•  
  •  
 

Corresponding Author

Chen Ai-Cheng(aicheng@uoguelph.ca)

Abstract

The conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added products is an interesting approach for carbon-containing fuel synthesis using renewable and clean energy. The electrochemical reduction of CO2 is one of the promising strategies for the storage of intermittent renewable energy resources. The development of electrocatalysts with high activity and stability is vital in the electrochemical CO2 reduction process. In this study, copper and gold alloyed (CuAu) electrodes with nanodendritic structures were synthesized using a facile electrodeposition method. The CuAu nanodendrites with the atomic ratio of Cu to Au being approximately 1:1 demonstrated excellent catalytic activity for the electrochemical reduction of CO2. Syngas, which is utilized as an intermediate in the production of synthetic natural gas, ammonia, and methanol, was the major product obtained under various applied potentials. Electrochemical impedance spectroscopic (EIS) measurements revealed that the CuAu nanodendrtic catalyst had a much lower charge transfer resistance than Cu and Au electrodeposited catalysts. The CuAu nanodendrite catalyst is an intriguing material with potential applications for syngas production from CO2.

Graphical Abstract

Keywords

electrocatalysis, electrodeposition, CO2 reduction reaction, CuAu nanocomposite, nanodendrites

Publication Date

2021-06-28

Online Available Date

2021-06-28

Revised Date

2021-04-16

Received Date

2021-02-22

References

[1] Hossain M N, Wen J L, Chen A C. Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide[J]. Sci. Rep., 2017, 7(1): 3184-3193.
doi: 10.1038/s41598-017-03601-3 pmid: 28600564

[2] Zhang D B, Tao Z T, Feng F L, He B B, Zhou W, Sun J, Xu J M, Wang Q, Zhao L. High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate[J]. Electrochim. Acta., 2020, 334: 135563.
doi: 10.1016/j.electacta.2019.135563 URL

[3] Huang J Z, Guo X R, Huang X J, Wang L S. Metal (Sn, Bi, Pb, Cd) in-situ anchored on mesoporous hollow kapok-tubes for outstanding electrocatalytic CO2 reduction to formate[J]. Electrochim. Acta., 2019, 325: 134923.
doi: 10.1016/j.electacta.2019.134923 URL

[4] Ensafi A A, Alinajafi H A, Rezaei B. Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol[J]. J. Electroanal. Chem., 2016, 78: 382-89.

[5] Ye S T, Fan G L, Xu J J, Yang L, Li F. Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region[J]. Electrochim. Acta., 2020, 334: 135583.
doi: 10.1016/j.electacta.2019.135583 URL

[6] Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Designing materials for electrochemical carbon dioxide recycling[J]. Nat. Catal., 2019, 2(8): 648-658.
doi: 10.1038/s41929-019-0306-7 URL

[7] Gao D, Arán-Ais R M, Jeon H S, Roldan Cuenya B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nat. Catal., 2019, 2(3): 198-210.
doi: 10.1038/s41929-019-0235-5 URL

[8] Zhu S Q, Wang Q, Qin X P, Gu M, Tao R, Lee B P, Zhang L L, Yao Y Z, Li T H, Shao M H. Tuning structural and compositional effects in Pd-Au nanowires for highly selective and active CO2 electrochemical reduction reaction[J]. Adv. Energ. Mater., 2018, 8(32): 1802238.
doi: 10.1002/aenm.v8.32 URL

[9] Xu S, Carter E A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction[J]. Chem. Rev., 2018, 119(11): 6631-6669.
doi: 10.1021/acs.chemrev.8b00481 URL

[10] Raciti D, Wang C. Electrochemical alternative to Fischer-Tropsch[J]. Nat. Catal., 2018, 1(10): 741-742.
doi: 10.1038/s41929-018-0160-z URL

[11] De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todoroviĉ P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.
doi: 10.1038/s41929-017-0018-9 URL

[12] Yi Q, Li W Y, Feng J, Xie K C. Carbon cycle in advanced coal chemical engineering[J]. Chem. Soc. Rev., 2015, 44(15): 5409-5445.
doi: 10.1039/C4CS00453A URL

