•  
  •  
 

Corresponding Author

Xiu-e JIANG(jiangxiue@ciac.ac.cn)

Abstract

Surface-enhanced infrared absorption spectroscopy (SEIRAS), especially in attenuated total reflectance (ATR) mode, taking advantages of surface-enhancement and near-field optical effect of enhancing substrate, is a ultra-sensitive infrared spectroscopy, which could achieve surface-selected detection at a sub-monolayer level. Since the enhancing substrate could simultaneously serve as a working electrode, ATR-SEIRAS is a readily surface-sensitive in situ label-free spectroelectrochemistry technique. With the advantages of small influence from metal species on enhancement effect, good potential reversibility of spectra, simple surface selection rule and sensitivity to polar molecules, ATR-SEIRAS has been widely applied in the fields of orientation analysis and species identification of interfacial adsorbed molecules, interfacial catalytic reaction mechanism elucidation, and interfacial molecular interaction study. In recent years, ATR-SEIRAS has been demonstrated to be a powerful tool in biomolecule analysis, and great progress has been made. Therefore, this review briefly introduces the basic principle and basic technical characteristics of SEIRAS, and then emphasizes the application and development of ATR-SEIRAS in protein structure-function study, artificial biomimetic membrane research, whole cell analysis, as well as electrocatalytic interface probing, through discussing several representative research works. Finally, some perspectives for future development of SEIRAS are discussed.

Graphical Abstract

Keywords

spectroelectrochemistry, surface-enhanced infrared absorption spectroscopy, infrared ctroelectrochemistry, bioanalysis

