•  
  •  
 

Corresponding Author

Shi-jun LIAO(chsjliao@scut.edu.cn)

Abstract

The self/non-humidification membrane electrode assembly(SH-MEA)is an important pathway towards the self- humidification fuel cell and plays a crucial role for the large scale commercialization of low temperature proton exchange membrane fuel cell (LT-PEMFC), because it not only can reduce the volume and complexity of fuel cell system, resulting in the decrease of the cost, but also can improve the output power density of the fuel cell system. Currently, the researches on the self-humidifying MEA of LT-PEMFC mainly focus on three aspects: the preparation of self-humidification proton exchange membrane, the construction of self-humidification catalyst layer, and the construction of composite self-humidifying layers. In this paper, the research progress and development trend in self-humidifying MEA for low temperature proton exchange membrane fuel cell in recent years are reviewed.

Graphical Abstract

Keywords

low temperature proton exchange membrane fuel cell, membrane electrode assembly, self-humidifying, proton exchange membrane;catalyst layer, composite self-humidifying layers

Publication Date

2018-12-28

Online Available Date

2018-12-17

Revised Date

2018-12-13

Received Date

2018-11-19

References

[1] Gao Y Y(高燕燕), Hou M (侯明), Jiang Y Y(姜永燚), et al. Chemical stability investigations of catalyst layer in PEMFC[J]. Journal of Electrochemistry (电化学), 2018, 24
(3): 227-234.
[2] Akella S H, D E, R S S, et al. Studies on structure property relations of efficient decal substrates for industrial grade membrane electrode assembly development in PEMFC[J]. Scientific Reports, 2018, 8(1): 12082.
[3] Zeng Y C, Guo X Q, Wang Z Q, et al. Highly stable nanostructured membrane electrode assembly based on Pt/Nb2O5 nanobelts with reduced platinum loading for proton exchange membrane fuel cells[J]. 2017, Nanoscale, 9(20): 6910-6919.
[4] Jeong H Y, Yang D S, Han J H, et al. Novel interfacial bonding layers with controlled gradient composition profile for hydrocarbon-based membrane electrode assemblies[J]. Journal of Power Sources, 2018, 398: 1-8.
[5] Rosli R E, Sulong A B, Daud W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314.
[6] Jeong G, Kim M, Han J, et al. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2016, 323: 142-146.
[7] Luo X(罗鑫), Chen S Z(陈士忠), Wu Y H(吴玉厚), et al. Numerical simulation of output performance in PEMFC [J]. Journal of Electrochemistry (电化学), 2018, 24(2): 182-188.
[8] Sassin M B, Garsany Y, Gould B D, et al. Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells[J]. Analytical Chemistry, 2017, 89(1): 511-518.
[9] Chen G Y, Wang C, Lei Y J, et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29960-29965.
[10] Zhang B, Cao Y, Li Z, et al. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications[J]. Electrochimica Acta, 2017, 240: 186-194.
[11] Quartarone E, Angioni S, Mustarelli P. polymer and composite membranes for proton-conducting, high-temperature fuel cells: A critical review[J]. Materials, 2017, 10(7): 687.
[12] Park J S, Shin M S, Kim C S. Proton exchange membranes for fuel cell operation at low relative humidity and intermediate temperature: An updated review[J]. Current Opinion in Electrochemistry, 2017, 5(1): 43-55.
[13] Schaffer J V, Lupatini K N, Machado B, et al. Parameters effect on proton conductivity to obtain chitosan membranes for use as electrolytes in PEMFC[J]. International Journal of Energy Research, 2018, 42(3): 1381-1385.
[14] Koh B S, Yoo J H, Jang E K, et al. Fabrication of highly effective self-humidifying membrane electrode assembly for proton exchange membrane fuel cells via electrostatic spray deposition[J]. Electrochemistry Communications, 2018, 93: 760-80.
[15] Martin S, Garcia-Ybarra P L, Castillo J L. Long-term operation of a proton exchange membrane fuel cell without external humidification[J]. Applied Energy, 2017, 205: 1012-1020.
[16] Hou S Y, Liao S J, Xiong Z, et al. Improvement of proton exchange membrane fuel cell performance in low-humidity conditions by adding hygroscopic agarose powder to the catalyst layer[J]. Journal of Power Sources, 2015, 273: 168-173.