[13] Bui M, Adjiman C S, Bardow A, Anthony E J, Boston A, Brown S, Fennell P S, Fuss S, Galindo A, Hackett L A, Hallett J P, Herzog H J, Jackson G, Kemper J, Krevor S, Maitland G C, Matuszewski M, Metcalfe I S, Petit C, Puxty G, Reimer J, Reiner D M, Rubin E S, Scott S A, Shah N, Smit B, Trusler J P M, Webley P, Wilcox J, Mac Dowell N. Carbon capture and storage (CCS): the way forward[J]. Energ. Environ. Sci., 2018, 11(5): 1062-1176.
doi: 10.1039/C7EE02342A URL

[14] Ho H J, Iizuka A, Shibata E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Ind. Eng. Chem. Res., 2019, 58(21): 8941-8954.
doi: 10.1021/acs.iecr.9b01213 URL

[15] Hurst T F, Cockerill T T, Florin N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energ. Environ. Sci., 2012, 5(5): 7132-7150.
doi: 10.1039/c2ee21204h URL

[16] Lamaison S, Wakerley D, Montero D, Rousse G, Taverna D, Giaume D, Mercier D, Blanchard J, Tran H N, Fontecave M, Mougel V. Zn-Cu alloy nanofoams as efficient catalysts for the reduction of CO2 to syngas mixtures with a potential-independent H2/CO ratio[J]. ChemSusChem, 2019, 12(2): 511-517.
doi: 10.1002/cssc.v12.2 URL

[17] Chen P, Jiao Y, Zhu Y H, Chen S-M, Song L, Jaroniec M, Zheng Y, Qiao S Z. Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density[J]. J. Mater. Chem. A, 2019, 7(13): 7675-7682.
doi: 10.1039/C9TA01932D URL

[18] Pletcher D. The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review[J]. Electrochem. Commun., 2015, 61(1): 97-101.
doi: 10.1016/j.elecom.2015.10.006 URL

[19] Qiao J L, Liu Y Y, Hong F, Zhang J J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem. Soc. Rev., 2014, 43(2): 631-675.
doi: 10.1039/C3CS60323G URL

[20] Tryk D A, Fujishima A. Global warming electrochemists enlisted in war: the carbon dioxide reduction battle[J]. Electrochem. Soc. Interface, 2001, 10(1): 32-36.
doi: 10.1149/2.F07011IF URL

[21] Chaplin R P S, Wragg A A. Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation[J]. J. Appl. Electrochem., 2003, 33(12): 1107-1123.
doi: 10.1023/B:JACH.0000004018.57792.b8 URL

[22] Li J H (李金翰), Cheng F Y (程方益). Electrolyte tailoring for electrocatalytic reduction of stable molecules[J]. J. Electrochem.(电化学), 2020, 26(4): 474-485.

[23] Ross M B, Dinh C T, Li Y, Kim D, De Luna P, Sargent E H, Yang P. Tunable Cu enrichment enables designer syngas electrosynjournal from CO2[J]. J. Am. Chem. Soc., 2017, 139(27): 9359-9363.
doi: 10.1021/jacs.7b04892 URL

[24] Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocataly-tic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta., 1994, 39(11): 1833-1839.
doi: 10.1016/0013-4686(94)85172-7 URL

[25] Furuya N, Yamazaki T, Shibata M. High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes[J]. J. Electroanal. Chem., 1997, 431(1): 39-41.
doi: 10.1016/S0022-0728(97)00159-9 URL

[26] Zhang T, Verma S, Kim S, Fister T T, Kenis P J A, Gewirth A A. Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane[J]. J. Ele-ctroanal. Chem., 2020, 875: 113862.

[27] Yang F (杨帆), Deng P L (邓培林), Han Y J (韩优嘉), Pan J (潘静), Xiao B Y (夏宝玉). Copper-based compounds for electrochemical reduction of carbon dioxide[J]. J. Ele-ctrochem.(电化学), 2019, 25(4): 426-444.

[28] Zhang X R (张旭锐), Liu Y Y (刘予宇), Shao X L (邵晓琳), Yi J (易金), Zhang J J (张久俊). Challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. J. Electrochem.(电化学), 2019, 25(4): 413-425.