Publication Date

2019-04-28

Online Available Date

2019-03-01

Revised Date

2019-01-03

Received Date

2018-12-14

References

[1] Kuwana T, Darlington R K, Leedy D W. Electrochemical studies using conducting glass indicator electrodes[J]. Analytical Chemistry, 1964, 36(10): 2023-2025.
[2] Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfacces as probed by surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 2004, 55(1): 197-229.
[3] Wu D Y, Li J F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5): 1025-1041.
[4] Ren B(任斌), Li J F(李剑锋), Huang Y F(黄逸凡), et al. Electrochemical surface-enhanced Raman spectroscopy-current status and perspective[J]. Journal of Electrochemistry(电化学), 2010, 16(3): 305-316.
[5] Zeng Z C, Huang S C, Wu D Y, et al. Electrochemical tip-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(37): 11928-11931.
[6] Wang X, Huang S C, Huang T X, et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces[J]. Chemical Society Reviews, 2017, 46(13): 4020-4041.
[7] Mark H B, Pons B S. An in situ spectrophotometric method for observing the infrared spectra of species at the electrode surface during electrolysis[J]. Analytical Chemistry, 1966, 38(1): 119-121.
[8] Osawa M, Ataka K, Yoshii K, et al. Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces[J]. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65: 371-379.
[9] Yang Y Y(阳耀月), Zhang H X(张涵轩), Cai W B(蔡文斌). Recent experimental progresses on electrochemical ATR-SEIRAS[J]. Journal of Electrochemistry(电化学), 2013, 19(1): 6-16.
[10] Bewick A, Kunimatsu K, Robinson J, et al. IR vibrational spectroscopy of species in the electrode-electrolyte solution interphase[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 119(1): 175-185.
[11] Bewick A, Kunimatsu K, Pons B S, et al. Electrochemically modulated infrared spectroscopy (EMIRS): Experimental details[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 160(1): 47-61.
[12] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 1980, 45(3): 201-204.
[13] Aroca R F, Ross D J, Domingo C. Surface-enhanced infrared spectroscopy[J]. Applied Spectroscopy, 2004, 58(11): 324A-338A.
[14] Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bulletin of the Chemical Society of Japan, 1997, 70(12): 2861-2880.
[15] Adato R, Aksu S, Altug H. Engineering mid-infrared nano-antennas for surface enhanced infrared absorption spectroscopy[J]. Materials Today, 2015, 18(8): 436-446.
[16] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 2017, 117(7): 5110-5145.
[17] Yang X X, Sun Z P, Low T, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy[J]. Advanced Materials, 2018, 30(20): 23.
[18] Osawa M. Surface-enhanced infrared absorption[M]//Near-field optics and surface plasmon polaritons. Germany: Springer Berlin Heidelberg, 2001: 163-187.
[19] Osawa M. Surface-enhanced infrared absorption spectro-scopy[M]//Handbook of vibrational spectroscopy. Chichester: John Wiley & Sons, Ltd, 2006: 785-799.
[20] Osawa M, Ataka K, Yoshii K, et al. Surface-enhanced infrared spectroscopy: The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J]. Applied Spectroscopy, 1993, 47(9): 1497-1502.
[21] Wang T T, Bai J, Jiang X E, et al. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry[J]. ACS Nano, 2012, 6(2): 1251-1259.
[22] Jiang X E, Zaitseva E, Schmidt M, et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy[J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12113-12117.
[23] Jiang X E, Engelhard M, Ataka K, et al. Molecular impact of the membrane potential on the regulatory mechanism of proton transfer in sensory rhodopsin II[J]. Journal of the American Chemical Society, 2010, 132(31): 10808-10815.
[24] Johnson E, Aroca R. Surface-enhanced infrared spectroscopy of monolayers[J]. The Journal of Physical Chemistry, 1995, 99(23): 9325-9330.
[25] Ataka K, Yotsuyanagi T, Osawa M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J]. The Journal of Physical Chemistry, 1996, 100(25): 10664-10672.
[26] Ataka K, Heberle J. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectro-scopy of a protein monolayer[J]. Journal of the American Chemical Society, 2003, 125(17): 4986-4987.
[27] Larmour I A, Graham D. Surface enhanced optical spectroscopies for bioanalysis[J]. Analyst, 2011, 136(19): 3831-3853.
[28] Li J, Zheng B, Zhang Q W, et al. Attenuated total reflection surface-enhanced infrared absorption spectroscopy: A powerful technique for bioanalysis[J]. Journal of Analysis and Testing, 2017, 1(1): 8.
