•  
  •  
 

Corresponding Author

Feng-xiang YIN(yinfx@cczu.edu.cn)

Abstract

The Ni-Fe/Ti oxygen evolution electrode was prepared by electrodeposition on a titanium mesh substrate. Then, the as prepared Ni-Fe/Ti electrode was used to derive the Ni-Fe-S/Ti hydrogen evolution electrode through solid phase sulfuration. The effects of the molar ratio of Ni 2+ to Fe 3+ in the electrolyte and the amount of thiourea on the structures and electrochemical performances of Ni-Fe/Ti and Ni-Fe-S/Ti electrodes were investigated. The results show that the oxygen evolution performance of Ni-Fe/Ti electrode was first increased and then decreased with the increase of nickel ion content in the electrolyte. The Ni9Fe1/Ti electrode exhibited the best oxygen evolution performance. With the increase of thiourea addition, the hydrogen evolution performance of Ni-Fe-S/Ti electrode was increased firstly and then decreased. The Ni9Fe1S0.25/Ti electrode showed the best hydrogen evolution performance. To achieve a current density of 50 mA·cm -2, an overpotential of 280 mV was required for oxygen evolution reaction (OER) with the Ni9Fe1/Ti electrode, while 269 mV for hydrogen evolution reaction (HER) with the Ni9Fe1S0.25/Ti electrode, both with good stabilities. Accordingly, the Ni9Fe1/Ti and Ni9Fe1S0.25/Ti electrode were used as anodes and cathodes, respectively, for overall water splitting tests. The current density of 50 mA·cm -2 was achieved at a voltage of 1.69 V, showing the good catalytic performance of overall water splitting.

Graphical Abstract

Keywords

nickel-iron hydroxide, nickel-iron sulfide, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting

Publication Date

2020-02-28

Online Available Date

2019-04-02

Revised Date

2019-04-01

Received Date

2019-01-14

References

[1] Holladay J D, Hu J, King D L , et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009,139(4):244-260.
doi: 10.1016/j.cattod.2008.08.039 URL

[2] Li Y( 李阳), Luo Z Y( 罗兆艳), Ge J J( 葛君杰 ), et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(6):572-588.

[3] Xiao G( 肖钢 ). Fuel cell technology[M]. Bejing: Publishing House of Electronics Industry( 电子工业出版社), 2009.

[4] Lin Z D( 吝子东), Bai S( 白松), Zhang X H( 张晓辉 ). Development prospect of water electrolysis hydrogen production technology[J]. Chemical Defence on Ships( 舰船防化), 2014,2:48-54.

[5] Zhang B, Zheng X L, Voznyy O , et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016,352(3):333-337.
doi: 10.1016/j.amjms.2016.05.033 URL pmid: 27650243

[6] Han A L, Jin S, Chen H L , et al. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0-14[J]. Journal of Materials Chemistry A, 2015,3(5):1941-1946.
doi: 10.1039/C4TA06071G URL

[7] Bae S H, Kim J E, Randriamahazaka H , et al. Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution[J]. Advanced Energy Materials, 2017,7(1):1601492.
doi: 10.1002/aenm.v7.1 URL

[8] Zhang X( 张晓), He X B( 何小波), Li X( 李响 ), et al. Recent progress in the electrocatalysts based on Fe, Co and Ni for electrocatalytic hydrogen evolution reaction[J]. The Journal of New Industrialization( 新型工业化), 2016,6(10):1-9.

[9] Jiang N, You B, Sheng M L , et al. Bifunctionality and mechanism of electrodeposited nickel-phosphorous films for efficient overall water splitting[J]. ChemCatChem, 2016,8(1):106-112.
doi: 10.1002/cctc.201501150 URL

[10] Jiang J, Zhang A L, Li L L , et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction[J]. Journal of Power Sources, 2015,278:445-451.
doi: 10.1016/j.jpowsour.2014.12.085 URL

[11] Yu L, Zhou H Q, Sun J Y , et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting[J]. Energy & Environmental Science, 2017,10(8):1820-1827.

[12] Song F, Hu X L . Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014,5:4477-4485.
doi: 10.1038/ncomms5477 URL pmid: 25030209

[13] Zhao D D( 赵丹丹), Zhang Nan( 张楠), Bu L Z( 卜令正 ) , et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(5):455-465.

[14] Ovshinsky S R, Fetcenko M A, Venkatesan S , et al. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells[J]. Journal of Power Sources, 1994,70(2):294-294.