[29] Welch A J, DuChene J S, Tagliabue G, Davoyan A, Cheng W H, Atwater H A. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS Appl. Energ. Mater., 2019, 2(1): 164-170.
doi: 10.1021/acsaem.8b01570 URL

[30] Zhu W L, Michalsky R, Metin Ö, Lv H, Guo S, Wright C J, Sun X, Peterson A A, Sun S H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. J. Am. Chem. Soc., 2013, 135(45): 16833-16836.
doi: 10.1021/ja409445p URL

[31] Chen Y, Li C W, Kanan M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(49): 19969-19972.
doi: 10.1021/ja309317u URL

[32] Nesbitt N T, Ma M, Trzešniewski B J, Jaszewski S, Tafti F, Burns M J, Smith W A, Naughton M J. Au dendrite electrocatalysts for CO2 electrolysis[J]. J. Phys. Chem. C, 2018, 122(18): 10006-10016.
doi: 10.1021/acs.jpcc.8b01831 URL

[33] Wen X S, Chang L, Gao Y, Han J Y, Bai Z M, Huan Y H, Li M H, Tang Z Y, Yan X Q. A reassembled nanoporous gold leaf electrocatalyst for efficient CO2 reduction towards CO[J]. Inorg. Chem. Front., 2018, 5(5): 1207-1212.
doi: 10.1039/C8QI00023A URL

[34] Zhu W L, Zhang Y J, Zhang H Y, Lv H F, Li Q, Michalsky R, Peterson A A, Sun S H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. J. Am. Chem. Soc., 2014, 136(46): 16132-16135.
doi: 10.1021/ja5095099 URL

[35] Chen C Z, Zhang B, Zhong J H, Cheng Z M. Selective electrochemical CO2 reduction over highly porous gold films[J]. J. Mater. Chem. A, 2017, 5(41): 21955-21964.
doi: 10.1039/C7TA04983H URL

[36] Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. J. Am. Chem. Soc., 2017, 139(11): 4052-4061.
doi: 10.1021/jacs.6b12217 URL

[37] Narayanaru S, Chinnaiah J, Phani K L, Scholz F. pH dependent CO adsorption and roughness-induced selectivity of CO2 electroreduction on gold surfaces[J]. Electrochim. Acta., 2018, 264: 269-274.
doi: 10.1016/j.electacta.2018.01.106 URL

[38] Chen S, Chen A C. Electrochemical reduction of carbon dioxide on Au nanoparticles: An in situ FTIR study[J]. J. Phys. Chem. C, 2019, 123(39): 23898-23906.
doi: 10.1021/acs.jpcc.9b04080 URL

[39] Hossain M N, Liu Z, Wen J L, Chen A C. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide[J]. Appl. Catal. B, 2018, 236: 483-489.
doi: 10.1016/j.apcatb.2018.05.053 URL

[40] Dong H, Li Y, Jiang D E. First-principles insight into electrocatalytic reduction of CO2 to CH4 on a copper nanoparticle[J]. J. Phys. Chem. C, 2018, 122(21): 11392-11398.
doi: 10.1021/acs.jpcc.8b01928 URL

[41] Sen S, Liu D, Palmore G T R. Electrochemical reduction of CO2 at copper nanofoams[J]. ACS Catal., 2014, 4(9): 3091-3095.
doi: 10.1021/cs500522g URL

[42] Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Lett., 2018, 3(7): 1545-1556.
doi: 10.1021/acsenergylett.8b00553 URL

[43] Mistry H, Varela A S, Bonifacio C S, Zegkinoglou I, Sinev I, Choi Y W, Kisslinger K, Stach E A, Yang J C, Strasser P, Cuenya B R. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nat. Commun., 2016, 7(1): 12123.
doi: 10.1038/ncomms12123 URL

[44] Dai L, Qin Q, Wang P, Zhao X J, Hu C Y, Liu P X, Qin R X, Chen M, Ou D H, Xu C F, Mo S G, Wu B H, Fu G, Zhang P, Zheng N F. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Sci. Adv., 2017, 3(9): e1701069.