[29] Ataka K, Stripp S T, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(10): 2283-2293.
[30] Barth A, Zscherp C. What vibrations tell about proteins[J]. Quarterly Reviews of Biophysics, 2002, 35(4): 369-430.
[31] Ataka K, Heberle J. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes[J]. Journal of the American Chemical Society, 2004, 126(30): 9445-9457.
[32] Jiang X E, Ataka K, Heberle J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(3): 813-819.
[33] Lin S R, Jiang X E, Wang L X, et al. Adsorption orientation of horse heart cytochromecon a bare gold electrode hampers its electron transfer[J]. The Journal of Physical Chemistry C, 2012, 116(1): 637-642.
[34] Jin B, Wang G X, Millo D, et al. Electric-field control of the pH-dependent redox process of cytochrome c immobilized on a gold electrode[J]. The Journal of Physical Chemistry C, 2012, 116(24): 13038-13044.
[35] Liu L, Wu L, Zeng L, et al. Label-free surface-enhanced infrared spectro-electro-chemical analysis of the redox potential shift of cytochrome c complexed with a cardiolipin-containing lipid membrane of varied composition[J]. Chinese Physics B, 2015, 24(12): 128201.
[36] Liu L, Zeng L, Wu L, et al. Label-free surface-enhanced infrared spectroelectrochemistry studies the interaction of cytochrome c with cardiolipin-containing membranes[J]. The Journal of Physical Chemistry C, 2015, 119(8): 3990-3999.
[37] Zeng L, Wu L, Liu L, et al. Analyzing structural properties of heterogeneous cardiolipin-bound cytochrome c and their regulation by surface-enhanced infrared absorption spectroscopy[J]. Analytical Chemistry, 2016, 88(23): 11727-11733.
[38] Zeng L, Wu L, Liu L, et al. The role of water distribution controlled by transmembrane potentials in the cytochrome c-cardiolipin interaction: Revealing from surface-enhanced infrared absorption spectroscopy[J]. Chemistry - A European Journal, 2017, 23(61): 15491-15497.
[39] Ataka K, Giess F, Knoll W, et al. Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared absorption spectroscopy[J]. Journal of the American Chemical Society, 2004, 126(49): 16199-16206.
[40] Ataka K, Richter B, Heberle J. Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode[J]. The Journal of Physical Che-
mistry B, 2006, 110(18): 9339-9347.
[41] Jiang X E, Zuber A, Heberle J, et al. In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10(42): 6381-6387.
[42] Chen Y, Jin B, Guo L R, et al. Hemoglobin on phosphonic acid terminated self-assembled monolayers at a gold electrode: Immobilization, direct electrochemistry, and electrocatalysis[J]. Chemistry - A European Journal, 2008, 14(34): 10727-10734.
[43] Cao F J, Wang L X, Jiang X E, et al. Investigation of the effects of surface chemistry on adsorption of albumin by surface-enhanced FTIR spectroscopy[J]. RSC Advances, 2013, 3(38): 17214-17221.
[44] Gutierrez-Sanz O, Marques M, Pereira I A C, et al. Orientation and function of a membrane-bound enzyme monitored by electrochemical surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2794-2798.
[45] Millo D, Hildebrandt P, Pandelia M-E, et al. SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions[J]. Angewandte Chemie International Edition, 2011, 50(11): 2632-2634.
[46] Vaz-Domínguez C, Pita M, De Lacey A L, et al. Combined ATR-SEIRAS and EC-STM study of the immobilization of laccase on chemically modified Au electrodes[J]. The Journal of Physical Chemistry C, 2012, 116(31): 16532-16540.
[47] Gebert J, Reiner-Rozman C, Steininger C, et al. Electron transfer to light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomim-
etic membrane system[J]. Journal of Physical Chemistry C, 2015, 119(2): 890-895.
[48] Nedelkovski V, Schwaighofer A, Wraight C A, et al. Surface-enhanced infrared absorption spectroscopy (SEIRAS) of light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomimetic membrane system[J]. Journal of Physical Chemistry C, 2013, 117(32): 16357-16363.
[49] Kozuch J, Steinem C, Hildebrandt P, et al. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes[J]. Angewandte Chemie International Edition, 2012, 51(32): 8114-8117.
[50] Kozuch J, Weichbrodt C, Millo D, et al. Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy[J]. Physical Chemistry Chemical Physics, 2014, 16(20): 9546-9555.
