dyes for Dye-Sensitized Solar Cells: Tuning Solar Cell Performance by Structural Modification[J]. Australian Journal of Chemistry, 2012, 65(9): 1203-1212.[15] Kay A, Graetzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins[J]. The Journal of Physical Chemistry, 1993, 97(23): 6272-6277.[16] Wang Q, Campbell W M, Bonfantani E E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15397-15409.[17] Campbell W M, Jolley K W, Wagner P, et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2007, 111(32): 11760-11762.[18] Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature chemistry, 2014, 6(3): 242-247. [19] Lu J, Liu S, Li H, et al. Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer[J]. Journal of Materials Chemistry A, 2014, 2(41): 17495-17501.[20] Yella A, Mai C L, Zakeeruddin S M, et al. Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The Role of Benzene Spacers[J]. Angewandte Chemie, 2014, 126(11): 3017-3021.[21] Lu J, Zhang B, Yuan H, et al. D? π–A Porphyrin Sensitizers with π-Extended Conjugation for Mesoscopic Solar Cells[J]. The Journal of Physical Chemistry C, 2014, 118(27): 14739-14748.[22] Wang C L, Hu J Y, Wu C H, et al. Highly efficient porphyrin-sensitized solar cells with enhanced light harvesting ability beyond 800 nm and efficiency exceeding 10%[J]. Energy & Environmental Science, 2014, 7(4): 1392-1396. [23] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency[J]. science, 2011, 334(6056): 629-634. [24] Cao K, Lu J, Li H, et al. Efficient dye-sensitized solar cells using mesoporous submicrometer TiO 2 beads[J]. RSC Advances, 2015, 5(77): 62630-62637.[25] Lu J, Zhang B, Liu S, et al. A cyclopenta [1, 2-b: 5, 4-b′] dithiophene–porphyrin conjugate for mesoscopic solar cells: a D-π-D-A approach[J]. Physical Chemistry Chemical Physics, 2014, 16(45): 24755-24762.[26] Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells[J]. Accounts of Chemical Research, 2009, 42(11): 1809-1818.[27] Urbani M, Gra?tzel M, Nazeeruddin M K, et al. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells[J]. Chemical reviews, 2014, 114(24): 12330-12396.[28] Lu J, Xu X, Cao K, et al. D–π–A structured porphyrins for efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(34): 10008-10015.[29] Liu Y, Xiang N, Feng X, et al. Thiophene-linked porphyrin derivatives for dye-sensitized solar cells[J]. Chemical Communications, 2009 (18): 2499-2501.[30] Guo M, He R, Dai Y, et al. Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of π-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9166-9179. [31] Lin C Y, Wang Y C, Hsu S J, et al. Preparation and spectral, electrochemical, and photovoltaic properties of acene-modified zinc porphyrins[J]. The Journal of Physical Chemistry C, 2009, 114(1): 687-693.[32] Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells[J]. Nature Photonics, 2012, 6(3): 162-169.[33] Hao S, Wu J, Fan L, et al. The influence of acid treatment of TiO 2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76(6): 745-750. [34] López‐Duarte I, Wang M, Humphry‐Baker R, et al. Molecular engineering of zinc phthalocyanines with phosphinic acid anchoring groups[J]. Angewandte Chemie, 2012, 124(8): 1931-1934. [35] Lee C Y, Hupp J T. Dye sensitized solar cells: TiO2 sensitization with a BODIPY-porphyrin antenna system[J]. Langmuir, 2009, 26(5): 3760-3765.[36] YeonáLee C, CheonáJeong N. Porphyrin sensitized solar cells: TiO 2 sensitization with a π-extended porphyrin possessing two anchoring groups[J]. Chemical Communications, 2010, 46(33): 6090-6092.[37] Liu J, Zhang J, Xu M, et al. Mesoscopic titania solar cells with the tris (1, 10-phenanthroline) cobalt redox shuttle: uniped versus biped organic dyes[J]. Energy & Environmental Science, 2011, 4(8): 3021-3029. [38] Lu J, Liu S, Shen Y, et al. Alkyl-thiophene Functionalized D-π-A Porphyrins for Mesoscopic Solar Cells[J]. Electrochimica Acta, 2015.[39] Wang C L, Lan C M, Hong S H, et al. Enveloping porphyrins for efficient dye-sensitized solar cells[J]. Energy & Environmental Science, 2012, 5(5): 6933-6940.[40] Panda M K, Ladomenou K, Coutsolelos A G. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell[J]. Coordination Chemistry Reviews, 2012, 256(21): 2601-2627.[41] Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water[J]. International journal of hydrogen energy, 2001, 26(7): 669-674.[42] Graetzel M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light[J]. Accounts of Chemical Research, 1981, 14(12): 376-384.[43] Kalyanasundaram K, Gr?tzel M. Light induced redox reactions of water soluble porphyrins, sensitization of hydrogen generation from water by zincporphyrin derivatives[J]. Helvetica Chimica Acta, 1980, 63(2): 478-485.[44] Ngweniform P, Kusumoto Y, Ikeda M, et al. Conformation-dependent hydrogen evolution with cobalt (II) tetraphenylporphyrin solubilized into poly (l-glutamate)–decylammonium ion complex[J]. Chemical physics letters, 2006, 428(4): 436-439.[45] Kim W, Tachikawa T, Majima T, et al. Tin-porphyrin sensitized TiO 2 for the production of H 2 under visible light[J]. Energy & Environmental Science, 2010, 3(11): 1789-1795.[46] Jacques P A, Artero V, Pécaut J, et al. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20627-20632.[47] Zhang P, Wang M, Gloaguen F, et al. Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes[J]. Chemical Communications, 2013, 49(82): 9455-9457.[48] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: the new two‐dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.[49] Huang D, Lu J, Li S, et al. Fabrication of Cobalt Porphyrin Electrochemically Reduced Graphene Oxide Hybrid Films for Electrocatalytic Hydrogen Evolution in Aqueous Solution[J]. Langmuir, 2014, 30(23): 6990-6998.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.