[45] Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Lett., 2015, 15(10): 6829-6835.
doi: 10.1021/acs.nanolett.5b03298 pmid: 26352048

[46] Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. J. Am. Chem. Soc., 2012, 134(17): 7231-7234.
doi: 10.1021/ja3010978 URL

[47] Ren D, Deng Y, Handoko A D, Chen C S, Malkhandi S, Yeo B S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts[J]. ACS Catal., 2015, 5(5): 2814-2821.
doi: 10.1021/cs502128q URL

[48] Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. J. Chem. Soc., Faraday Trans.1, 1989, 85(8): 2309-2326.

[49] Kas R, Kortlever R, Yilmaz H, Koper M T M, Mul G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem, 2015, 2(3): 354-358.
doi: 10.1002/celc.v2.3 URL

[50] Velasco-Vélez J-J, Jones T, Gao D, Carbonio E, Arrigo R, Hsu C J, Huang Y C, Dong C L, Chen J M, Lee J F, Strasser P, Roldan Cuenya B, Schlögl R, Knop-Gericke A, Chuang C H. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons[J]. ACS Sustain. Chem. Eng., 2019, 7(1): 1485-1492.
doi: 10.1021/acssuschemeng.8b05106 URL

[51] Nur Hossain M, Chen S, Chen A. Thermal-assisted synjournal of unique Cu nanodendrites for the efficient electrochemical reduction of CO2[J]. Appl. Catal. B, 2019, 259: 118096-118104.
doi: 10.1016/j.apcatb.2019.118096 URL

[52] Hossain M N, Wen J L, Konda S K, Govindhan M, Chen A C. Electrochemical and FTIR spectroscopic study of CO2 reduction at a nanostructured Cu/reduced graphene oxide thin film[J]. Electrochem. Commun., 2017, 82: 16-20.
doi: 10.1016/j.elecom.2017.07.006 URL

<

[53] Zhang B H (张宝花), Zhang J T (张进涛). Regulation of copper surface via redox reaction for enhancing carbon dioixide electroreduction[J]. J. Electrochem.(电化学), 2019, 25(4): 497-503.

[54]Sartin M, Chen W(陈微), Chen Y X(陈艳霞), He F(贺凡). Recent progress in the mechanistic understanding of CO2 reduction on copper [J]. J. Electrochem.(电化学), 2020, 26(1): 41-53.

[55] Christophe J, Doneux T, Buess-Herman C. Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys[J]. Electrocatalysis, 2012, 3(2): 139-146.
doi: 10.1007/s12678-012-0095-0 URL

[56] Jia F L, Yu X X, Zhang L Z. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst[J]. J. Power Sources, 2014, 252: 85-89.
doi: 10.1016/j.jpowsour.2013.12.002 URL

[57] Kim D, Resasco J, Yu Y, Asiri A M, Yang P D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nat. Commun., 2014, 5(1): 4948-4956.
doi: 10.1038/ncomms5948 URL

[58] Monzó J, Malewski Y, Kortlever R, Vidal-Iglesias F J, Solla-Gullón J, Koper M T M, Rodriguez P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction[J]. J. Mater. Chem. A, 2015, 3(47): 23690-23698.
doi: 10.1039/C5TA06804E URL

[59] Kim D, Xie C L, Becknell N, Yu Y, Karamad M, Chan K, Crumlin E J, Nörskov J K, Yang P D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(24): 8329-8336.
doi: 10.1021/jacs.7b03516 URL

[60] Pander Iii J E, Ren D, Yeo B S. Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO2 reduction reaction[J]. Catal. Sci. Tech., 2017, 7(24): 5820-5832.
doi: 10.1039/C7CY01785E URL

[61] Zhu W J, Zhang L, Yang P P, Hu C L, Dong H, Zhao Z J, Mu R T, Gong J L. Formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys[J]. ACS Energy Lett., 2018, 3(9): 2144-2149.
doi: 10.1021/acsenergylett.8b01286 URL

[62] Gao J, Ren D, Guo X Y, Zakeeruddin S M, Grötzel M. Sequential catalysis enables enhanced C-C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts[J]. Faraday Discuss., 2019, 215: 282-296.
doi: 10.1039/C8FD00219C URL

.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.