[51] Noguchi H, Adachi T, Nakatomi A, et al. Biofunctionality of calmodulin immobilized on gold surface studied by surface enhanced infrared absorption spectroscopy-Ca2+ induced conformational change and binding to a target peptide[J]. The Journal of Physical Chemistry C, 2016, 120(29): 16035-16041.
[52] Moe E, Sezer M, Hildebrandt P, et al. Surface enhanced vibrational spectroscopic evidence for an alternative DNA-independent redox activation of endonuclease III[J]. Chemical Communications, 2015, 51(15): 3255-3257.
[53] Kato M, Nakagawa S, Tosha T, et al. Surface-enhanced infrared absorption spectroscopy of bacterial nitric oxide reductase under electrochemical control using a vibrational probe of carbon monoxide[J]. Journal of Physical Chemistry Letters, 2018, 9(17): 5196-5200.
[54] Salewski J, Batista A P, Sena F V, et al. Substrate-protein interactions of type II NADH: Quinone oxidoreductase from Escherichia coli[J]. Biochemistry, 2016, 55(19): 2722-
2734.
[55] Kriegel S, Uchida T, Osawa M, et al. Biomimetic environment to study E-coli complex I through surface-enhanced IR absorption spectroscopy[J]. Biochemistry, 2014, 53(40): 6340-6347.
[56] Wiebalck S, Kozuch J, Forbrig E, et al. Monitoring the transmembrane proton gradient generated by cytochrome bo3 in tethered bilayer lipid membranes using SEIRA spectroscopy[J]. Journal of Physical Chemistry B, 2016, 120(9): 2249-2256.
[57] Gutierrez-Sanz O, Forbig E, Batista A P, et al. Catalytic activity and proton translocation of reconstituted respiratory complex I monitored by surface-enhanced infrared absorption spectroscopy[J]. Langmuir, 2018, 34(20): 5703-5711.
[58] Zhang X F, Zeng L, Liu L, et al. Surface-enhanced infrared absorption spectroscopy and electrochemistry reveal the impact of nanoparticles on the function of protein immobilized on mimic biointerface[J]. Electrochimica Acta, 2016, 211: 148-155.
[59] Liu L, Zeng L, Wu L, et al. Revealing the effect of protein weak adsorption to nanoparticles on the interaction between the desorbed protein and its binding partner by surface-enhanced infrared spectroelectrochemistry[J]. Analytical Chemistry, 2017, 89(5): 2724-2730.
[60] Levin C S, Kundu J, Janesko B G, et al. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies[J]. The Journal of Physical Chemistry B, 2008, 112(45): 14168-14175.
[61] Quirk A, Lardner M J, Tun Z, et al. Surface-enhanced infrared spectroscopy and neutron reflectivity studies of ubiquinone in hybrid bilayer membranes under potential control[J]. Langmuir, 2016, 32(9): 2225-2235.
[62] Forbrig E, Staffa J K, Salewski J, et al. Monitoring the orientational changes of alamethicin during incorporation into bilayer lipid membranes[J]. Langmuir, 2018, 34(6): 2373-2385.
[63] Uchida T, Osawa M, Lipkowski J. SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer[J]. Journal of Electroanalytical Chemistry, 2014, 716: 112-119.
[64] Wang T T, Jiang X E. The broken of phosphodiester bond: A key factor induced hemolysis[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 129-136.
[65] Wang T T, Zhu S J, Jiang X E. Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy[J]. Toxicology Research, 2015, 4(4): 885-894.
[66] Wu L, Zeng L, Jiang X E. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(32): 10052-10055.
[67] Wu L, Jiang X E. Proton transfer at the interaction interface of graphene oxide[J]. Analytical Chemistry, 2018, 90(17): 10223-10230.
[68] Busalmen J P, Berná A, Feliu J M. Spectroelectrochemical examination of the interaction between bacterial cells and gold electrodes[J]. Langmuir, 2007, 23(11): 6459-6466.
[69] Busalmen J P, Esteve-Núñez A, Berná A, et al. C-type cytochromes wire electricity-producing bacteria to electrodes[J]. Angewandte Chemie-International Edition, 2008, 47(26): 4874-4877.
[70] Busalmen J P, Esteve-Nunez A, Berna A, et al. ATRSEIRAS characterization of surface redox processes in G. sulfurreducens[J]. Bioelectrochemistry, 2010, 78(1): 25-
29.
[71] Kuzume A, Zhumaev U, Li J, et al. An in situ surface electrochemistry approach towards whole-cell studies: The structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces[J]. Physical Chemistry Chemical Physics, 2014, 16(40): 22229-22236.
[72] Dunwell M, Yan Y S and Xu B J. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au[J]. Surface Science, 2016, 650: 51-
56.
[73] Motobayashi K, Osawa M. Potential-dependent condensation of water at the interface between ionic liquid BMIM TFSA and an Au electrode[J]. Electrochemistry Communications, 2016, 65: 14-17.