[17] Lee D C, Yang H N, Park S H, et al. Self-humidifying Pt-graphene/SiO2 composite membrane for polymer electrolyte membrane fuel cell[J]. Journal of Membrane Science, 2015, 474: 254-262.
[18] Yang H N, Cho S H, Kim W J. The preparation of self-humidifying Nafion/various Pt-containing SiO2 composite membranes and their application in PEMFC[J]. Journal of Membrane Science, 2012, 421: 318-326.
[19] Lo A Y, Huang C Y, Sung L Y, et al. Low humidifying proton exchange membrane fuel cells with enhanced power and Pt-C-h-SiO2 anodes prepared by electrophoretic deposition[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1303-1310.
[20] Breitwieser M, Moroni R, Schock J, et al. Water management in novel direct membrane deposition fuel cells under low humidification[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11412-11417.
[21] Oh K H, Bae I, Lee H, et al. Silica-embedded hydrogel nanofiller for enhancing low humidity proton conduction of a hydrocarbon-based polymer electrolyte membrane[J]. Journal of Membrane Science, 2017, 543: 106-113.
[22] Park C H, Lee S Y, Hwang D S, et al. Nanocrack-regulated self-humidifying membranes[J]. Nature, 2016, 532(7600): 480-483.
[23] Cha D, Jeon S W, Yang W, et al. Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions[J]. Energy, 2018, 150: 320-328.
[24] Lee D C, Yang H N, Park S H, et al. Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell[J]. Journal of Membrane Science, 2014, 452: 20-28.
[25] Yang H N, Lee W H, Choi B S, et al. Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell[J]. Journal of Membrane Science, 2016, 504: 20-28.
[26] Steffy N J, Parthiban V, Sahu A K. Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity[J]. Journal of Membrane Science, 2018, 563: 65-74.
[27] Parnian M J, Rowshanzamir S, Alipour Moghaddam J. Investigation of physicochemical and electrochemical properties of recast Nafion nanocomposite membranes using different loading of zirconia nanoparticles for proton exchange membrane fuel cell applications[J]. Materials Science for Energy Technologies, 2018, 1(2): 146-154.
[28] Ketpang K, Son B, Lee D, et al. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions[J]. Journal of Membrane Science, 2015, 488: 154-165.
[29] Ketpang K, Oh K, Lim S C, et al. Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions[J]. Journal of Power Sources, 2016, 329: 441-449.
[30] Bakangura E, Wu L, Ge L, et al. Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives[J]. Progress in Polymer Science, 2016, 57: 103-
152.
[31] Sayadi P, Rowshanzamir S, Parnian M J. Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly(ether ether ketone)[J]. Energy, 2016, 94: 292-303.
[32] Bae I, Oh K H, Yun S H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells[J]. Journal of Membrane Science, 2017, 542: 52-59.
[33] Oh K, Son B, Sanetuntikul J, et al. Polyoxometalate decorated graphene oxide/sulfonated poly(arylene ether ketone) block copolymer composite membrane for proton exchange membrane fuel cell operating under low relative humidity[J]. Journal of Membrane Science, 2017, 541: 386-392.
[34] Bae I, Oh K H, Yun M, et al. Nanostructured composite membrane with cross-linked sulfonated poly(arylene ether ketone)/silica for high-performance polymer electrolyte membrane fuel cells under low relative humidity[J]. Journal of Membrane Science, 2018, 549: 567-574.
[35] Jung U H, Park K T, Park E H, et al. Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer[J]. Journal of Power Sources, 2006, 159(1): 529-532.
[36] Lin C L, Hsu S C, Ho W Y. Using SiO2 nanopowders in anode catalyst layer to improve the performance of a proton exchange membrane fuel cell at low humidity[J]. Journal of Materials Science and Chemical Engineering, 2015, 3(1): 72-79.
[37] Huang R H, Chiu T W, Lin T J, et al. Improvement of proton exchange membrane fuel cells performance by coating hygroscopic zinc oxide on the anodic catalyst layer[J]. Journal of Power Sources, 2013, 227: 229-236.