[15] Trotochaud L, Young S L, Ranney J K , et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. Journal of the American Chemical Society, 2014,136(18):6744-6753.
doi: 10.1021/ja502379c URL

[16] Ganesan P, Sivanantham A, Shanmugam S . Inexpensive electrochemical synjournal of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis[J]. Journal of Materials Chemistry A, 2016,4(42):16394-16402.
doi: 10.1039/C6TA04499A URL

[17] Faber M S, Lukowski M A, Ding Q , et al. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J]. Journal of Physical Chemistry C, 2014,118(37):21347-21356.
doi: 10.1021/jp506288w URL

[18] Kibsgaard J, Chen Z, Reinecke B N , et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012,11(11):963-969.
doi: 10.1038/NMAT3439 URL

[19] Long X, Li G X, Wang Z L , et al. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media[J]. Journalof the American Chemical Society, 2015,137(37):11900-11903.
doi: 10.1021/jacs.5b07728 URL pmid: 26338434

[20] Wang D Y, Gong M, Chou H L , et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015,137(4):1587-1592.
doi: 10.1021/ja511572q URL pmid: 25588180

[21] Luo J S, Im J H, Mayer M T , et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts[J]. Science, 2014,345(6204):1593-1596.
doi: 10.1126/science.1258307 URL pmid: 25258076

[22] Zhang H J, Li X P, H?hnel A , et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Advanced Functional Materials, 2018,14:1706847.

[23] Feng L L, Yu G T, Wu Y Y , et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015,137(44):14023-14026.
doi: 10.1021/jacs.5b08186 URL pmid: 26352297

[24] Wu Y Y, Liu Y P, Li G D , et al. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays[J]. Nano Energy, 2017,35:161-170.
doi: 10.1016/j.nanoen.2017.03.024 URL

[25] Liu J( 刘佳), Ge X B( 葛性波 ). Recent advances in Fe based oxygen evolution catalysts via electrodeposition method[J]. Applied Chemical Industry( 应用化工), 2017,46(8):1603-1607.

[26] Yarger M S, Steinmiller E M, Choi K S . Electrochemical synjournal of Zn-Al layered double hydroxide (LDH) films[J]. Inorganic Chemistry, 2008,47(13):5859-5865.
doi: 10.1021/ic800193j URL pmid: 18533629

[27] Pu Z H, Liu Q, Tang C , et al. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode[J]. Nanoscale, 2014,6(19):11031-11034.
doi: 10.1039/c4nr03037k URL

[28] Wang X H( 王新红 ). Study on the thermal analysis of thiourea[J]. Applied Chemical Industry( 应用化工), 2008,37(6):691-693.

[29] Lin H L, Liu N, Shi Z P , et al. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2016,26(31):5590-5598.
doi: 10.1002/adfm.v26.31 URL

[30] Lee E, Park A H, Park H U , et al. Facile sonochemical synjournal of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction[J]. Ultrasonics Sonochemistry, 2017,40(Pt A):552-557.
doi: 10.1016/j.ultsonch.2017.07.048 URL pmid: 28946457

[31] Yang N, Tang C, Wang K Y , et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting[J]. Nano Research, 2016,9(11):3346-3354.
doi: 10.1007/s12274-016-1211-x URL

[32] Liu X, Cui S S, Sun Z J , et al. Self-supported copper oxide electrocatalyst for water oxidation at low overpotential and confirmation of its robustness by Cu K-Edge X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2016,120(2):831-840.
doi: 10.1021/acs.jpcc.5b09818 URL

[33] Tian J Q, Cheng N Y, Liu Q , et al. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting[J]. Journal of Materials Chemistry A, 2015,3(40):20056-20059.
doi: 10.1039/C5TA04723D URL

[34] Xing J, Li H, Cheng M M , et al. Electro-synjournal of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2016,4(36):13866-13873.
doi: 10.1039/C6TA05952J URL

[35] Wang W Y, Yang L, Qu F L , et al. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017,5(32):16585-16589.
doi: 10.1039/C7TA05521H URL

[36] Sivanantham A, Ganesan P, Shanmugam S . Hierarchical NiCo2S4 nanowire arrays supported on ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Advanced Functional Materials, 2016,26(26):4661-4672.
doi: 10.1002/adfm.v26.26 URL

[37] Ledendecker M, Krick Calderón S, Papp C , et al. The synjournal of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(42):12361-12365.
doi: 10.1002/anie.201502438 URL pmid: 26129698

[38] Tang C, Cheng N Y, Pu Z H , et al. NiSe nanowire film supported on Nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(32):9351-9355.
doi: 10.1002/anie.201503407 URL pmid: 26136347

[39] Ling F, Jiang Z Q, Xu H T , et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting[J]. Journal of Catalysis, 2018,357:238-246.
doi: 10.1016/j.jcat.2017.11.017 URL

[40] Xiao Y L, Tian C G, Tian M , et al. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting[J]. Science China Materials, 61(1):80-90.
doi: 10.1007/s40843-017-9113-1 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.