[74] Yaguchi M, Uchida T, Motobayashi K, et al. Speciation of adsorbed phosphate at gold electrodes: A combined surface-enhanced infrared absorption spectroscopy and DFT study[J]. Journal of Physical Chemistry Letters, 2016, 7(16): 3097-3102.
[75] Dunwell M, Wang J H, Yan Y, et al. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces[J]. Physical Chemistry Chemical Physics, 2017, 19(2): 971-975.
[76] Ma M(马敏), Yang Y Y(阳耀月), Zhang H X(张涵轩), et al. Preliminary investigation of iron protoporphyrin SAMs on platinum electrodes by surface enhanced vibrational spectroscopies[J]. Journal of Electrochemistry(电化学), 2010, 16(3): 273-278.
[77] Quirk A, Unni B, Burgess I J. Surface enhanced infrared studies of 4-methoxypyridine adsorption on gold film electrodes[J]. Langmuir, 2016, 32(9): 2184-2191.
[78] Krug K, Liu Y F, Uchida T, et al. Effects of electrode potential on the adsorption behavior of TBPS on an Au surface[J]. Electrochimica Acta, 2017, 235: 242-250.
[79] Alvarez-Malmagro J, Rueda M, Prieto F. In situ surface-enhanced infrared spectroscopy study of adenine-thymine co-adsorption on gold electrodes as a function of the pH[J]. Journal of Electroanalytical Chemistry, 2018, 819: 417-427.
[80] Kokaislova A, Parchansky V, Matejka P. Surface-enhanced infrared spectra of nicotinic acid and pyridoxine on copper substrates: What is the effect of temperature and deposition conditions?[J]. Journal of Physical Chemistry C, 2015, 119(47): 26526-26539.
[81] Motobayashi K, Tomioka R, Uchida T, et al. Effect of hydrogen on the orientation of cinchonidine adsorbed on platinum: An ATR-SEIRAS study[J]. Chemistry Letters, 2015, 44(6): 770-772.
[82] Nishi N, Minami K, Motobayashi K, et al. Interfacial structure at the quaternary ammonium-based ionic liquids|gold electrode interface probed by surface-enhanced infrared absorption spectroscopy: Anion dependence of the cationic behavior[J]. Journal of Physical Chemistry C, 2017, 121(3): 1658-1666.
[83] Chen Y X, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Journal of the American Chemical Society, 2003, 125(13): 3680-3681.
[84] Yang Y Y, Ren J, Li Q X, et al. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catalysis, 2014, 4(3): 798-803.
[85] Matsui T, Suzuki S, Katayama Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions[J]. Langmuir, 2015, 31(42): 11717-11723.
[86] Kunimatsu K, Senzaki T, Samjeské G, et al. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy[J]. Electrochimica Acta, 2007, 52(18): 5715-5724.
[87] Kodama K, Motobayashi K, Shinohara A, et al. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt[J]. ACS Catalysis, 2018, 8(1): 694-700.
[88] Kunimatsu K, Uchida H, Osawa M, et al. In situ infrared spectroscopic and electrochemical study of hydrogen electro-oxidation on Pt electrode in sulfuric acid[J]. Journal of Electroanalytical Chemistry, 2006, 587(2): 299-307.
[89] Wuttig A, Yaguchi M, Motobayashi K, et al. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): E4585-E4593.
[90] Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783.
[91] Zhu S Q, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017, 139(44): 15664-15667.
[92] Dunwell M, Yang X, Setzler B P, et al. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy[J]. ACS Catalysis, 2018, 8(5): 3999-4008.
[93] Dunwell M, Yan Y S, Xu B J. In situ infrared spectroscopic investigations of pyridine-mediated CO2 reduction on Pt electrocatalysts[J]. ACS Catalysis, 2017, 7(8): 5410-
5419.
[94] Papasizza M, Cuesta A. In situ monitoring using ATRSEIRAS of the electrocatalytic reduction of CO2 on Au in an ionic liquid/water mixture[J]. ACS Catalysis, 2018, 8(7): 6345-6352.
[95] Vivek J P, Berry N, Papageorgiou G, et al. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy[J]. Journal of the American Chemical Society, 2016, 138(11): 3745-3751.
[96] Yao Y, Zhu S Q, Wang H J, et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces[J]. Journal of the American Chemical Society, 2018, 140(4): 1496-1501.
[97] Wang H, Jiang B, Zhao T T, et al. Electrocatalysis of ethylene glycol oxidation on bare and bimodified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation[J]. ACS Catalysis, 2017, 7(3): 2033-2041.
[98] Jarzembski A, Shaskey C, Park K. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials[J]. Frontiers in Energy, 2018, 12(1): 43-
71.
[99] Kraack J P, Hamm P. Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy[J]. Chemical Reviews, 2017, 117(16): 10623-10664.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.