[38] Chao W K, Lee C M, Tsai D C, et al. Improvement of the proton exchange membrane fuel cell (PEMFC) performance at low-humidity conditions by adding hygroscopic γ-Al2O3 particles into the catalyst layer[J]. Journal of Power Sources, 2008, 185(1): 136-142.
[39] Liang H G, Zheng L P, Liao S J. Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12860-12867.
[40] Liang H G, Dang D, Xiong W, et al. High-performance self-humidifying membrane electrode assembly prepared by simultaneously adding inorganic and organic hygroscopic materials to the anode catalyst layer[J]. Journal of Power Sources, 2013, 241: 367-372.
[41] Hou S Y, Liao S J, Dang D, et al. Self-humidifying membrane electrode assembly prepared by adding microcrystalline cellulose in anode catalyst layer as preserve moisture[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12842-12848.
[42] Chao W K, Lee C M, Tsai D C, et al. Improvement of the proton exchange membrane fuel cell (PEMFC) performance at low-humidity conditions by adding hygroscopic γ-Al2O3 particles into the catalyst layer[J]. Journal of Power Sources, 2008, 185(1): 136-142.
[43] Lin C L, Hsu S C, Ho W Y. Using SiO2 nanopowders in anode catalyst layer to improve the performance of a proton exchange membrane fuel cell at low humidity[J]. Journal of Materials Science and Chemical Engineering, 2015, 3(1): 72-79.
[44] Kim E Y, Yim S D, Bae B, et al. Study of a highly durable low-humidification membrane electrode assembly using crosslinked polyvinyl alcohol for polymer electrolyte membrane fuel cells[J]. Journal of Solid State Electrochemistry, 2016, 20(6): 1723-1730.
[45] Su H N, Xu L M, Zhu H P, et al. Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7874-7880.
[46] Su H N, Yang L J, Liao S J, et al. Membrane electrode assembly with Pt/SiO2/C anode catalyst for proton exchange membrane fuel cell operation under low humidity conditions[J]. Electrochimica Acta, 2010, 55(28): 8894-8900.
[47] Zheng L P, Zeng Q, Liao S J, et al. Highly performed non-humidification membrane electrode assembly prepared with binary RuO2-SiO2 oxide supported Pt catalysts as anode[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13103-13109.
[48] Hou S Y, Chen R, Zou H B, et al. High-performance membrane electrode assembly with multi-functional Pt/SnO2 -SiO2 /C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9197-9203.
[49] Luo F, Liu M R, Chi B, et al. Enhanced durability and self-humidification of platinum catalyst through decoration with SnSi binary oxide[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1163-1173.
[50] Lo A Y, Huang C Y, Sung L Y, et al. Electrophoretic deposited Pt/C/SiO2 anode for self-humidifying and improved catalytic activity in PEMFC[J]. Electrochimica Acta, 2015, 180: 610-615.
[51] Choi I, Lee H, Lee K G, et al. Characterization of self-humidifying ability of SiO2-supported Pt catalyst under low humidity in PEMFC[J]. Applied Catalysis B: Environmental, 2015, 168: 220-227.
[52] Ko Y D, Yang H N, Züttel A, et al. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-
humidifying proton exchange membrane fuel cell[J]. Journal of Power Sources, 2017, 367: 8-16.
[53] Ganesan A, Narayanasamy M. Shunmugavel K self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells[J]. Electrochimica Acta, 2018, 285: 47-59.
[54] Hou S Y, Su H N, Zou H B, et al. Enhanced low-humidity performance in a proton exchange membrane fuel cell by the insertion of microcrystalline cellulose between the gas diffusion layer and the anode catalyst layer[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15613-15621.
[55] Liang H G, Xu R Y, Chen K C, et al. Self-humidifying membrane electrode assembly with dual cathode catalyst layer structure prepared by introducing polyvinyl alcohol into the inner layer[J]. RSC Advances, 2016, 6(2): 1333-1338.
[56] Yang H N, Lee W H, Choi B S, et al. Self-humidifying Pt-C/Pt-TiO2 dual-catalyst electrode membrane assembly for proton-exchange membrane fuel cells[J]. Energy, 2017, 120: 12-19.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.